高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案
高中数学必修三概率教案
高中数学必修三概率教案
教学目标:
1. 了解概率的基本概念;
2. 掌握基本概率计算方法;
3. 能够应用概率论解决实际问题。
教学重点:
1. 概率的基本概念;
2. 概率计算方法。
教学难点:
1. 复杂事件的概率计算。
教学准备:
1. 课件、教材;
2. 题目及答案;
3. 实验材料。
教学过程:
一、导入(5分钟)
老师可以通过提问引导学生回顾概率的基本概念,如事件、样本空间等。
二、概率的基本概念(15分钟)
1. 介绍概率的基本概念和性质;
2. 讨论概率的计算方法;
3. 举例说明概率的应用。
三、概率计算方法(20分钟)
1. 介绍概率计算方法:古典概率、几何概率、条件概率等;
2. 演示如何计算简单事件的概率;
3. 练习题练习。
四、复杂事件的概率计算(20分钟)
1. 介绍复杂事件的概率计算方法;
2. 分析实际案例,解决复杂事件的概率计算问题;
3. 练习题练习。
五、实验环节(15分钟)
老师设计简单的实验活动,让学生通过实验了解概率的概念和计算方法。
六、课堂总结(5分钟)
对本节课的重点内容进行总结,并提醒学生复习和巩固。
七、课后作业
布置相关作业,巩固学生所学知识。
备注:本教案仅供参考,具体教学过程还应根据实际情况进行调整。
高中数学苏教版教材目录
高中数学苏教版教材目录(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1.1正弦定理1.2余弦定理451.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化6参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告7。
高中数学苏教版教材目录(必修+选修)
高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
高中数学 第三章 概率 3.1 随机事件及其概率教案 苏教版必修3(2021年最新整理)
高中数学第三章概率3.1 随机事件及其概率教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.1 随机事件及其概率教案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.1 随机事件及其概率教案苏教版必修3的全部内容。
3.1 随机事件及其概率教学目标:1.了解随机事件的统计规律性和随机事件概率的意义.2.了解概率的统计定义以及频率与概率的区别.教学重点:了解随机试验的三个特征:1.在不变的条件下是可能重复实现的;2.各次试验的结果不一定相同,每次试验前不能预先知道是哪一个结果会发生;3.所有可能的试验结果都是预先明确的.教学难点:随机事件的统计规律性和随机事件概率的意义.教学方法:启发式教学.教学过程:一、问题情境观察下列现象发生与否,各有什么特点?(1)在标准大气压下,把水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一张福利彩票,中奖;(6)掷一枚硬币,正面朝上.二、学生活动(1)必然发生 (2)必然发生 (3)不可能发生 (4)不可能发生 (5)可能发生 (6)可能发生 三、建构数学1.确定性现象:在一定条件下,事先就能断定发生或不发生某种结果的现象;2.随机现象:在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果的现象;3.对于某个现象,如果能让其条件实现一次,就是进行了一次试验 . 而试验的每一种可能的结果,都是一个事件. 试判断这些事件发生的可能性: (1)无特殊情况,明天地球仍会转动 必然发生(2)木柴燃烧,产生热量 必然发生(3)煮熟的鸭子,跑了 不可能发生(4)在标准大气压0ºC 以下,雪融化 不可能发生(5)掷一枚硬币,正面向上 可能发生也可能不发生(6)两人各买1张彩票,均中奖 可能发生也可能不发生定义1:在一定条件下必然要发生的事件叫必然事件. 定义2:在一定条件下不可能发生的事件叫不可能事件.不可能事件随机事件必然事件定义3:在一定条件下可能发生也可能不发生的事件叫随机事件. 以后我们用A ,B ,C 等大写字母表示随机事件,简称事件. 四、数学运用 (一)随机现象例1 试判断下列事件是随机事件、必然事件、还是不可能事件. (1)我国东南沿海某地明年将3次受到热带气旋的侵袭; (2)若a 为实数,则 0|| a ;(3)某人开车通过10个路口都将遇到绿灯; (4)抛一石块,石块下落;(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.例2 如果某彩票中奖率为11000,买1 000张彩票是否一定中奖?注:概率教学的核心问题是让学生了解随机现象与概率的意义.教师应在学生已有知识的基础上,通过日常生活中的大量实例,深化对随机现象的认识.鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活中会遇到的一些错误认识. 2.练习.课本94页1,2,3,5. (二)随机事件的概率我们已经学习用概率表示一个事件在一次试验或观测中发生的可能性的大小,它是在0~1之间的一个数,将这个事件记为A ,用P(A)表示事件发生的概率.怎样确定一事件发生的概率呢? 例1 投掷一枚硬币,出现正面可能性有多大? 试验结果:10 出现正面的频率 出现正面的次数 试验次数2 0.2(利用信息技术辅助教学,鼓励学生尽可能运用计算器(机)来处理数据,进行模拟活动,更好地体会统计思想和概率的意义.例如,可以利用计算器产生随机数来模拟掷硬币的实验等.) 数学理论:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A发生的频率n m 作为事件A 发生的概率的近似值,即n m A P)((其中P (A )为事件A 发生的概率). 注意点:1.随机事件A 的概率范围.必然事件与不可能事件可看作随机事件的两种特殊情况.因此,任何事件发生的概率都满足:0≤P(A) ≤1. 2.频率与概率的关系(1)频率本身是随机变化的,在试验前不能确定.(2)概率是一个确定的数,是客观存在的,与试验次数无关.(3)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率,并在其附近摆动. 例2 某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(1)试计算男婴各年出生的频率(精确到0.001);(2)该市男婴出生的概率是多少?解:(1)1999年男婴出生的频率为524.02184011453,同理可求得2000年、2001年和2002年男婴出生的频率分别为0.521,0.512,0.512;(2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生的概率约为0.52.练习:(1)课本第97页练习第2,3,4题.思考题:(2)某篮球运动员在同一条件下进行投篮练习,结果如下表所示:(1)计算表中进球的频率;(2)这位运动员投篮一次,进球概率约是多少?五、要点归纳与方法小结本节课学习了以下内容:1.确定性现象、随机现象、试验、事件;2.必然事件、不可能事件、随机事件;3.概率的统计定义,随机事件A的概率范围,频率与概率的区别.。
高中数学苏教版教材目录(必修 选修)
苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4----------------------------------- 第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理 第二章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章 计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4----------------------------------- 4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5----------------------------------- 5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。
2024-2025学年高中数学第3章概率§11.11.2随机事件的概率(教师用书)教案北师大版必修3
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调概率的重要性和意义。
过程:
简要回顾本节课的学习内容,包括概率的基本概念、组成部分、案例分析等。
强调概率在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用概率。
10.提高合作能力和解决问题的能力:通过小组讨论和案例分析,学生能够与他人合作,共同解决问题,提高合作能力和解决问题的能力。
内容逻辑关系
①随机事件的定义和分类:必然事件、不可能事件、随机事件
②概率的定义和性质:概率的计算方法,包括古典概率、几何概率和条件概率;概率的基本性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
-互斥事件的概率加法公式:P(A+B) = P(A) + P(B)
-独立事件的乘积公式:P(AB) = P(A) * P(B)
③概率的运用
-抽奖问题:计算获奖的概率
-概率论的基本问题:计算某个事件发生的概率
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的参与程度、提问和回答问题的积极性,以及学生的反应和理解程度,评价学生对概率知识的掌握情况。
布置课后作业:让学生撰写一篇关于概率的短文或报告,以巩固学习效果。
学生学习效果
1.理解概率的基本概念:学生能够理解概率的定义,掌握概率的基本计算方法和性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
2.掌握随机事件的分类:学生能够区分必然事件、不可能事件和随机事件,并能够运用这些概念解决实际问题。
2.数据分析:通过讲解概率的定义和性质,培养学生收集、整理、分析和处理数据的能力,使学生能够运用几何概率和条件概率的方法解决实际问题。
3.1.1随机事件的概率(教学设计)
数学·必修3·第三章·概率3.1.1 随机事件的概率(教学设计)【教材内容分析】概率论是统计学的基础,在学习完第二章《统计》的知识后,马上安排概率的知识可以让学生了解概率与统计之间的关系,并将第二章所学知识应用于概率的探索中;本节是第三章的起始课,包含了章引言,在章引言中,从学生熟悉的例子(彩票、飞镖、天气预报、遗传规律)谈起,让学生了解生活中的许多事情的结果都是无法预知的,我们把这些事情称为随机事件,了解这些事件发生的概率对于我们做出正确的决策起着重要作用;作为第一个课时的内容,本节课主要是了解事件的分类,概率与频率的定义以及关系,了解通过试验可以获得随机事件的概率,因此,本节课主要采用了学生动手试验、观察、分析试验结果,归纳总结的方法来进行教学,旨在让学生理解概率与频率的关系,运用第二章《统计》的知识,收集数据与分析数据,体会随机事件在一次试验中发生的偶然性与进行大量重复试验后频率的规律性,了解用频率估计概率的可行性。
【学情分析】学生在九年级上册已经学习过“概率的初步”,了解了事件的分类、用列举法求等可能事件的概率、用频率估计概率等内容,时间间隔不长,所以学生对概率的知识其实并不陌生,在授课时事件的分类类似于复习旧知,让学生举例说明即可,因此本课的重点应放在让学生自己动手做试验,并尝试用第二章《统计》的知识来分析收集到的数据,去体会频率估计概率的可行性,由于数学试验课在整个高中课堂教学中出现的次数不多,因此在试验前一定要讲清试验规则和要求,以确保试验结果的有效性,并指导学生认真完成。
我用来上课的班级高一12班,全班52名同学,属于年级的重点班,回答问题比较积极,学习比较主动,因此本节课的大部分时间主要放在让学生做试验,观察,讨论、并归纳出试验次数对频率的影响,体会随机事件的随机性与规律性的关系。
【教学目标】1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性;2.学会用《统计》的知识来分析收集到的数据;3.进一步了解概率的意义以及概率与频率的区别与联系。
高中数学新苏教版精品教案《苏教版高中数学必修3 3.1 随机事件及其概率》
随机事件及其概率学习目标:(1)通过实例体会、了解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念;(2)根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;(3)理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 了解频率和概率的区别和联系;(4)通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识。
学习重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 了解频率和概率的区别和联系学习难点:理解随机事件的频率和概率定义及计算方法, 分析频率和概率的区别和联系教学过程:一、问题引入法国数学家帕斯卡遇到了一个有趣的“分赌注”问题:两个赌徒下赌金之后,约定谁先赢满5局,谁就获得全部赌金。
赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?这个问题可把他难住了,他苦苦思考了两三年,未有结果,于是他写信给他的好友费马,这两位伟大的数学家经过讨论形成了概率论当中一个重要的概念—数学期望:就是对将来不确定的钱今天应该怎么算。
最终分配:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
概率论从此就发展起来。
观察下列现象发生与否,各有什么特点?(1)在标准大气压下水加热到100度,沸腾;(2)梁丰高一(4)班至少有两个同学是同一年出生的;(3)梁丰高中2021年度心理剧大赛中,高一(4)班可进入前三名;(4)梁丰高一(4)班两名同学是同一天生日;(5)明天上学路上一路绿灯;(6)实心铁块在水中浮起。
二、学生活动实验1:设计抛掷硬币的模拟试验(课本P89)。
实验2:奥地利遗传学家()用豌豆进行杂交试验(课本P89)。
实验3: 设计抛掷骰子的模拟实验。
