函数的单调性专题
专题21 函数的单调性(解析版)
提升训练3.2 函数的单调性一、选择题1.函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,则()A. B. C. D.【答案】A【解析】∵函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,∴2k﹣1<0,解得k.故选:A.2.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有( )A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k1【答案】A【解析】由于直线向左倾斜,故,直线与直线均向右倾斜,且更接近y轴,所以:.故选A.3.已知函数在上单调递增,则实数的取值范围是()A.B.C.D.【答案】B【解析】函数y=4x2﹣kx﹣8的对称轴为:x∵函数在上单调递增∴ 5∴k≤40故选B.4.直线与在同一直角坐标系中的图象可能是()A. B.C. D.【答案】C【解析】直线y=x+a是一次函数,斜率k=1,b=a,可判断从左到右图象上升,B,D不满足题意; 当b=a>0时,y=x+a的图象在y轴上的交点在正半轴,没有选项,所以a<0,则直线y=ax表示直线过原点,且斜率为小于0,所以选项A错误,C正确.故选:C5.下列函数中,在(-∞,0)上为减函数的是()A. B. C. D.【答案】D【解析】A中,函数y=﹣x2+2在(﹣∞,0)上为增函数;B中,函数y=4x﹣1在(﹣∞,0)上为增函数;C中,函数y=x2+4x在(﹣∞,﹣2)上为减函数,在(﹣2,0)上为增函数;D中,函数在(﹣∞,0)上为减函数故选:D.6.已知函数()y f x =在定义域R 上是减函数,则不等式()()2142f x f x +>-的解集为( ) A .()1,3B .()(),31,-∞-⋃-+∞C .()3,1--D .()(),13,-∞⋃+∞【答案】A【解析】 依题意,2142x x +<-,所以()()130x x --<,解得13x <<.故选A7.若函数y =ax +1(a >0)在区间[1,3]上的最大值为4,则a =( ).A .2B .3C .1D .-1【答案】C【解析】因为a >0,所以一次函数y =ax +1在区间[1,3]上单调递增,所以当x=3时,函数y =ax +1取得最大值,故3a +1=4,解得a =1.故选C.8.已知函数f (x )=x 2-kx -6在[2,8]上是单调函数,则k 的取值范围是( )A .B .C .D . 【答案】D【解析】根据题意,函数f (x )=x 2﹣kx ﹣6的对称轴为x, 若f (x )在[2,8]上是单调函数,必有2或8,解可得:k ≤4或k ≥16,即k 的取值范围是(﹣∞,4]∪[16,+∞);故选:D .9.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( )A .()()()211f f f <-<B .()()()121f f f <<-C .()()()112f f f <-<D .()()()211f f f <<-【答案】B【解析】∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f(x )在(-∞,1]上单调递减,∵f(x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f(-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选:B .10.已知函数在上是减函数,则a 的取值范围为 )A .B .C .D .【答案】B【解析】 函数在上是减函数,, 求得,故选:B .11.已知函数f (x )是R 上的增函数,A (4,2)是其图象上的一点,那么f (x )<2的解集是()A .B .C .D .【答案】B【解析】 因为是函数的图象上的一点,则, 所以, 又因为函数是上的增函数,所以, 即的解集是,故选B .12.函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,则实数a 的取值范围是( )A .B .C .D .【答案】C【解析】因为函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,所以函数f (x )在(-∞,+∞)上是增函数,所以f (x )在(-∞,1),(1,+∞)上均单调递增,且-12+2a×1≤(2a-1)×1-3a+6, 故有,解得1≤a≤2.所以实数a 的取值范围是[1,2].故选:C .二、填空题 13.已知函数2f x x b =+()在区间12-(,)上的函数值恒为正,则b 的取值范围为______. 【答案】[2+∞,)【解析】()2f x x b =+Q 为增函数,∴若()2f x x b =+在区间()12-,上的函数值恒为正, 则只需要()120f b -=-+≥即可,即2b ≥,即实数b 的取值范围是[2+∞,),故答案为:[2+∞,)14.已知函数,若在上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=在上单调递减,故只需满足,解得:k∈[,0)故答案为:[,0)15.若,且,则实数的取值范围是______.【答案】【解析】,可得时,递减;时,递减,且,可得在R上递减,,可得,解得,故答案为:.16.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数=_________________.【答案】答案不唯一,比如或;【解析】根据题意只要举出的例子不符合函数单调增即可,可以在区间端点处违反单调性,即.答案为:答案不唯一,比如或;三、解答题17.已知函数.Ⅰ画出的图象;Ⅱ根据图象写出的值域、单调区间.【答案】(Ⅰ)见解析(Ⅱ)的单调递减区间为,无增区间.【解析】Ⅰ,的图象;Ⅱ由图象知的值域为,的单调递减区间为,无增区间.18.已知函数f(x)=,(Ⅰ)画出f(x)的图象;(Ⅱ)写出f(x)的单调递增区间.【答案】(Ⅰ)详见解析(Ⅱ)[-1,0],[2,5]【解析】(Ⅰ)函数f(x)=的图象如下:(Ⅱ)f(x)的单调递增区间为[-1,0],[2,5].19.已知函数,且.(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明.【答案】(1)(2)f(x)在(0,1)上单调递减,证明见解析. 【解析】(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减.20.已知函数,且,.(I )求的函数解析式;(II )求证:在上为增函数; (III )求函数的值域. 【答案】(I )(II )见解析(III ) 【解析】(I )函数, 由得a+4b=6,① 由得2a+5b=9,②联立①②解得a=2,b=1, 则函数解析式为(II )任取x 1,x 2∈[3,5]且x 1<x 2, ∴∵3≤x 1<x 2≤5, ∴<0, ∵>0, ∴<0, ∴,即在上为增函数. (III )由(II )知在上为增函数 则. 所以函数的值域为21.已知函数()21x f x x =+是定义在()1,1-上的函数. (1)用定义法证明函数()f x 在()1,1-上是增函数;(2)解不等式()()10f x f x ++<.【答案】(1)详见解析;(2)10,2⎛⎫ ⎪⎝⎭.【解析】(1)证明:对于任意的()12,1,1x x ∈-,且12x x <,则: ()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++, ∵1211x x -<<<,∴120x x -<,121x x <,∴1210x x ->. ∴()()120f x f x -<,即()()12f x f x <.∴函数在()1,1-上是增函数.(2)由函数的分析式及(1)知,()f x 是奇函数且在()1,1-上递增, ()()10f x f x -+<,即:()()()1f x f x f x -<-=-,结合函数的定义域和单调性可得关于实数x 的不等式:111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,求解关于实数x 的不等式组可得:102x <<, 则不等式的解集为10,2⎛⎫ ⎪⎝⎭. 22.已知定义在(1,+∞)上的函数f (x )=.(1)当m ≠0时,判断函数f (x )的单调性,并证明你的结论;(2)当m =时,求解关于x 的不等式f (x 2-1)>f (3x -3).【答案】(1)见解析;(2)(,2) 【解析】(1)根据题意,设1<x 1<x 2, 则f (x 1)-f (x 2)=-=m ×,又由1<x 1<x 2,则(x 2-x 1)>0,(x 2-1)>0,(x 1-1)>0, 当m >0时,f (x 1)>f (x 2),f (x )在(1,+∞)上递减;当m<0时,f(x1)<f(x2),f(x)在(1,+∞)上递增;(2)当m=时,f(x)为减函数,则f(x2-1)>f(3x-3)⇒,解可得:<x<2,即不等式的解集为(,2)。
