《高等数学一》期末复习题及答案-26011462418282891

合集下载

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= .4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x→+2. (6分)设y =求.y '3.(6分)求不定积分2ln(1).x x dx +⎰ 4.(6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.(6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设(ln )1,f x x '=+且(0)1,f =求().f x2.(7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭及x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4.(7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 .5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx xx 21arctan . 二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上及直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点(D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 及22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分). 1.(本题6分)解微分方程256xy y y xe '''-+=.212-56012,31r r r r +=----------==----------解:特征方程分特征解.分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方xyy1程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为 .1x e y =----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=及x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =及x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。

高数一期末考试题及答案

高数一期末考试题及答案

高数一期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. x^2+3C. 2x+6D. x+2答案:A2. 求极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是函数f(x)=e^x的不定积分?A. e^x + CB. e^xC. ln(e^x) + CD. x*e^x + C答案:A4. 以下哪个选项是函数f(x)=x^3-6x^2+11x-6的极值点?A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题5分,共20分)5. 求定积分∫(0 to 1) x^2 dx的值是______。

答案:1/36. 函数y=x^3-3x+2的拐点是x=______。

答案:07. 函数f(x)=ln(x)在x=1处的切线斜率是______。

答案:18. 函数f(x)=x^2+2x+1的最小值是______。

答案:0三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:单调增区间为(3, +∞)和(-∞, 1);单调减区间为(1, 3)。

10. 求函数f(x)=x^2-4x+3的极值。

答案:当x=2时,函数取得极小值f(2)=-1。

11. 求函数f(x)=x^3-3x+2在x=1处的切线方程。

答案:切线方程为y=5x-2。

12. 求定积分∫(0 to 2) (x^2-2x+1) dx的值。

答案:413. 求函数f(x)=e^x-x-1的零点。

答案:函数f(x)=e^x-x-1的零点为x=0。

14. 求函数f(x)=ln(x)+x^2在x=1处的切线方程。

答案:切线方程为y=2x-1。

四、证明题(每题10分,共20分)15. 证明:函数f(x)=x^3+3x^2-2x+1在(-∞, -2)上是单调递减的。

答案:首先求导f'(x)=3x^2+6x-2,令f'(x)<0,解得x<-2,因此函数在(-∞, -2)上单调递减。

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。

《高等数学一》期末复习题及答案

《高等数学一》期末复习题及答案

《高等数学(一)》期末复习题 一、选择题 1、极限2lim()xxxx 的结果是 ( C ) (A)0 (B) (C) 12 (D)不存在 2、方程3310xx在区间(0,1)内 ( B ) (A)无实根 (B)有唯一实根 (C)有两个实根 (D)有三个实根 3、)(xf是连续函数, 则 dxxf)(是)(xf的 ( C ) (A)一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sinxxy和直线0y所围的面积是 ( C ) (A)2/1 (B) 1 (C) 2 (D) 5、微分方程2xy满足初始条件2|0xy的特解是 ( D ) (A)3x (B)331x (C)23x (D)2313x 6、下列变量中,是无穷小量的为( A ) (A) )1(lnxx (B) )0(1lnxx (C) cos (0)xx (D) )2(422xxx 7、极限011lim(sinsin)xxxxx 的结果是( C ) (A)0 (B) 1 (C) 1 (D)不存在 8、函数arctanxyex在区间1,1上 ( A ) (A)单调增加 (B)单调减小 (C)无最大值 (D)无最小值 9、不定积分 dxxx12= ( D ) (A)2arctanxC (B)2ln(1)xC (C)1arctan2xC (D) 21ln(1)2xC 10、由曲线)10(xeyx和直线0y所围的面积是 ( A ) (A)1e (B) 1 (C) 2 (D) e
8、设sin1,yxx则()2f 1 9、 11(cos1)xxdx 2 10、 231dxx 3arctanxC 11、微分方程ydyxdx的通解为 22yxC 12、1415xdx 2 13、 sin2limxxxx 1 14、设2cosyx,则dy 22sinxxdx 15、设cos3,yxx则()f -1 16、不定积分xxdee Cx2e21 17、微分方程2xye的通解为 212xyeC 22222222222111120,201122xxxxxxxdyyyeyedyedxdxydyedxeCyyxyCeyey代入上式可得到所求的特解为或者 18、微分方程xyln的通解是 xyeC 19、xxx3)21(lim= 6e 20、,xyxy设函数则(ln1)xxx 21、)21(lim222nnnnn的值是 12