由以上大量重复实验随机事件尽管是随机的,却有什么规律呢三、建构数学(1)几个概念1.确定性现象_________________________________________________________________2.随机现象___________________________________________________________________3.事件的定义_______________________________________________________________________________________________________________________________________________必然事件______________________________________________________________________不可能事件____________________________________________________________________随机事件______________________________________________________________________我们用A,B,C等大写英文字母表示随机事件,简称为事件。
苏教版高中数学必修三教案:第3章概率复习与小结
第3章概率复习与小结姜堰市蒋垛中学朱善宏教学目标:通过复习,使学生在具体情景中:1.了解随机事件发生的不确定性及频率的稳定性;2.了解概率的某些基本性质和简单的概率模型;3.会计算一些随机事件所含的基本事件数及事件发生的概率;4.能运用实验、计算器(机)模拟估计简单随机事件发生的概率;5.培养学生的理性思维能力和辩证思维能力,增强学生的辩证唯物主义世界观.教学重点:求解一些简单古典概型、几何概型.教学难点:古典概型、几何概型的对比.教学方法:谈话、启发式.教学过程:一、问题情境1.回顾本章所涉及到的定义或概念.2.说出你对这些定义或概念的理解及它们之间的区别和联系.3.你能否用知识网络将它们联系起来.二、学生活动三、建构数学随机事件注意点:1.要搞清楚什么是随机事件的条件和结果.2.事件的结果是相应于“一定条件”而言的.因此,要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果.3.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.概率注意点:(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此()10≤≤A P .四、数学运用(一)随机现象例1 指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(1)若a b c ,,都是实数,则()()c ab bc a =;(2)没有空气,动物也能生存下去;(3)在标准大气压下,水在温度c ︒90时沸腾;(4)直线()1+=x k y 过定点()0,1-; (5)某一天内电话收到的呼叫次数为0;(6)一个袋内装有性状大小相同的一个白球和一个黑球,从中任意摸出1个球则为白球.(二)古典概型与几何概型的对比.古典概型的概率公式:几何概型的概率公式相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.例2掷一颗均匀的骰子,求掷得偶数点的概率.分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得偶数点事件A ,再确定样本空间元素的个数n ,和事件A 的元素个数m .最后利用公式即可. 解:掷一颗均匀的骰子,它的样本空间是Ω={1, 2,3, 4,5,6}∴n =6而掷得偶数点事件A ={2, 4,6}∴m =3∴P (A ) =2163= 点评枚举法是计算古典概型中事件的重要方法,同时也要能熟练地运用图表法和树形图对某些等可能事件进行列举,教材例3的图表法采用坐标系的形式,横、纵轴分别表示第一、二次抛掷后向上的点数,此表能清楚直观地表现出各种情况,树形图对于元素不多而又易于分类的计数问题很有效,例4中画出了三“树”,其实只要画出一个树即可推知其余两个树的情况.例3如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).(1)求点P 到原点距离小于1的概率;(2)求以x ,y ,1为边长能构成锐角三角形的概率.解析(1)所有的点P 构成正方形区域D ,若点P 到原点距离小于1,则⎩⎨⎧ 0<x <1,0<y <1,x 2+y 2<1,所以符合条件的点P 构成的区域是圆x 2+y 2=1在第一象限所围的平面部分.∴点P 到原点距离小于1的概率为:14·π·1212=π4=π4. (2)构成三角形的点P 在△ABC 内,若构成锐角三角形,则最大边1所对的角α必是锐角,cos α=x 2+y 2-122xy>0,x 2+y 2>1, 即点P 在以原点为圆心,1为半径的圆外,∴点P 在边AB ,BC 及圆弧AC 围成的区域内,∴其概率为:12-π4·1212=π4. 答:点P 到原点距离小于1的概率为π4;以x ,y ,1为边长能构成锐角三角形的概率为1-π4.注: 解决几何概型问题,判断事件的等可能性这是易忽略点,其次要正确理解几何概型的含义:某一事件A 发生的概率只与构成该事件区域的长度(面积或体积)成比例,而与位置和形状无关系,这是易错之处.为防止错误发生,解决实际问题时,一定要按部就班,先判断是否为几何概型,再严格按照几何概型的计算方法求解,最后做出正确判断,防止想当然,凭直觉.(三) 互斥事件1.互斥事件概率的理解.(1)互斥事件概率的加法公式,是在事件A 和事件B 互斥的前提下进行的.事件A ,B 互为对立事件的条件是:A ∩B 为不可能事件,A ∪B 为必然事件,且有P (A )+P (B )=1.(2)对立事件一定是互斥事件,而互斥事件却不一定是对立事件,只有当两个互斥事件中有一个发生时,它才能成为对立事件.(3)从集合的角度来看,若将总体看成全集U ,将事件A 看成由A 所含的结果组成的集合,则A 是U 的子集,这时A 的对立事件可看成是A 的补集;判断两个事件是否为对立事件,首先要判断它们是否互斥;其次要确定它们中必定要有一个发生.2.从正面解决问题较困难时,可转换思维视角从其反面考虑,即从事件的对立事件考虑,往往可以降低解题的难度,简化运算.此技巧为“正难则反”策略,此策略在互斥事件的概率中应用相当广泛和频繁,应引起我们足够的重视.例4一只蚂蚁在边长分别为3,4,5的三角形ABC 区域内任意爬行,则其恰在离三个顶点的距离都大于1的地方的概率是.答:112π . (四)练习.1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是 ( ) A .至少有1个白球和全是白球 B .至少有1个白球和至少有1个红球C .恰有1个白球和恰有2个白球D .至少有1个红球和全是白球2.如果事件A ,B 互斥,那么 ( )A B C 45A.A+B是必然事件B.BA+是必然事件C.A与B一定互斥D.A与B一定不互斥3.下列命题中,真命题的个数是( )①将一枚硬币抛两次,设事件A为“两次出现正面”,事件B为“只有一次出现反面”,则事件A与B是对立事件;②若事件A与B为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B为对立事件;④若事件A与B为对立事件,则事件A+B为必然事件.A.1 B.2 C.3 D.44.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲,乙两人下成和棋的概率为( ) A.60%B.30%C.10%D.50%5.某射击运动员在一次射击训练中,命中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28.则这名运动员在一次射击中:命中10环或9环的概率是__________,少于7环的概率是____________.6.在区间[0,10]上任取一个数,求x<3 或x>6的概率______.7.有5张1角,3张2角和2张5角的邮票,任取2张,求其中两张是同价格的概率___________.8.已知随机事件E为“掷一枚骰子,观察点数”,事件A表示“点数小于5”,事件B表示“点数是奇数”,事件C表示“点数是偶数”.问:(1)事件A+C表示什么?(2)事件CA+,分别表示什么?+,ACA9.我国已经正式加入WTO,包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.10.袋中有2个伍分硬币,2个贰分硬币,2个壹分硬币,从中任取3个,求总数超过7分的概率.11.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.五、要点归纳与方法小结本节课学习了以下内容:指导学生阅读有关资料,了解人类认识随机现象的过程.结合概率的教学,进行偶然性和必然性对立统一观点的教育.让学生感受数学与现实世界的重要联系,崇尚数学的理性精神,逐步形成辨证的思维品质;养成准确、清晰、有条理地表述问题的习惯,提高学生的数学表达和交流的能力;进一步拓宽学生的视野,逐步认识数学的科学价值、应用价值和文化价值.。
高中数学苏教版教材目录(必修+选修)
高中数学苏教版教材目录(必修+选修)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系 1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形231.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程44.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告5。
苏教版高中数学必修三教学案:第3章 3.1 随机事件及其概率
一、抽样方法抽样方法有:简单随机抽样、系统抽样、分层抽样.简单随机抽样有抽签法、随机数表法.1.抽签法的步骤(1)编号:给总体中所有的个体编号(号码可以从1到N);(2)制签:将1~N这N个号码写在形状、大小都相同的号签上;(3)搅拌:将号签放在一个容器中,搅拌均匀;(4)抽签:每次从容器中不放回地抽取一个号签,并记录其编号,连续抽取n次;(5)取样:从总体中,将与抽到的号签编号一致的个体取出.2.系统抽样的步骤从元素个数为N的总体中抽取容量为n的样本的步骤如下:(1)编号:先将总体的N个个体编号;(2)分段:确定分段间隔k,对编号进行分段;(3)确定初始编号:在第一段用简单随机抽样确定第一个个体编号l (l ≤k ); (4)抽取样本:按照一定的规则抽取样本. 3.分层抽样的步骤(1)分层,求抽样比:确定抽样比k =n N;(2)求各层抽样数:按比例确定每层抽取个体的个数n i =N i ×k ; (3)各层抽样:各层分别用简单随机抽样或系统抽样法抽取个体; (4)组成样本:综合每层抽取的个体,组成样本. 二、总体分布的估计 1.作频率分布直方图的步骤 (1)求全距.(2)决定组距与组数,注意样本容量越大,所分组数越多. (3)将数据分组.(4)计算各小组的频率,作频率分布表,各小组的频率=各小组频数样本容量.(5)画频率分布直方图. 2.茎叶图刻画数据的优缺点 (1)所有信息都可以从图中得到; (2)便于记录和表示; (3)数据较多时不方便.3.用样本的频率分布估计总体的分布时的注意事项(1)对于同一组样本数据,确定的组距不同,得到的组数及分组也不同,绘制的频率分布直方图就会有差异,但都是对总体的近似估计.(2)应用频率分布直方图时,需明确纵轴表示的是频率/组距,进而进行相关计算. (3)绘制茎叶图时需注意同一组数据中的相同数据要一一列出. 4.样本的数字特征(1)样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.我们常通过样本的数字特征估计总体的数字特征.(2)在用样本的数字特征估计总体的数字特征时应注意:①任何一个样本数据的改变都会引起平均数的改变.特殊情况下,平均数可能受某几个极端值的影响,而偏离一般情况.②标准差的平方是方差,标准差的单位与样本数据的单位一致.③用样本的平均数和标准差估计总体的平均数和标准差时,样本的平均数和标准差只是总体的平均数和标准差的近似值.三、线性回归方程(1)两个随机变量x 和y 之间相关关系的确定方法有:①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断; ②表格、关系式法:结合表格或关系式进行判断. (2)用公式求线性回归方程的一般步骤是: ①列表x i ,y i ,x i y i .②计算x ,y ,∑i =1nx 2i ,∑i =1nx i y i .③代入公式计算b 、a 的值. ④写出线性回归方程. (3)学习变量的相关性时:①注意通过实例辨析确定性关系(函数关系)与相关关系.根据散点图分析两个变量间的相关关系是正相关还是负相关.②学会用最小平方法求已知样本数据的线性回归方程.用回归方程对数据进行估计时,得到的结果不是准确值.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分)1.在下列各图中,两个变量具有线性相关关系的图是________.解析:由散点图知(1)为函数关系,(4)不具有相关关系,故(2)(3)正确. 答案:(2)(3)2.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.解析:应抽取的亩数分别为210×17510=7(亩),120×17510=4(亩),180×17510=6(亩).答案:7,4,63.设有一个直线回归方程为y ^=2-1.5x ,则变量x 增加一个单位时,y ^减少________个单位. 解析:由y ^=2-1.5x 知当x 增加一个单位时,y ^减少1.5个单位. 答案:1.54.某校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本.已知从女生中抽取80人,则n =________.解析:因为80∶1 000=8∶100,所以n ∶(200+1 200+1 000)=8∶100,所以n =192. 答案:1925.在样本频率分布直方图中共有11个小矩形,若中间一个小矩形的面积等于所有各小矩形面积和的14,样本容量是160,则中间一组的频数是________.解析:因为所有小矩形的面积和为1,所以中间这个小矩形的面积是14=0.25,即这一组样本数据的频率是0.25,所以这组的频数是160×0.25=40.答案:406.一组数据的方差是s 2,将这组数据中的每一个数都乘3,所得的一组新数据的方差是________.解析:设数据x 1,x 2,…,x n 的平均数为x ,则3x 1,3x 2,…,3x n 的平均数为x ′=1n(3x 1+3x 2+…+3x n )=3x ,∴s ′2=1n [(3x 1-3x )2+(3x 2-3x )2+…+(3x n -3x )2]=9×1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=9s 2.