(完整word版)高数一试题及答案(word文档良心出品)

(完整word版)高数一试题及答案(word文档良心出品)

《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。

A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。

A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。

A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12.[()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x' D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求.解:13(43ln )(ln )x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰解t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若为连续函数,则的值为( )。

(A)1 (B)2 (C)3 (D)-12。

(3分)已知则的值为()。

(A)1 (B)3 (C)—1 (D)3。

(3分)定积分的值为()。

(A)0 (B)-2 (C)1 (D)24. (3分)若在处不连续,则在该点处().(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为 .2。

(3分) .3. (3分) = .4. (3分)的极大值为。

三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求不定积分4.(6分)求其中5.(6分)设函数由方程所确定,求6.(6分)设求7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程。

4.(7分)求函数在上的最小值和最大值。

五、证明题(6分)设在区间上连续,证明(二)一、填空题(每小题3分,共18分)1.设函数,则是的第类间断点.2.函数,则。

3..4.曲线在点处的切线方程为. 5.函数在上的最大值,最小值.6..二、单项选择题(每小题4分,共20分)1.数列有界是它收敛的() .必要但非充分条件; 充分但非必要条件;充分必要条件;无关条件。

2.下列各式正确的是()。

; ;;。

3.设在上,且,则曲线在上。

沿轴正向上升且为凹的;沿轴正向下降且为凹的;沿轴正向上升且为凸的;沿轴正向下降且为凸的. 4.设,则在处的导数().等于;等于;等于;不存在.5.已知,以下结论正确的是().函数在处有定义且;函数在处的某去心邻域内有定义;函数在处的左侧某邻域内有定义;函数在处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:.2。