答案:9s 27.已知x ,y 的取值如下表:从散点图可以看出y 与x 线性相关,且线性回归方程为y ^=0.95x +a ,则a =________. 解析:由数据得x =2,y =4.5,而回归直线必过(x ,y ),将(2,4.5)代入线性回归方程,得4.5=0.95×2+a ,故a =2.6.答案:2.68.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm的株数大约是________.解析:底部周长小于110 cm的频率为:(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm的株数大约是10 000×0.7=7 000.答案:7 0009.某校为了了解学生做家务情况,随机调查了50名学生,得到他们在某一天各自做家务所用时间的数据,结果如图所示,则可得到这50名学生在这一天平均每人做家务的时间为________h.解析:由题图可知,在调查的50名学生中有5人做家务时间为0 h,有5人做家务时间为2.0 h,有10人做家务时间为1.0 h,有10人做家务时间为1.5 h,有20人做家务时间为0.5 h,所以一天中平均每人做家务的时间为(5×0+5×2+10×1+10×1.5+20×0.5)÷50=45÷50=0.9(h).答案:0.910.把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的频率之和为0.79,而剩下三组的频数满足:第一组频数是第二组频数的14,而第三组频数则是第二组频数的4倍.那么剩下三组中频数最高的一组的频数是________.解析:由题意知后三组的频率之和为1-0.79=0.21, 故后三组的频数之和为0.21×100=21.设后三组中第二组的频数为a ,则14a +a +4a =21,∴a =4.即后三组的频数依次为1,4,16. 故后三组中频数最高的一组的频数是16. 答案:1611.在样本的频率分布直方图中,共有4个长方形,这4个小长方形的面积分别为S 、2S 、3S 、4S ,且样本容量为400,则小长方形面积最大的一组的频数为________.解析:∵S +2S +3S +4S =1,∴S =0.1. ∴4S =0.4.∴0.4×400=160. 答案:16012.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲 乙 9 8 8 1 7 7 9 9 6 1 0 2 2 5 6 7 9 9 5 3 2 0 3 0 2 37 1 04根据上图对这两名运动员的成绩进行比较,某同学得到下列四个结论: ①甲运动员得分的极差大于乙运动员得分的极差; ②甲运动员得分的中位数大于乙运动员得分的中位数; ③甲运动员得分的平均值大于乙运动员得分的平均值; ④甲运动员的成绩比乙运动员的成绩稳定. 则其中所有错误结论的序号是________.解析:①甲得分的极差为47-18=29,乙得分的极差为33-17=16,故①正确;②甲得分的中位数为30,乙得分的中位数为26,②正确;③x 甲>x 乙正确,s 2甲<s 2乙;④错误.答案:④13.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5~59.5分段的人数与89.5~99.5分段的人数相等; (2)从左到右数,第四小组的频率是0.03; (3)成绩在79.5分以上的学生有20人; (4)本次考试,成绩的中位数在第三小组. 其中正确的判断有________.解析:(1)49.5~59.5与89.5~99.5两段所在矩形的高相等,所以人数相等. (2)从左到右数,第四小组的频率/组距的值为0.03,频率为0.03×10=0.3. (3)79.5分以上的学生共有:50×(0.03+0.01)×10=20人.(4)49.5~59.5与89.5~99.5段的人数相等,69.5~79.5段的人数比79.5~89.5的人数多,所以中位数在69.5~79.5段,即在第三小组.答案:(1)(3)(4)14.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a ,b 的取值分别是________.解析:因为总体中位数是10.5,所以a +b2=10.5,即a +b =21,b =21-a ,所以总体平均数是x =110(2+3+3+7+a +b +12+13.7+18.3+20)=79+a +b 10=79+2110=10;总体方差是s 2=110[(2-10)2+(3-10)2+…+(a -10)2+(b -10)2+…+(20-10)2]=a 2+b 210+13.758=a 2+21-a210+13.758=15a 2-215a +57.858 =15(a -212)2+35.808.因为7≤a ≤b ≤12,所以当a =10.5时,s 2取得最小值35.808,b =10.5. 答案:10.5,10.5二、解答题(本大题共4小题,共50分)15.(本小题满分12分)如图是甲、乙两人在射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将甲、乙两人的射击成绩统计出来;(2)请你用学过的统计知识,对甲、乙两人这次的射击情况进行比较.解:(1)环数 6 7 8 9 10 甲命中次数22 2 乙命中次数132(2)x 甲=9环,x 乙=9环,s 2甲=23,s 2乙=1,因为x 甲=x 乙,s 2甲<s 2乙,所以甲与乙的平均成绩相同,但甲的发挥比乙稳定.16.(本小题满分12分)已知10只狗的血球体积及红血球的测量值如下(1)画出上表的散点图;(2)求出回归直线并且画出图形;(3)回归直线必经过的一点是哪一点? 解:(1)散点图如图(2)x =110(45+42+46+48+42+35+58+40+39+50)=44.50,y =110(6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+7.72)=7.27,∑i =1nx i y i=3 283.9,n x - y -=3 235.15,∑i =1nx 2i =20 183,n x 2=19 802.5,设回归直线方程为y ^=bx +a ,则a =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2≈0.13,b =y -a x ≈1.49所以所求回归直线的方程为y ^=0.13x +1.49,图形如下:(3)回归直线必经过(x,y)即(44.50,7.27).17.(本小题满分12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表的空格(将答案直接填在表格内);(2)补全频率分布直方图;(3)若成绩在[75,85)分的学生为二等奖,问获得二等奖的学生约为多少人?解:(1)(2)(3)成绩在[75,80)分的学生占70~80分的学生的510,因为成绩在[70,80)分的学生频率为0.2,所以成绩在[75,80)分的学生频率为0.1;成绩在[80,85)分的学生占80~90分的学生的510,因为成绩在[80,90)分的学生频率为0.32,所以成绩在[80,85)分的学生频率为0.16,所以成绩在[75,85)分的学生频率为0.26,由于有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.26×900=234(人).18.(本小题满分14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=bx +a ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)如图.(2)∑i =1nx i y i =3×2.5+4×3+5×4+6×4.5=66.5.x =3+4+5+64=4.5. y =2.5+3+4+4.54=3.5.∑i =1nx 2i =32+42+52+62=86. b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7. a =y -b x =3.5-0.7×4.5=0.35.故线性回归方程为y ^=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨).。
高中数学 第3章 概率 3.2 古典概型讲义 苏教版必修3-苏教版高一必修3数学教案
3.2 古典概型.在一次试验中可能出现的每一个基本结果称为基本事件,若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.2.我们把具有:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的,两个特点的概率模型称为古典概率模型,简称古典概型.3.基本事件总数为n 的古典概型中,每个基本事件发生的概率为1n.4.在古典概型中,任何事件的概率P (A )=m n,其中n 为基本事件的总数,m 为随机事件A 包含的基本事件数.1.下列对古典概型的说法不正确的是( ) A .试验中所有可能出现的基本事件只有有限个 B .每个事件出现的可能性相等 C .每个基本事件出现的可能性相等D .基本事件总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k nB [正确理解古典概型的特点,即基本事件的有限性与等可能性.]2.从1,2,3,4中任意取两个不同的数字组成两位数,则基本事件共有________个. 12 [基本事件为12,21,13,31,14,41,23,32,24,42,34,43,共12个.]3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.56[分别以1,2,3,4表示1只白球,1只红球,2只黄球,则随机摸出2只球的所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,2只球颜色不同的基本事件有5个,故所求的概率P =56.]4.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.15[由题意,b >a 时,b =2,a =1;b =3,a =1或2,即共有3种情况.又从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b共有5×3=15种情况,故所求概率为315=15.]基本事件的计数问题(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有2枚正面朝上”这一事件包含哪些基本事件?思路点拨:由于本试验所包含基本事件不多,可以利用列举法.[解] (1)这个试验的基本事件有:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).(2)这个试验的基本事件的总数是8.(3)“恰有2枚正面朝上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).求基本事件的个数常用列举法、列表法、画树形图法,解题时要注意以下几个方面:(1)列举法适用于基本事件个数不多的概率问题,用列举法时要注意不重不漏;(2)列表法适用于基本事件个数不是太多的情况,通常把问题归结为“有序实数对”,用列表法时要注意顺序问题;(3)画树形图法适合基本事件个数较多的情况,若是有顺序的问题,可以只画一个树形图,然后乘元素的个数即可.1.一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.(1)共有多少个基本事件?(2)两个都是白球包含几个基本事件?思路点拨:解答本题可先列出摸出两球的所有基本事件,再数出均为白色的基本事件数.[解] (1)法一:采用列举法分别记白球为1,2,3号,黑球为4,5号,有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:(采用列表法)设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:a b c d ea (a,b)(a,c)(a,d)(a,e)b (b,a)(b,c)(b,d)(b,e)c (c ,a ) (c ,b )(c ,d ) (c ,e ) d (d ,a ) (d ,b ) (d ,c )(d ,e ) e(e ,a )(e ,b )(e ,c )(e ,d )由于每次取两个球,每次所取两个球不相同,而摸(b ,a )与(a ,b )是相同的事件,故共有10个基本事件.(2)解法一中“两个都是白球”包括(1,2),(1,3),(2,3)三种.解法二中,包括(a ,b ),(b ,c ),(c ,a )三种.2.做投掷2颗骰子的试验,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第2颗骰子出现的点数.写出:(1)事件“出现点数之和大于8”; (2)事件“出现点数相等”; (3)事件“出现点数之和等于7”.思路点拨:用列举法将所有结果一一列举出来,同时应把握列举的原则,不要出现重复和遗漏.[解] (1)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(2)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(3)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).利用古典概型公式求解概率【例2】 先后掷两枚均匀的骰子. (1)一共有多少种不同的结果?(2)向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少? (4)出现两个4点的概率是多少?思路点拨:基本事件个数有限→每个基本事件发生是等可能的→古典概型→利用P (A )=mn求解[解] (1)用一个“有序实数对”表示先后掷两枚骰子得到的结果,如用(1,3)表示掷第一枚骰子得到的点数是1,掷第二枚骰子得到的点数是3,则下表列出了所有可能的结果.掷第二枚得到的点123456由于掷骰子是随机的,因此这36种结果的出现是等可能的,该试验的概率模型为古典概型. (2)在所有的结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1)共4种. (3)记“向上点数之和为5”为事件A , 由古典概型的概率计算公式可得P (A )=436=19.(4)记“出现两个4点”为事件B . 因为事件B 出现的可能结果只有1种, 所以事件B 发生的概率P (B )=136.古典概型的解题步骤 (1)阅读题目,搜集信息; (2)判断是否是古典概型;(3)求出基本事件总数n 和事件A 所包含的结果数m ; (4)用公式P (A )=mn求出概率并下结论.3.甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一道题.甲抽到选择题,乙抽到判断题的概率是多少?思路点拨:由题意知本题是一个等可能事件的概率.甲、乙两人从10道题中不放回地各抽一道题,共有90种抽法,即基本事件总数是90.[解] 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90(种),即基本事件总数是90.记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽到选择题有6种抽法,乙抽到判断题有4种抽法,所以事件A 的基本事件数为6×4=24.P (A )=2490=415.4.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球、2个白球;乙袋装有2个红球、3个白球.现从甲、乙两袋中各任取2个球,求取到的4个球全是红球的概率.思路点拨:本题求解基本事件的总数是关键,对于(甲,甲)的每一种结果,都有(乙,乙)的10种结果配对,所以{(甲,甲),(乙,乙)}共有6×10=60(个)基本事件.[解] 试验的所有结果可以表示{(甲,甲),(乙,乙)}.其中(甲,甲)表示从甲袋中取出的球,(乙,乙)表示从乙袋中取出的球,则从甲袋中取出的球有(红1,白1),(红1,白2),(红2,白1),(红2,白2),(红1,红2),(白1,白2),共6种不同的结果;从乙袋中取出的球有(红1,白1),(红1,白2),(红1,白3),(红2,白1),(红2,白2),(红2,白3),(红1,红2),(白1,白2),(白1,白3),(白2,白3),共10种不同的结果.相对于(甲,甲),(乙,乙)而言,就有60个基本事件.记“取到的4个球为红球”为事件A ,则事件A 包含的基本事件只有1种,所以P (A )=160.概率与统计的综合问题据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.思路点拨:(1)利用频率分布直方图中的信息,所有矩形的面积和为1,求A .(2)对该部门评分不低于80的即为[80,90)和[90,100],求出频率,估计概率.(3)求出评分在[40,60)的受访职工和评分在[40,50)的人数,随机抽取2人,列举法求出所有可能情况,利用古典概型公式解答.[解] (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006. (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110. 有关古典概型与统计结合的题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用频率分布表、分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.5.某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(2)已知其余五个班学生视力的平均值分别为 4.3,4.4,4.5,4.6,4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.思路点拨:(1)把高三(1)班这8个学生的视力值相加,再除以8,即得平均值.(2)用列举法求得抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法,进而可求概率.[解] (1)高三(1)班学生视力的平均值为 4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故用上述样本数据估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3,4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5,4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P =1015=23.6.某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售,该店统计了近10天的饮品销量,如图所示,设x 为每天饮品的销量,y 为该店每天的利润.(1)求y 关于x 的表达式;(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.[解] (1)由题意,得y =⎩⎪⎨⎪⎧(8-3)x ,0≤x ≤19,x ∈Z ,(8-3)×19+(4-3)×(x -19),x >19,x ∈Z ,即y =⎩⎪⎨⎪⎧5x ,0≤x ≤19,x ∈Z ,x +76,x >19,x ∈Z .(2)由(1)可知,日销售量不小于20杯时,日利润不少于96元.日销售量为20杯时,日利润为96元;日销售量为21杯时,日利润为97元.从条形统计图可以看出,日销售量为20杯的有3天,日销售量为21杯的有2天. 日销售量为20杯的3天,记为a ,b ,c ,日销售量为21杯的2天,记为A ,B ,从这5天中任取2天,包括(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),共10种情况.其中选出的2天日销售量都为21杯的情况只有1种,故所求概率为110.1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.2.本节课要掌握以下几类问题 (1)基本事件的两种探求方法.(2)求古典概型的步骤及使用古典概型概率公式的注意点. (3)利用事件的关系结合古典概型求概率. 3.本节课的易错点有两个 (1)列举基本事件时易漏掉或重复. (2)判断一个事件是否是古典概型易出错. 1.下列试验中,是古典概型的是( ) A .种下一粒种子观察它是否发芽B .从规格直径为250 m±0.6 mm 的一批合格产品中任意抽取一件,测得直径C .抛掷一枚质地均匀的硬币,观察其出现正面或反面D .某人射击中靶或不中靶C [A 中,一粒种子发芽和不发芽的可能性不相等,所以A 不是;B 中,每一件的直径不相同,即可能性不相等,所以B 不是;D 中,中靶和不中靶的可能性不相等,所以D 不是;C 中,出现正面和反面的可能性相等,且结果仅有两个,故选C .]2.一个口袋内装有2个白球和3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是________.25[由于袋子中有2个白球和3个黑球,有放回地摸球,每次摸到白球的概率都是相等的,所以再摸出白球的概率为22+3=25.] 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为________.310[利用列举法求出基本事件总数10个.求出取出的两本书都是数学书包含的基本事件个数3个,故所求概率P =310.]4.先后抛掷两枚大小相同的骰子. (1)求点数之和出现7点的概率; (2)求点数之和能被3整除的概率.思路点拨:分析题意,不难得知总的基本事件的个数为36个;记“点数之和出现7点”为事件A ,则事件A 中含有(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)共6个基本事件,即可求出对应的概率;同理,列举出点数之和能被3整除所包含的基本事件数,由概率公式可得答案.[解] 如图所示,从图中容易看出基本事件与所描点一一对应,共36种. (1)记“点数之和出现7点”为事件A ,从图中可以看出,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16.(2)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13.。
苏教版高中数学必修三第3章概率3.1
高中数学学习材料(灿若寒星 精心整理制作)第3章 概 率3.1 随机事件及其概率 课时目标 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.1.随机现象在一定条件下,____________________________,这种现象就是确定性现象.在一定条件下, ____________________________________________________________,这种现象就是随机现象.2.事件对于某个现象,如果能让其条件实现一次,就是进行了一次________.而试验的每一种可能的结果,都是一个________.3.随机事件在一定条件下,______________的事件叫做必然事件.____________________叫做不可能事件.__________________叫做随机事件.4.随机事件的概率(1)定义:一般地,对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的________会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的________,记作________.(2)性质:对于任意一个随机事件A ,P (A )的范围是__________.(3)用Ω和Ø表示必然事件和不可能事件,则P (Ω)=____,P (Ø)=____.一、填空题1.下列事件中:①如果a >b ,那么a -b >0;②将一枚硬币连掷三次,结果出现三次正面;③三个小球全部放入两个盒中,其中一个盒子里有三个球;④若x ∈R ,则x 2<0.其中是随机事件的为________.(填序号)2.将一颗骰子抛掷600次,掷出点数大于2的次数大约是________次.3.一个口袋内装有大小相同且编号为1,2,3,4的四个乒乓球,从中任意摸出2球,则这一试验共有______种可能性.4.在进行n 次重复试验中,事件A 发生的频率为m n,当n 很大时,事件A 发生的概率P (A )与m n的关系是______________. 5.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e ”共使用了900次,则字母“e ”在这篇短文中的使用的频率为________.6.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况________.(填序号)①这100个铜板两面是一样的;②这100个铜板两面是不一样的;③这100个铜板中有50个两面是一样的,另外50个两面是不一样的;④这100个铜板中有20个两面是一样的,另外80个两面是不一样的.7.盒中装有4只白球5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是________事件,它的概率是________;(2)“取出的球是白球”是________事件,它的概率是________;(3)“取出的球是白球或黑球”是________事件,它的概率是________.8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼.9.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中错误的是________.(填序号)①抽出的6件产品中必有5件正品,一件次品;②抽出的6件产品中可能有5件正品,一件次品;③抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品;④抽取6件产品时,不可能抽得5件正品,一件次品.二、解答题10.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:直径个数直径个数6.88<d≤6.891 6.93<d≤6.94266.89<d≤6.902 6.94<d≤6.95156.90<d≤6.9110 6.95<d≤6.9686.91<d≤6.9217 6.96<d≤6.9726.92<d≤6.9317 6.97<d≤6.982从这100个螺母中任意抽取一个,求(1)事件A(6.92<d≤6.94)的频率;(2)事件B(6.90<d≤6.96)的频率;(3)事件C(d>6.96)的频率;(4)事件D(d≤6.89)的频率.11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.能力提升12.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)1.事件A 发生的概率P (A )=m n,在实际生活中并不意味着n 次试验中,事件A 一定发生m 次,有可能多于m 次,也有可能少于m 次,甚至有可能不发生或发生n 次.2.大概率事件经常发生,小概率事件很少发生.反之,一次试验中已发生了的事件其概率也必然很大,利用这一点可以推断事情的发展趋势,做出正确的决策.3.概率广泛应用于体育运动、管理决策、天气预报以及某些科学实验中,它在这些应用中起着极其重要的作用.3.1 随机事件及其概率知识梳理1.事先就能断定发生或不发生某种结果 某种现象可能发生,也可能不发生,事先不能断定出现哪种结果 2.试验 事件 3.必然会发生 肯定不会发生的事件 可能发生也可能不发生的事件 4.(1)频率概率 P(A) (2)0≤P(A)≤1 (3)1 0作业设计1.②③解析 ①是必然事件,④是不可能事件,②、③是随机事件.2.400解析 N =46×600=400. 3.6解析 可能出现以下情形:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).4.P(A)≈m n5.0.15解析 频率=9006 000=0.15. 6.①解析 一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.7.(1)不可能 0 (2)随机 49(3)必然 1 8.750解析 设池塘约有n 条鱼,则含有标记的鱼的概率为30n ,由题意得:30n×50=2, ∴n =750.9.①③④解析 由于12个产品的正品率为1012=56, 次品率为212=16,故抽出的6件产品中可能有5件正品,一件次品. 10.解 (1)事件A 的频率f(A)=17+26100=0.43. (2)事件B 的频率f(B)=10+17+17+26+15+8100=0.93. (3)事件C 的频率f(C)=2+2100=0.04. (4)事件D 的频率f(D)=1100=0.01. 11.解 (1)记“圆形细胞的豚鼠被感染”为事件A ,由题意知,A 为不可能事件,∴P(A)=0.(2)记“椭圆形细胞的豚鼠被感染”为事件B ,由题意知P(B)=50250=15=0.2. (3)记“不规则形状细胞的豚鼠被感染”为事件C ,由题意知事件C 为必然事件, 所以P(C)=1.12.解 抛掷一枚骰子得到6点的概率是16,多次抛掷骰子,出现6点的情况大约占16,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.13.解 (1)这种鱼卵的孵化概率P =8 51310 000=0.851 3. (2)30 000个鱼卵大约能孵化30 000×8 51310 000=25 539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知5 000x =8 51310 000. ∴x =5 000×10 0008 513=5 900(个). ∴大概需备5 900个鱼卵.。