已知,求。

3. 求函数的导数。

《高等数学一》期末复习题与答案_26011462418282891

《高等数学一》期末复习题与答案_26011462418282891

《高等数学(一)》期末复习题一、选择题1、极限)x x →∞的结果是 ( )(A )0 (B ) ∞ (C ) 12(D )不存在2、方程3310xx -+=在区间(0,1)内 ( )(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 3、)(x f 是连续函数, 则 ⎰dxx f )(是)(x f 的 ()(A )一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sin π<<=x x y 和直线0=y 所围的面积是 ()(A )2/1 (B) 1 (C) 2 (D) π 5、微分方程2x y ='满足初始条件2|0==x y 的特解是 ( )(A )3x (B )331x + (C )23+x (D )2313+x 6、下列变量中,是无穷小量的为( ) (A) )1(ln→x x (B) )0(1ln+→x x (C) cos (0)x x → (D) )2(422→--x x x 7、极限011lim(sinsin )x x x x x→- 的结果是( ) (A )0 (B ) 1 (C ) 1- (D )不存在 8、函数arctan x y e x =+在区间[]1,1-上 ( )(A )单调增加 (B )单调减小 (C )无最大值 (D )无最小值 9、不定积分⎰+dx x x12= ()(A)2arctan xC + (B)2ln(1)x C ++ (C)1arctan 2x C + (D) 21ln(1)2x C ++10、由曲线)10(<<=x e y x 和直线0=y 所围的面积是 ( )(A )1-e (B) 1 (C) 2 (D) e11、微分方程dyxy dx=的通解为 ( ) (A )2xy Ce= (B )212x y Ce= (C )Cxy e= (D )2x y Ce=12、下列函数中哪一个是微分方程032=-'x y 的解( )(A )2x y = (B ) 3x y -= (C )23x y -= (D )3x y =13、 函数1cos sin ++=x x y 是 ( )(A) 奇函数; (B) 偶函数; (C)非奇非偶函数; (D)既是奇函数又是偶函数. 14、当0→x时, 下列是无穷小量的是 ( )(A ) 1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x15、当x →∞时,下列函数中有极限的是 ( ) (A )211x x +- (B) cos x (C)1xe (D)arctan x16、方程310(0)x px p ++=>的实根个数是 ( )(A )零个 (B )一个 (C )二个 (D )三个17、21()1dx x '=+⎰( ) (A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 18、定积分()baf x dx ⎰是 ( )(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数19、 函数(ln y x =+是( )(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 20、设函数()f x 在区间[]0,1上连续,在开区间()0,1内可导,且()0f x '>,则( )(A)()00f < (B) ()()10f f > (C) ()10f > (D)()()10f f <21、设曲线221x y e-=-,则下列选项成立的是( ) (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 22、(cos sin )x x dx -=⎰( )(A ) sin cos x x C -++ (B )sin cos x x C -+(C ) sin cos x x C --+ (D )sin cos x x C ++23、数列})1({nn n-+的极限为( )(A )1(B) 1-(C) 0(D) 不存在24、下列命题中正确的是( )(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 25、若()()f x g x ''=,则下列式子一定成立的有( )(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰ (D)()()1f x g x =+26、下列曲线有斜渐近线的是 ( )(A)sin y x x =+ (B)2sin y x x =+(C)1siny x x =+ (D)21sin y x x=+二、填空题 1、 201cos lim x xx→-= 2、 若2)(2+=x e x f ,则=)0('f 3、 131(cos 51)x x x dx --+=⎰4、=⎰dx e t5、微分方程0y y '-=满足初始条件0|2x y ==的特解为6、224lim 3x x x →-=+ 7、 极限 =---→42lim222x x x x8、设sin 1,y x x =+则()2f π'=9、11(cos 1)x x dx -+=⎰10、231dx x =+⎰11、微分方程ydy xdx =的通解为12、1415x dx -=⎰13、 sin 2limx x xx→∞+=14、设2cos y x =,则dy = 15、设cos 3,y x x =-则()f π'=16、不定积分⎰=x x de e 17、微分方程2x y e -'=的通解为22222222222111120,201122x x x xx xx dy y y e y e dy e dx dx ydy e dx e C y y x y C e y e y -'=⇒=⇒==⇒-=+==-=-==-⎰⎰代入上式可得到所求的特解为或者18、微分方程x y ='ln的通解是19、xx x3)21(lim -∞→= 20、,x y x y '==设函数则21、)21(lim 222n nn n n +++∞→Λ的值是 22、3(1)(2)lim23x x x x x x →∞++=+-23、,x y x dy ==设函数则24、 20231lim 4x x x x →-+=+25、若2()sin6x f x e π=-,则=)0('f26、25(1sin )a ax dx π++=⎰().a 为任意实数27、设ln(1)x y e =-,则微分dy =________________.28、 3222(cos )d 1x x x xππ-+=-⎰.三、解答题1、(本题满分9分)求函数162y x x=-+-的定义域。