高中数学 复习课(三)概率教学案 苏教版必修3-苏教版高一必修3数学教学案
复习课(三) 概率古典概型是学习及高考考查的重点,考查形式以填空题为主,试题难度属容易或中等,处理的关键在于用枚举法找出试验的所有可能的基本事件及所求事件所包含的基本事件.还要注意理解事件间关系,准确判断两事件是否互斥,是否对立,合理利用概率加法公式及对立事件概率公式.[考点精要]1.事件(1)基本事件在一次试验中可能出现的每一个可能结果.(2)等可能事件假设在一次试验中,每个基本事件发生的可能性都相同,那么称这些基本事件为等可能基本事件.(3)互斥事件①定义:不能同时发生的两个事件称为互斥事件.如果事件A1,A2,…,A n中的任何两个都是互斥事件,就说事件A1,A2,…,A n彼此互斥.②规定:设A,B为互斥事件,假设事件A,B至少有一个发生,我们把这个事件记作A+B.(4)对立事件两个互斥事件必有一个发生,那么称这两个事件为对立事件,事件A的对立事件记作A.2.概率的计算公式(1)古典概型①特点:有限性,等可能性.②计算公式:P(A)=事件A包含的基本事件数试验的基本事件总数.(2)互斥事件的概率加法公式①假设事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和即P(A+B)=P(A)+P(B).②假设事件A1,A2,…,A n两两互斥.那么古典概型P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ). (3)对立事件计算公式:P (A )=1-P (A ).[典例](1)5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.(2)将2本不同的数学书和1本语文书在书架上随机排成一行,那么2本数学书相邻的概率为________.(3)随机掷两枚骰子,它们向上的点数之和不超过5的概率记为p 1 ,点数之和大于5的概率记为p 2 ,点数之和为偶数的概率记为p 3 ,那么p 1,p 2,p 3从小到大依次为________.(4)(某某高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.①应从这三个协会中分别抽取的运动员的人数为________.②将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.从这6名运动员中随机抽取2人参加双打比赛.那么编号为A 5和A 6的两名运动员中至少有1人被抽到概率为________.[解](1)记3件合格品为a 1,a 2,a 3,2件次品为b 1,b 2,那么任取2件构成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},共10个基本事件.记“恰有1件次品〞为事件A ,那么A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)},共6个基本事件.故其概率为P (A )=610=0.6.(2)设2本数学书分别为A ,B ,语文书为C ,那么所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC ,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.(3)总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,那么向上的点数之和不超过5的概率p 1=1036=518;向上的点数之和大于5的概率p 2=1-518=1318;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p 3=12.即p 1<p 3<p 2.(4)①应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.②从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.[答案](1)0.6 (2)23 (3)p 1<p 3<p 2 (4)①3,1,2 ②35[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算[题组训练]1.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.解析:利用列举法可求出基本事件总数为6种,其中符合要求的有5种,故P =56.答案:562.假设某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,那么甲或乙被录用的概率为________.解析:所有基本事件为(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中符合“甲与乙均未被录用〞的结果只有(丙,丁,戊).故所求概率P =1-110=910.答案:9103.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,那么他们选择相同颜色运动服的概率为________.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.答案:13几何概型是各类考查的重点,考查形式以填空题为主,试题难度比古典概型稍大.[考点精要]1.几何概型的特征(1)无限性:即试验结果有无限多个. (2)等可能性:即每个结果出现是等可能的. 2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)[典例](1)在区间[0,5]上随机选择一个数p ,那么方程x 2+2px +3p -2=0有两个负根的概率为________.(2)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.(3)事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB 〞发生的概几何概型率为12,那么AD AB =________.[解析](1)设方程x 2+2px +3p -2=0有两个负根分别为x 1,x 2,∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝⎛⎭⎫1-23+(5-2)5=23.(2)依题意,得S 阴影S 正方形=1801 000,所以S 阴影1×1=1801 000,解得S 阴影=0.18.(3)由,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得 AB 2=⎝⎛⎭⎫34AB 2+AD 2,解得⎝⎛⎭⎫AD AB 2=716, 即AD AB =74. [答案](1)23 (2)0.18 (3)74[类题通法](1)几何概型概率的大小与随机事件所在区域的形状位置无关,只和该区域的大小有关. (2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.(某某高考)在区间[0,2]上随机地取一个数x ,那么事件“-1≤log 12⎝⎛⎭⎫x +12≤1〞发生的概率为________.解析:不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.42.(某某高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 假设在矩形ABCD 内随机取一点,那么此点取自阴影部分的概率等于________.解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32, 故P =326=14.答案:143.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,那么三棱锥S -APC 的体积大于V3的概率是________. 解析:由题意可知V S -APCV S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 交于点M ,BN ⊥AC 交于点N , 那么PM ,BN 分别为△APC 与△ABC 的高, 所以V S -APCV S -ABC =S △APC S △ABC =PM BN >13,又PM BN =APAB , 所以AP AB >13,故所求的概率为23(即为长度之比).3概率和统计综合应用[考点精要]对于给定的随机事件A.由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此各类考试常常结合统计的知识考查概率.考查形式一般以解答题为主,难度中等.解决此类考题要注意:①正确利用数形结合的思想.②充分利用概率是频率的稳定值,用频率估计概率.③准确地处理所给数据.[典例]某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100] 频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.[解](1)如下图.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意〞;C B表示事件:“B地区用户的满意度等级为不满意〞.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.[类题通法]解决概率和统计综合题,首先要明确频率、概率、频率分布表、频率分布直方图、概率的计算方法等基本知识,要充分利用频率估计概率及数形结合等基本思想,正确处理各种数据.[题组训练]1.随机抽取某中学高三年级甲、乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(1)假设甲班同学身高的平均数为170 cm ,求污损处的数据;(2)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高176 cm 的同学被抽中的概率.解:(1)设被污损的数字为a ,由题意知,甲班同学身高的平均数为x =158+162+163+168+168+170+171+179+170+a +18210=170,解得 a =9.(2)设“身高176 cm 的同学被抽中〞的事件为A ,从乙班10名同学中抽取2名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173},共10个基本事件,而事件A 含有4个基本事件,所以P (A )=410=25.2.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如下图),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.[对应配套卷P105]1.从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:基本事件的总数为6,满足条件的有{1,2},{2,4},2个,故P =26=13.答案:132.盒子里共有大小相同的3只白球,1只黑球.假设从中随机摸出两只球,那么它们颜色不同的概率是________.解析:基本事件总数有6个,满足条件的有3个,故P =12.答案:123.如下图,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,那么这粒豆子落到阴影部分的概率是________.解析:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型.设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,那么这粒豆子落到阴影部分的概率是r 2πr 2=1π. 答案:1π4.在区间[0,3]上任取一点,那么此点落在区间[2,3]上的概率是________. 解析:设这个事件为A ,所考查的区域D 为一线段,S D =3,又S A =1,∴P (A )=13.答案:135.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,那么m ,n 都取到奇数的概率为________.解析:基本事件总数为N =7×9=63,其中m ,n 都为奇数的事件个数为M =4×5=20,所以所求概率P =M N =2063.答案:20636.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,假设此点到圆心的距离大于12,那么周末去看电影;假设此点到圆心的距离小于14,那么去打篮球;否那么,在家看书.那么小波周末不在家看书的概率为________.解析:去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116, 故不在家看书的概率为P =34+116=1316.答案:13167.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:从五个数中任意取出两个数的可能结果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中“和为5〞的结果有(1,4),(2,3),故所求概率为210=15. 答案:158.假设a ,b ∈{-1,0,1,2},那么使关于x 的方程ax 2+2x +b =0有实数解的概率为________.解析:要使方程有实数解,那么a =0或ab ≤1,所有可能的结果为(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(1,2),(2,-1),(2,0),(2,1),(2,2),共16个,其中符合要求的有13个, 故所求概率P =1316.答案:13169.