H高数一期末复习题及答案

H高数一期末复习题及答案

《高等数学(一)》期末第一套复习题一、选择题1、极限)x x →∞的结果是 ( C )(A )0 (B ) ∞ (C )12(D )不存在 2、方程3310x x -+=在区间(0,1)内 ( B ) (A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 3、)(x f 是连续函数, 则⎰dx x f )(是)(x f 的 ( C )(A )一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sin π<<=x x y 和直线0=y 所围的面积是 ( C )(A )2/1 (B) 1 (C) 2 (D) π5、微分方程2x y ='满足初始条件2|0==x y 的特解是 ( D )(A )3x (B )331x + (C )23+x (D )2313+x 6、下列变量中,是无穷小量的为( A ) (A) )1(ln →x x (B) )0(1ln +→x x (C) cos (0)x x → (D) )2(422→--x x x 7、极限011lim(sinsin )x x x x x→- 的结果是( C ) (A )0 (B ) 1 (C ) 1- (D )不存在 8、函数arctan xy e x =+在区间[]1,1-上 ( A )(A )单调增加 (B )单调减小 (C )无最大值 (D )无最小值 9、不定积分⎰+dx x x12= ( D )(A)2arctan x C + (B)2ln(1)x C ++ (C)1arctan 2x C + (D) 21ln(1)2x C ++10、由曲线)10(<<=x e y x和直线0=y 所围的面积是 ( A )(A )1-e (B) 1 (C) 2 (D) e11、微分方程dyxy dx=的通解为 ( B ) (A )2xy Ce = (B )212x y Ce= (C )Cxy e= (D )2x y Ce=12、下列函数中哪一个是微分方程032=-'x y 的解( D ) (A )2x y = (B ) 3x y -= (C )23x y -= (D )3x y = 13、 函数1cos sin ++=x x y 是 ( C )(A) 奇函数; (B) 偶函数; (C)非奇非偶函数; (D)既是奇函数又是偶函数. 14、当0→x 时, 下列是无穷小量的是 ( B ) (A ) 1+x e(B) )1ln(+x (C) )1sin(+x (D) 1+x15、当x →∞时,下列函数中有极限的是 ( A ) (A )211x x +- (B) cos x (C) 1xe(D)arctan x 16、方程310(0)x px p ++=>的实根个数是 ( B ) (A )零个 (B )一个 (C )二个 (D )三个17、21()1dx x '=+⎰( B ) (A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 18、定积分()baf x dx ⎰是 ( C )(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数二、填空题1、 201cos lim x xx→-= 12 2、 若2)(2+=xe xf ,则=)0('f 23、131(cos 51)x x x dx --+=⎰24、 =⎰dx e t te x C +5、微分方程0y y '-=满足初始条件0|2x y ==的特解为 2xy e =6、224lim 3x x x →-=+ 0 7、 极限 =---→42lim 222x x x x 43 8、设sin 1,y x x =+则()2f π'= 19、11(cos 1)x x dx -+=⎰210、231dx x +⎰ 3arctan x C +11、微分方程ydy xdx =的通解为 22y x C =+ 12、1415x dx -=⎰213、 sin 2limx x xx→∞+= 1 14、设2cos y x =,则dy 22sin x x dx - 15、设cos 3,y x x =-则()f π'= -116、不定积分⎰=x x de e Cx+2e 2117、微分方程2xy e-'=的通解为 212xy e C -=-+ 18、微分方程x y ='ln 的通解是xy e C =+三、解答题1、(本题满分9分)求函数 y =的定义域。

大一(第一学期)高数期末考试题及答案(完整版).doc

大一(第一学期)高数期末考试题及答案(完整版).doc

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试令狐采学一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '=(B )(0)1f '=(C )(0)0f '=(D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小;(B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小;(D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则().(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

(A )22x (B )222x +(C )1x -(D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)4. =+→xx x sin 20)31(lim .5. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ.7.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()xf x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。

大一(第一学期)高数期末考试题及答案(word文档良心出品)

大一(第一学期)高数期末考试题及答案(word文档良心出品)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1012330()2x f x dx xe dx x x dx---=+-⎰⎰⎰0123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

《高等数学1》期末考试试卷及答案

《高等数学1》期末考试试卷及答案

《高等数学1》期末考试试卷及答案一、填空题(每小题3分,共15分) 1、函数ln(1)yx =-+的定义域是 。

2、极限20limxt x e dt x→=⎰。

3、设0xx =是可导函数()y f x =的极大值点,则()0f x '= 。

4、计算定积分43121sin 11x x dx x -+=+⎰ 。

5、微分方程x y xe ''=的通解是 。

二、单项选择题(每小题3分,共15分)A. 可去间断点B. 跳跃间断点C. 无穷间断点D. 振荡间断点 7、当0x→时,下列函数中与sin 2x 是等价无穷小的是( )9、下列每对积分均采用分部积分法,其u 均选为幂函数的一对是( )。

A. x xe dx ⎰与ln x xdx ⎰B. xxe dx ⎰与sin x xdx ⎰C. ln x xdx ⎰与sin x xdx ⎰D. arcsin x xdx ⎰与sin x xdx ⎰10、)(x f 在区间),(b a 内恒有()()0,0f x f x '''<<时,曲线)(x f y =在),(b a 内是( )A. 单增且是凹的;B. 单增且是凸的;C. 单减且是凸的;D. 单减且是凹的三、判断题(正确打√,错误打Ⅹ,每小题2分,共10分)11、在闭区间上的连续函数必有原函数,从而必可积。