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,假设选到男教师的概率为920,那么参加联欢会的教师共有________人.解析:设男教师为x 人,那么女教师为(x +12)人. 依题意有: x2x +12=920.∴x =54. ∴共有教师2×54+12=120(人). 答案:12010.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12〞的概率,p 2为事件“xy ≤12〞的概率,那么p 1,p 2,12按从小到大排列为________.解析:如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12〞对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12;事件“xy ≤12〞对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,那么p 1<12<p 2.答案:p 1<12<p 211.(某某高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中〞所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.12.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50〞(记为事件B )的所有可能结果有{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.13.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90. 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的选法有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,10514.设f (x )和 g (x )都是定义在同一区间上的两个函数,假设对任意x ∈[1,2],都有|f (x )+g (x )|≤8,那么称f (x )和g (x )是“友好函数〞,设f (x )=ax ,g (x )=bx.(1)假设a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数〞的概率; (2)假设a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数〞的概率. 解:(1)设事件A 表示f (x )和g (x )是“友好函数〞, 那么|f (x )+g (x )|(x ∈[1,2])所有的情况有: x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x , 共6种且每种情况被取到的可能性相同. 又当a >0,b >0时,ax +b x 在⎝⎛⎭⎫0,b a 上递减,在⎝⎛⎭⎫b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,所以对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x , 故事件A 包含的基本事件有4种, 所以P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数〞,因为a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,所以点(a ,b )所在区域是长为3,宽为3的矩形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立, 需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b2≤8,所以事件B 表示的点的区域是如下图的阴影部分.所以P (B )=12×⎝⎛⎭⎫2+114×33×3=1924,24(时间120分钟 总分值160分)一、填空题(本大题共14小题,每题5分,共70分,请把答案填写在题中横线上) 1.从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且P (A )=0.65,P (B )=0.2,P (C )=0.1.那么事件“抽到的不是一等品〞的概率为________.解析:设事件“抽到的不是一等品〞为D ,那么A 与D 对立, ∴P (D )=1-P (A )=0.35. 答案:0.352.甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲紧接着排在乙前面值班的概率是________.解析:甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.答案:133.根据以下算法语句,当输入x 为60时,输出y 的值为________. Read xIf x ≤50 Then y ←0.5 x Else y ←25+0.6×(x -50)End If Print y解析:由题意知,该算法语句的功能是求分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50的值,所以当x =60时,输出y 的值为25+0.6×(60-50)=31.答案:314.从1,2,3,6这4个数中一次随机地取2个数,那么所取2个数的乘积为6的概率是________.解析:取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的有:(1,6),(2,3)共2种情况.所求事件概率为26=13.答案:135.执行如下图的程序框图,那么输出S 的值为________.解析:由程序框图与循环结束的条件“k >4〞可知,最后输出的S =log 255=12.答案:126.(某某高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,那么应抽取的男生人数为________.解析:设男生抽取x 人,那么有45900=x 900-400,解得x =25.答案:257.(某某高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如下图.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由(1.5+2.5+a +2.0+0.8+0.2)×0.1=1, 解得a =3.(2)区间[0.3,0.5]内频率为0.1×(1.5+2.5)=0.4, 故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 0008.(某某高考)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10 ,其均值和方差分别为x 和s 2,假设从下月起每位员工的月工资增加100元,那么这10位员工下月工资的均值和方差分别为________.解析:对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变.答案:100+x s 29.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,3,4},假设|a -b |≤1,那么称甲、乙“心有灵犀〞.现任意找两人玩这个游戏,得出他们“心有灵犀〞的概率为________.解析:甲、乙所猜数字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,其中满足|a -b |≤1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10个,故所求概率为1016=58.答案:5810.正方形ABCD 面积为S ,在正方形内任取一点M ,△AMB 面积大于或等于13S 的概率为________.解析:如图,设正方形ABCD 的边长为a ,那么S =a 2,△ABM 的高为h ,由题知,12h ·a ≥13S =13a 2,∴h ≥23a ,∴P =13.答案:1311.如以下图是CBA 篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,那么平均得分高的运动员是________.解析:x 甲=44+30+100+3010=20.4,x 乙=63+50+8010=19.3,∴x甲>x 乙.答案:甲12.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为________.解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.答案:1313.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.样本平均数为7,样本方差为4,且样本数据互不相同,那么样本数据中的最大值为________.解析:设5个班级的数据分别为0<a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e 5=7,(a -7)2+(b -7)2+(c -7)2+(d -7)2+(e -7)25=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,那么p ,q ,r ,s ,t 均为整数,那么⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,那么判别式Δ<0,解得-4<t <4,所以-3≤t ≤3,所以最大值为10. 答案:1014.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上〞为事件(2≤n ≤5,n ∈N),假设事件的概率最大,那么n 的所有可能值为________.解析:事件的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3或4时,事件的概率最大为13.答案:3或4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题总分值14分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19〞这一事件,那么C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.16.(本小题总分值14分)(某某高考)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,那么从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6种不同方法.记基本事件总数为n,那么n=6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1,ab2,ab3,共3个,由古典概型的概率计算公式得P(A)=36=1 2.17.(本小题总分值14分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华〞知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答以下问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)设第i组的频率为f i(i=1,2,3,4,5,6),因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如下图.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的合格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.18.(本小题总分值16分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下35~50岁50岁以上本科803020研究生x 20y(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x,y的值.解:(1)用分层抽样的方法在35~50岁的人中抽取一个容量为5的样本,设抽取学历为本科的人数为m,∴30 50=m5,解得m=3.∴抽取了学历为研究生的有2人,学历为本科的有3人,分别记作S1,S2;B1,B2,B3. 从中任取2人的所有基本事件共10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的学历为研究生的概率为710.(2)依题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20. ∴4880+x =2050=1020+y .解得x =40,y =5. ∴x =40,y =5.19.(本小题总分值16分)某商场为吸引顾客消费推出一项优惠活动.活动规那么如下:消费每满100元可以转动如下图的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,那么其共获得了30元优惠券).顾客甲和乙都到该商场进行了消费,并按照规那么参与了活动.(1)假设顾客甲消费了128元,求他获得优惠券金额大于0元的概率; (2)假设顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率. 解:(1)设“甲获得优惠券〞为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元、10元、0元区域内的概率都是13.顾客甲获得优惠券,是指指针停在20元或10元区域,且由题意知顾客甲只能转动一次圆盘.根据互斥事件的概率公式,有P (A )=13+13=23,所以顾客甲获得优惠券金额大于0元的概率是23.(2)设“乙获得优惠券金额不低于20元〞为事件B ,因为顾客乙转动了圆盘两次,设乙第一次转动圆盘获得优惠券金额为x 元,第二次获得优惠券金额为y 元,用(x ,y )表示乙两次转动圆盘获得优惠券金额的情况,那么有(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),。
高中数学随机事件概率教案
高中数学随机事件概率教案
一、教学目标:
1. 了解什么是随机事件以及概率的定义;
2. 掌握计算随机事件发生的概率的方法;
3. 能够应用概率的知识解决实际问题。
二、教学重点:
1. 随机事件与概率的概念;
2. 计算概率的方法。
三、教学难点:
1. 概率计算中的排列组合问题;
2. 复杂事件的概率计算。
四、教学内容:
1. 什么是随机事件?