( ) 12、设2sin x y e =,则()()()22sin 2x x y e e x ''''=。

( ) 13、设点00(,())x f x 为曲线()y f x =的拐点,则必有0()0f x ''=。

( )14、常数零是无穷小量,无穷小量就是常数零。

( )15、()22212t d x e dt x e e dx =-⎰ ( )四、极限、连续和微分解答题(每小题6分,共30分)16、求数列极限2lim nn ne-→∞17、111lim ln 1x x x →⎛⎫- ⎪-⎝⎭18、20limsin xt x e dtx→⎰19、已知(ln ,x y e =+求dy dx ,22d y dx20、求由方程x y xye -=所确定的隐函数的微分dy五、积分和微分方程解答题(每小题5分,共25分)21、2221tan x x e e x dx -⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎣⎦⎰22、dx ⎰23、1e ⎰24、2-145dx x x +∞∞++⎰25、求微分方程2x dyy e dx-+=的通解六、应用题(每小题5分,共5分)26、求平面曲线y=2x ²与y ²=4x 所围成的图形面积A 。

大学一年级高数期末考试题及答案

大学一年级高数期末考试题及答案

第一学期高等数学期末考试试卷答案一.计算题〔此题总分值35分,共有5道小题,每道小题7分〕,1.求极限.解:2.设时,与是等价无穷小,与等价无穷小,求常数与.解:由于当时,与等价无穷小,所以.而所以,.因此,.3.如果不定积分中不含有对数函数,求常数与应满足条件.解:将化为局部分式,有因此不定积分中不含有对数函数充分必要条件是上式中待定系数即.所以,有.比拟上式两端系数,有.所以,得.5.计算定积分.解:所以,.5.设曲线极坐标方程为,求曲线全长.解:曲线一周定义域为,即.因此曲线全长为二.〔此题总分值45分,共有5道小题,每道小题9分〕,6.求出函数所有连续点,并指出这些连续点类型.解:因此与是函数连续点.,,因此是函数第一类可去型连续点.,,因此是函数第一类可去型连续点.7.设是函数在区间上使用Lagrange〔拉格朗日〕中值定理中“中值〞,求极限.解:在区间上应用Lagrange中值定理,知存在,使得所以,.因此,令,那么有所以,.8.设,求.解:在方程中,令,得再在方程两端对求导,得,因此,9.研究方程在区间内实根个数.解:设函数,.令,得函数驻点.由于,所以因此,得函数性态⑴假设,即时,函数在、、内各有一个零点,即方程在内有3个实根.⑵假设,即时,函数在、内各有一个零点,即方程在内有2个实根.⑶假设,即时,函数在有一个零点,即方程在内有1个实根.10.设函数可导,且满足试求函数极值.解:在方程中令,得,即在方程组中消去,得积分,注意,得.即由得函数驻点.而.所以,所以,是函数极小值;是函数极大值.三.应用题与证明题〔此题总分值20分,共有2道小题,每道小题10分〕,11.求曲线一条切线,使得该曲线与切线及直线与所围成图形绕轴旋转旋转体体积为最小.解:设切点坐标为,由,可知曲线在处切线方程为,或.因此所求旋转体体积为所以,.得驻点,舍去.由于,因而函数在处到达极小值,而且也是最小值.因此所求切线方程为.12.设函数在闭区间上连续,在开区间内可导,且证明:至少存在一点,使得.解:因为在闭区间上连续,所以由积分中值定理,知存在,使得由于,所以,.再由,得作函数,那么函数在区间上连续,在区间内可导.所以由Rolle中值定理,存在,使得.而所以存在,使得由于,所以,即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学(一)》期末复习题一、选择题1、极限)x x →∞的结果是 ( C )(A )0 (B ) ∞ (C )12(D )不存在 2、方程3310x x -+=在区间(0,1)内 ( B ) (A )无实根 (B)有唯一实根 (C )有两个实根 (D )有三个实根 3、)(x f 是连续函数, 则⎰dx x f )(是)(x f 的 ( C )(A )一个原函数; (B ) 一个导函数; (C) 全体原函数; (D ) 全体导函数; 4、由曲线)0(sin π<<=x x y 和直线0=y 所围的面积是 ( C )(A )2/1 (B) 1 (C ) 2 (D) π5、微分方程2x y ='满足初始条件2|0==x y 的特解是 ( D )(A)3x (B )331x + (C )23+x (D )2313+x 6、下列变量中,是无穷小量的为( A ) (A ) )1(ln →x x (B ) )0(1ln +→x x (C) cos (0)x x → (D) )2(422→--x x x 7、极限011lim(sinsin )x x x x x→- 的结果是( C ) (A )0 (B ) 1 (C ) 1- (D )不存在 8、函数arctan xy e x =+在区间[]1,1-上 ( A )(A )单调增加 (B)单调减小 (C )无最大值 (D )无最小值 9、不定积分⎰+dx x x12= ( D )(A )2arctan x C + (B )2ln(1)x C ++ (C)1arctan 2x C + (D )21ln(1)2x C ++ 10、由曲线)10(<<=x e y x和直线0=y 所围的面积是 ( A )(A )1-e (B ) 1 (C ) 2 (D ) e 11、微分方程dyxy dx=的通解为 ( B ) (A )2xy Ce = (B )212x y Ce= (C )Cxy e= (D )2x y Ce=12、下列函数中哪一个是微分方程032=-'x y 的解( D ) (A )2x y = (B ) 3x y -= (C )23x y -= (D )3x y = 13、 函数1cos sin ++=x x y 是 ( C )(A) 奇函数; (B) 偶函数; (C )非奇非偶函数; (D)既是奇函数又是偶函数. 14、当0→x 时, 下列是无穷小量的是 ( B ) (A) 1+x e(B ) )1ln(+x (C ) )1sin(+x (D ) 1+x15、当x →∞时,下列函数中有极限的是 ( A ) (A)211x x +- (B ) cos x (C) 1xe (D )arctan x16、方程310(0)x px p ++=>的实根个数是 ( B ) (A )零个 (B )一个 (C)二个 (D )三个17、21()1dx x '=+⎰( B ) (A )211x + (B )211C x ++ (C ) arctan x (D) arctan x c +18、定积分()baf x dx ⎰是 ( C )(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数19、 函数(ln y x =+是( A )(A )奇函数(B )偶函数(C ) 非奇非偶函数 (D)既是奇函数又是偶函数20、设函数()f x 在区间[]0,1上连续,在开区间()0,1内可导,且()0f x '>,则( B ) (A)()00f < (B) ()()10f f > (C) ()10f > (D)()()10f f < 21、设曲线221x y e-=-,则下列选项成立的是( C ) (A) 没有渐近线 (B) 仅有铅直渐近线 (C ) 既有水平渐近线又有铅直渐近线 (D ) 仅有水平渐近线22、(cos sin )x x dx -=⎰( D )(A) sin cos x x C -++ (B ) sin cos x x C -+ (C) sin cos x x C --+ (D ) sin cos x x C ++23、数列})1({nn n-+的极限为( A ) (A )1(B ) 1-(C) 0(D) 不存在24、下列命题中正确的是( B )(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 25、若()()f x g x ''=,则下列式子一定成立的有( C )(A )()()f x g x = (B )()()df x dg x =⎰⎰(C )(())(())df x dg x ''=⎰⎰(D )()()1f x g x =+ 26、下列曲线有斜渐近线的是 ( C )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+二、填空题 1、 201cos limx x x →-=122、 若2)(2+=xe xf ,则=)0('f 23、131(cos 51)x x x dx --+=⎰24、 =⎰dx e t te x C +5、微分方程0y y '-=满足初始条件0|2x y ==的特解为 2xy e =6、224lim 3x x x →-=+ 07、 极限 =---→42lim 222x x x x 438、设sin 1,y x x =+则()2f π'= 19、11(cos 1)x x dx -+=⎰210、231dx x +⎰ 3arctan x C +11、微分方程ydy xdx =的通解为 22y x C =+ 12、1415x dx -=⎰213、 sin 2limx x xx→∞+= 1 14、设2cos y x =,则dy 22sin x x dx - 15、设cos 3,y x x =-则()f π'= -1 16、不定积分⎰=x x de eC x+2e 21 17、微分方程2xy e-'=的通解为 212xy e C -=-+ 22222222222111120,201122x x x xx xx dy y y e y e dy e dx dx ydy e dx e C y y x y C e y e y -'=⇒=⇒==⇒-=+==-=-==-⎰⎰代入上式可得到所求的特解为或者18、微分方程x y ='ln 的通解是 xy e C =+ 19、xx x3)21(lim -∞→= 6e-20、,x y x y '=设函数则x21、)21(lim 222nnn n n +++∞→ 的值是 1222、3(1)(2)lim23x x x x x x →∞++=+- 1223、,x y x dy ==设函数则(ln 1)x x x dx +24、 20231lim 4x x x x →-+=+1425、若2()sin6xf x e π=-,则=)0('f 226、25(1sin )a ax dx π++=⎰2π ().a 为任意实数27、设ln(1)xy e =-,则微分dy =______1xxe dx e -__________。