2. 概率的定义和表示方法;
3. 概率的基本性质;
4. 概率计算的基本方法;
5. 概率计算的案例分析。
五、教学方法:
1. 理论讲解结合实例分析;
2. 学生互动讨论;
3. 练习巩固。
六、教学过程:
1. 导入:通过一个简单的抛硬币实验引出随机事件和概率的概念;
2. 讲解:介绍随机事件和概率的定义,并通过例题进行讲解;
3. 案例分析:通过一些常见的问题,引导学生掌握计算概率的方法;
4. 练习:学生进行相关练习,巩固所学知识;
5. 总结:对本节课的内容进行总结,强调重点和难点。
七、教学资源:
1. 教材、课件;
2. 练习题。
八、作业布置:
完成课后练习题。
以上就是本节课的教学内容,希望同学们认真学习,掌握概率的计算方法,提高自己的数学水平。
祝大家学习进步!。
高中数学苏教版教材目录(必修+选修)
苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2."1.1函数的概念和图象2."1.2函数的表示方法2.2函数的简单性质2."2.1函数的单调性2."2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3."1.1分数指数幂3."1.2指数函数3.2对数函数3."2.1对数3."2.2对数函数3.3幂函数3.4函数的应用3."4.1函数与方程3."4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1."1.1棱柱、棱锥和棱台1."1.2圆柱、圆锥、圆台和球1.1."3中心投影和平行投影1."1.4直观图画法1.2点、线、面之间的位置关系1."2.1平面的基本性质1.2."2空间两条直线的位置关系1."平行直线2."异面直线1.2."3直线与平面的位置关系1."直线与平面平行2."直线与平面垂直1.2."4平面与平面的位置关系1."两平面平行2."平面垂直1.3空间几何体的表面积和体积1."3.1空间几何体的表面积1."3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2."1.1直线的斜率2."1.2直线的方程1."点斜式2."两点式3."一般式2.1."3两条直线的平行与垂直2."1.4两条直线的交点2."1.5平面上两点间的距离2.1."6点到直线的距离2.2圆与方程2."2.1圆的方程2."2.2直线与圆的位置关系2."2.3圆与圆的位置关系2.3空间直角坐标系2."3.1空间直角坐标系2."3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1."2.1顺序结构1."2.2选择结构1."2.3循环结构1.3基本算法语句1."3.1赋值语句1."3.2输入、输出语句1."3.3条件语句1.3."4循环语句1.4算法案例第2章统计2.1抽样方法2."1.1简单随机抽样1."抽签法2."随机数表法2."1.2系统抽样2."1.3分层抽样2.2总体分布的估计2."2.1频率分布表2."2.2频率分布直方图与折线图2."2.3茎叶图2.3总体特征数的估计2."3.1平均数及其估计2."3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3."1.1随机现象3."1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1."1.1任意角1."1.2弧度制1.2任意角的三角函数1."2.1任意角的三角函数1."2.2同角三角函数关系1.2."3三角函数的诱导公式1.3三角函数的图象和性质1."3.1三角函数的周期性1."3.2三角函数的图象与性质1.3."3函数y=Asin(ωx+ψ)的图象1."3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2."2.1向量的加法2."2.2向量的减法2."2.3向量的数乘2.3向量的坐标表示2."3.1平面向量基本定理2."3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1."1两角和与差的余弦3.1."2两角和与差的正弦3."1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1."1正弦定理1."2余弦定理1."3正弦定理、余弦定理的应用第2章数列2."1数列2."2等差数列2."2.1等差数列的概念2."2.2等差数列的通项公式2.2."3等差数列的前n项和2."3等比数列2."3.1等比数列的概念2."3.2等比数列的通项公式2.3."3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3."1二元一次不等式表示的平面区域3."3.2二元一次不等式组表示的平面区域3.3."3简单的线性规划问题3.4基本不等式ab a b(a0,b0)3."4.1基本不等式的证明23.4."2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章常用逻辑用语1.1命题及其关系1."1.1四种命题1."1.2充分条件和必要条件1.2简单的逻辑联结词1.3全称量词与存在量词1."3.1量词1."3.2含有一个量词的命题的否定第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2."2.1椭圆的标准方程2."2.2椭圆的几何性质2.3双曲线2."3.1双曲线的标准方程2."3.2双曲线的几何性质2.4抛物线2."4.1抛物线的标准方程2."4.2抛物线的几何性质2.5圆锥曲线的共同性质第3章导数及其应用3.1导数的概念3."1.1平均变化率3."1.2瞬时变化率——导数3.2导数的运算3."2.1常见函数的导数3."2.2函数的和、差、积、商的导数3.3导数在研究函数中的应用3."3.1单调性3."3.2极大值和极小值3.3."3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章统计案例1.1独立性检验1.2回归分析第2章推理与证明2.1合情推理与演绎推理2."1.1合情推理2."1.2演绎推理2."1.3推理案例欣赏2.2直接证明与间接证明2."2.1直接证明2."2.2间接证明第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第1章常用逻辑用语1."1命题及其关系1."1.1四种命题1."1.2充分条件和必要条件1."2简单的逻辑联结词1."3全称量词与存在量词1."3.1量词1."3.2含有一个量词的命题的否定第2章圆锥曲线与方程2."1圆锥曲线2."2椭圆2."2.1椭圆的标准方程2."2.2椭圆的几何性质2."3双曲线2."3.1双曲线的标准方程2."3.2双曲线的几何性质2."4抛物线2."4.1抛物线的标准方程2."4.2抛物线的几何性质2."5圆锥曲线的统一定义2."6曲线与方程2."6.1曲线与方程2."6.2求曲线的方程2."6.3曲线的交点第3章空间向量与立体几何3."1空间向量及其运算3."1.1空间向量及其线性运算3."1.2共面向量定理3.1."3空间向量基本定理3."1.4空间向量的坐标表示3."1.5空间向量的数量积3."2空间向量的应用3."2.1直线的方向向量与平面的法向量3.2."2空间线面关系的判定3."2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1."1导数的概念1."1.1平均变化率1."1.2瞬时变化率——导数1."2导数的运算1."2.1常见函数的导数1."2.2函数的和、差、积、商的导数1.2."3简单复合函数的导数1."3导数在研究函数中的应用1."3.1单调性1."3.2极大值和极小值1.3."3最大值和最小值1."4导数在实际生活中的应用1."5定积分1."5.1曲边梯形的面积1."5.2定积分1."5.3微积分基本定理第二章推理与证明2."1合情推理与演绎推理2."1.1合情推理2."1.2演绎推理2."1.3推理案例欣赏2."2直接证明与间接证明2."2.1直接证明2."2.2间接证明2."3数学归纳法第三章数系的扩充与复数的引入3."1数系的扩充3."2复数的四则运算3."3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1."1两个基本原理1."2排列1."3组合1."4计数应用题1."5二项式定理1."5.1二项式定理1."5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2."3.1条件概率2."3.2事件的独立性2.4二项分布2.5随机变量的均值与方差5.1离散型随机变量的均值2.5."2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1相似三角形的进一步认识1.1."1平行线分线段成比例定理1.1."2相似三角形1.2圆的进一步认识1.2."1圆周角定理1.2."2圆的切线1.2."3圆中比例线段2."4圆内接四边形1.3圆锥截线1.3."1球的性质1.3."2圆柱的截线1.3."3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1二阶矩阵与平面向量2.1."1矩阵的概念2.1."2二阶矩阵与平面列向量的乘法2.2几种常见的平面变换2.2."1恒等变换2.2."2伸压变换2."3反射变换2.2."4旋转变换2.2."5投影变换2.2."6切变变换2.3变换的复合与矩阵的乘法2.3."1矩阵乘法的概念2.3."2矩阵乘法的简单性质2."4逆变换与逆矩阵2.4."1逆矩阵的概念2.4."2二阶矩阵与二元一次方程组2.5特征值与特征向量2.6矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1直角坐标系4.1."1直角坐标系4.1."2极坐标系4.1."3球坐标系与柱坐标系4.2曲线的极坐标方程4.2."1曲线的极坐标方程的意义4.2."2常见曲线的极坐标方程4.3平面坐标系中几种常见变换4.3."1平面直角坐标系中的平移变换4.3."2平面直角坐标系中的伸缩变换4.4参数方程4.4."1参数方程的意义4.4."2参数方程与普通方程的互化4.4."3参数方程的应用4.4."4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1不等式的基本性质5.2含有绝对值的不等式5.2."1含有绝对值的不等式的解法5.2."2含有绝对值的不等式的证明5.3不等式的证明5.3."1比较法5.3."2综合法和分析法5.3."3反证法5.3."4放缩法5.4几个著名的不等式5.4."1柯西不等式5.4."2排序不等式5.4."3算术-几何平均值不等式5.5运用不等式求最大(小)值5.5."1运用算术-几何平均值不等式求最大(小)值5.5."2运用柯西不等式求最大(小)值5."6运用数学归纳法证明不等式学习总结报告。
苏教版数学高一-必修3教学案 3.1随机现象和随机事件的概率
引入新课
1.观察下列现象:
(1)在标准大气压下,把水加热到100°C,沸腾;(2)导体通电,发热;
(3)实心铁块丢入水中,铁块浮起;(4)同性电荷,互相吸引;(5)买一张福到彩票,中奖;(6)掷一枚硬币,正面向上;
这些现象各有什么特点?