28、 3222(cos )d 1x x x x ππ-+=-⎰ 2 三、解答题1、(本题满分9分)求函数y =的定义域.解:由题意可得,1020x x -≥⎧⎨-≥⎩解得12x x ≥⎧⎨≤⎩所以函数的定义域为 [1,2] 2、(本题满分10分)设()(1)(2)(2014)f x x x x x =---,求(0)f '.解:)0(f '000--=→x f x f x )()(limlim(1)(2)(2014)x x x x →=---2014!=3、(本题满分10分)设曲线方程为16213123+++=x x x y ,求曲线在点)1,0(处的切线方程.解:方程两端对x 求导,得26y x x '=++ 将0x =代入上式,得(0,1)6y '=从而可得:切线方程为16(0)y x -=- 即61y x =+4、(本题满分10分)求由直线x y =及抛物线2x y =所围成的平面区域的面积.解:作平面区域,如图示y解方程组⎩⎨⎧==2xy x y 得交点坐标:(0,0),(1,1)所求阴影部分的面积为:dx x x S )(⎰-=102=103232⎥⎦⎤⎢⎣⎡-x x =61 5、(本题满分10分)讨论函数 2 1()3 1x x f x x x +≥⎧=⎨<⎩ 在 1x = 处的连续性。

解:11lim ()lim 23(1)x x f x x f ++→→=+== 11lim ()lim 33(1)x x f x x f --→→=== ∴()f x 在1x = 处是连续的6、(本题满分10分)求微分方程⎪⎩⎪⎨⎧=+==3321x y x dx dy|的特解。

解:将原方程化为 dx x dy )(32+=两边求不定积分,得 dx x dy ⎰⎰+=)(32,于是23y x x C =++ 将31==x y |代入上式,有313C =++,所以1C =-, 故原方程的特解为132-+=x x y 。

7、(本题满分9分)求函数 y =的定义域. 解:由题意可得,4050x x -≥⎧⎨-≥⎩解得45x x ≥⎧⎨≤⎩所以函数的定义域为 [4,5]8、(本题满分10分)设()(1)(2)()(2)f x x x x x n n =+++≥,求(0)f '.解:)0(f '000--=→x f x f x )()(limlim(1)(2)()x x x x n →=+++!n =9、(本题满分10分)设平面曲线方程为33222=+-y xy x ,求曲线在点(2,1)处的切线方程。

解:方程两端对x 求导,得0622='+'+-y y y x y x )( 将点(2,1)代入上式,得112-='),(y从而可得:切线方程为)(21--=-x y 即03=-+y x10、(本题满分10分)求由曲线xy e =及直线1=y 和1=x 所围成的平面图形的面积(如下图).解:所求阴影部分的面积为10(1)x S e dx =-⎰10()x e x =-2e =-11、(本题满分10分)讨论函数 0() 1 0xx x f x e x <⎧=⎨-≥⎩ 在 0x = 处的连续性。

相关文档
最新文档