2.(1)确定性现象与随机现象:
(2)试验与事件:
(3)事件的分类与事件的符号表示:
19982
出生男婴数
11453
12031
10297
10242
(1)试计算男婴各年出生的频率(精确到 );
(2)该市男婴出生的概率约为多少?
巩固练习
1.某班进行一次数学测验,其中及格的人数为47人,不及格的人数为3人,
请据此列出一些不可能事件,必然事件,随机事件.
2.在10个学生中,男生有x个,现从中任选6人去参加某项活动.
(2)当 为不可能事件时,求 的取值范围.
三 能力题
8.某射击运动负进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
பைடு நூலகம்95
123
82
119
127
121
击中飞碟频率
(1)将各次记录击中飞碟的频率填入表中.
(2)这个运动员击中飞碟的概率约为多少?
“正面向上”出现的频率
1
500
251
2
500
249
3
500
256
4
500
253
5
500
251
6
500
246
高中数学 3.1 随机事件及其概率学案 苏教版必修3-苏教版高中必修3数学学案
3.1 随机事件及其概率试验的结果.1.随机现象(1)确定性现象:在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象. (2)随机现象:在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.预习交流1确定性现象是指一定条件下事先就能断定其一定发生的现象吗?提示:不一定.确定性现象是指在一定条件下,事先就能断定发生或不发生某种结果的现象.如正常情况下,水向高处流,是事先能断定不发生的现象,也是确定性现象.2.随机事件 (1)试验与事件:对于某个现象,如果能让其条件实现1次,那么就是进行了1次试验.而试验的每一种可能的结果,都是一个事件.(2)必然事件:在一定的条件下,必然会发生的事件叫做必然事件.(3)不可能事件:在一定条件下,肯定不会发生的事件叫做不可能事件. (4)随机事件:在一定条件下,可能发生也可能不发生的事件叫做随机事件.随机事件一般用大写英文字母来表示,简称为事件.预习交流2随机事件概念中的“一定条件”能否去掉?提示:不能.事件的结果是相对于“一定条件”而言的,随着条件的改变,其结果也会不同.因此在随机事件的概念中“一定条件”不能去掉.3.随机事件的概率(1)随机事件的概率:一般地,对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ).(2)概率的性质:概率必须满足两个基本要求:①P (A )的范围是0≤P (A )≤1; ②分别用Ω和∅分别表示必然事件和不可能事件,则P (Ω)=1,P (∅)=0. 预习交流3“频率”与“概率”之间有何关系?提示:随机事件的频率,指此事件发生的次数与试验总次数的比值.它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,摆动幅度越来越小.我们把这个常数叫做这个随机事件的概率.概率可看做频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可近似地看做这个事件的概率.预习交流4(1)下列事件:①明天多云;②3>2;③济南市明年今天的天气与今天的天气一样;④x ∈R ,x 2+2<0;⑤走到十字路口,遇红灯;⑥任给x 0∈R ,x 0+2=0.其中随机事件的个数为__________.(2)从装有3个红球、2个绿球的袋子中任取两个小球,这两个小球都是绿色的.这一事件是__________事件.(填“必然”、“不可能”或“随机”)(3)数学测试后,成绩统计显示全班50名同学中,有10名同学的分数在90分以上.若设“分数在90分以上”为事件A,则事件A发生的频率为__________.提示:(1)4 (2)随机(3)1 5一、事件类型的判断指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)明天某人的手机接到20次呼叫;(2)三角形的内角和是180°;(3)李四走到十字路口遇到张三;(4)某人购买福利彩票5注,均未中奖;(5)若x∈R,则x2=x;(6)在标准大气压下,温度低于0 ℃时,冰融化.思路分析:本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.解:明天某人的手机接到的呼叫次数不确定,故(1)为随机事件;同理由事件的定义得:(2)是必然事件;(3)(4)是随机事件;(5)是随机事件;(6)是不可能事件.1.在下列六个事件中,随机事件的个数为__________.①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签;③投掷一枚均匀的硬币,正面朝上;④某电话总机在60秒内接到至少10次呼叫;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥异性电荷,相互吸引.答案:3解析:由题意知,①⑥是必然事件,⑤是不可能事件,②③④是随机事件.2.下列事件:①同一门大炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;②某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意拨了一个数字,恰巧是朋友的电话号码;③直线y=2x+6是定义在R上的增函数;④“若|a+b|=|a|+|b|,则a,b同号”;⑤射击运动员射击一次,射中10环.其中是必然事件的为__________.答案:③解析:①②④⑤为随机事件,③为必然事件.3.指出下列事件哪些是必然事件、不可能事件、随机事件:(1)中国体操运动员将在下届奥运会上获得全能冠军;(2)三角形的两边之和小于第三边;(3)对数函数y=log a x(a>1)在(0,+∞)上是增函数;(4)北京明年1月1日下雨;(5)将一个骰子抛掷两次,所得点数之和大于7;(6)太阳从西边升起.解:由题意知,(1)(4)(5)中事件可能发生,也可能不发生,所以是随机事件.(2)(6)中的事件一定不会发生,是不可能事件.(3)中的事件一定会发生,是必然事件.对于一个事件,如果条件发生改变,结果就可能不同.对有关事件概念的理解是解题的关键,要特别注意事件的条件对事件结果的影响.二、概率与频率的关系(1)(2)这个射手射击一次便击中靶心的概率约是多少?思路分析:理解“频率的稳定值就是概率”是解答本题的关键,可根据(1)的结果观察频率m n 稳定在哪个常数上,即可求出击中靶心的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.90左右,所以这个射手击中靶心的概率约是0.90.1.某人将一枚硬币抛掷了10次,正面朝上出现了6次,则该事件发生的频率为__________.答案:35解析:该事件发生的频率为610=35. 2.下表中列出了10次试验抛掷硬币的结果,n 为每次试验抛掷硬币的次数,m 为硬币解:由n 可分别求出这10次试验中“正面向上”这一事件的频率依次为:0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字在0.5附近摆动,由概率的统计定义可得,“正面向上”这一事件发生的概率为0.5.概率与频率的关系(1)频率是概率的近似值如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,可以将事件A 发生的频率m n 作为事件A 的概率的近似值,即P (A )≈m n;(2)概率是频率的科学抽象随机事件的概率,一般都是要通过大量重复试验来求得其近似值.(3)频率具有随机性,它反映的是随机事件出现的可能性;而概率是一个客观常数,它反映了随机事件的属性,如果一个事件是随机事件,即使该事件的概率再大,那么,在一次试验中,它可能发生,也可能不发生.1.以下现象是随机现象的序号是______.①若a,b∈R,则a·b=b·a;②打开电视,正在播放《新闻联播》;③地球上,苹果熟了会落地;④对半径为R的圆,其面积为πR2;⑤在艺术节的晚会上,灯光出现故障;⑥种下的一粒煮熟的种子发芽.答案:②⑤解析:①③④必然发生,⑥不可能发生,都是确定性现象.②⑤是随机现象.2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是__________.答案:①②④解析:根据确定性的定义可知应填①②④.3.气象台预报“本市明天降雨概率是70%”,以下理解正确的序号是__________.①本市明天将有70%的地区降雨;②本市明天将有70%的时间降雨;③明天出行不带雨具肯定要淋雨;④明天出行不带雨具淋雨的可能性很大.答案:④解析:概率是随机事件发生的可能性大小的一种度量,“本市明天降雨概率是70%”指的是本市明天降雨的可能性是70%,即降雨的可能性比较大.4.某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:根据上面统计结果,______________.答案:0.2,0.5,0.3解析:由题意得所求频率分别为:20 100=0.2,50100=0.5,30100=0.3.5.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分,然后作了统计,下表是统计结果:(1)(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会带来人的智力的差别.(3)经济上的贫困导致该地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,这都是贫富差距带来的智力差别的原因.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。