高考数学专题复习 函数的单调性(学生版)
第二讲 函数的单调性【套路秘籍】1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值【套路修炼】考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间. (4)求函数f (x )=x -ln x 的单调区间.(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4)3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 3.设a =ln22,b =ln33,c =1e ,则( )A . c <a <bB . c <b <aC . a <b <cD . b <a <c 4.已知x =1.10.1,y =0.91.1,z =log 2343,则x ,y ,z 的大小关系是( )A . x >y >zB . y >x >zC . y >z >xD . x >z >y考向三 单调性的运用二---解不等式【例3】(1)f(x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)(2)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]【举一反三】1.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A . (0,23)B . (0,23)∪(1,+∞) C . (1,+∞) D . (0,1)2.设函数f (x )={2x , x ≥0x , x <0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A . (−∞ , −1]B . (1 , +∞)C . (−1 , 0)D . (−∞ , 0)3.定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则满足f(log 12x)>0的x 的集合为______.4.设函数f(x)=x 3+1,若f(1−2a)<f(a),则实数a 的取值范围是 _______。
《函数的单调性》知识点
一、函数单调性的定义如果函数()x f 对区间D 内的任意21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数.二、单调性的定义的等价形式 设[]b a x x ,,21∈,那么()()()x f x x x f x f ⇔>--02121在[],a b 是增函数;()()()x f x x x f x f ⇔<--02121在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数;()()()12120x x f x f x -->⎡⎤⎣⎦()f x ⇔在[],a b 是增函数.三、函数单调性的应用若()f x 在区间D 上递增且1212()()f x f x x x <⇔<(1x 2,x D ∈);若()f x 在区间D 上递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). 四、函数单调性的性质在公共定义域内,有:①增函数+)(x f 增函数)(x g 是增函数;②减函数+)(x f 减函数)(x g 是减函数;③增函数-)(x f 减函数)(x g 是增函数;④减函数-)(x f 增函数)(x g 是减函数.五、双勾函数及其性质 函数)0,0(>>+=b axbax y 叫做双勾函数. 双勾函数在,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减.六、复合函数单调性的判断(同增异减)讨论复合函数[()]y f g x =的单调性时要注意:①若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;②若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:单性相异时递减. 七、用定义法证明函数单调性证明函数单调性的步骤:(1)取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <; (2)变形:作差变形(因式分解、配方、有理化等)或作商变形;(3)定号:判断差的正负或商与1的大小关系;(4)得出结论.。
函数的单调性证明
函数的单调性证明一.解答题(共40小题)1.证明:函数f(x)=在(﹣∞,0)上是减函数.2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)内是增函数.4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.7.证明:函数y=在(﹣1,+∞)上是单调增函数.8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.10.已知函数f(x)=x+.(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.11.证明:函数f(x)=在x∈(1,+∞)单调递减.12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性.14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.15.求函数f(x)=的单调增区间.16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.17.求函数的定义域.18.求函数的定义域.19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+(2)f(x)+2f()=3x.20.若3f(x)+2f(﹣x)=2x+2,求f(x).21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).23.已知3f(x)+2f()=x(x≠0),求f(x).24.已知函数f(x+)=x2+()2(x>0),求函数f(x).25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.27.已知4f(x)﹣5f()=2x,求f(x).28.已知函数f(+2)=x2+1,求f(x)的解析式.29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)31.求下列函数的解析式:(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.33.已知f(2x)=x2﹣x﹣1,求f(x).34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.37.若3f(x)+2f(﹣x)=2x,求f(x)38.f(+1)=x2+2,求f(x)的解析式.39.若函数f()=+1,求函数f(x)的解析式.40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.函数的单调性证明参考答案与试题解析一.解答题(共40小题)1.证明:函数f(x)=在(﹣∞,0)上是减函数.【解答】证明:设x1<x2<0,则:;∵x1<x2<0;∴x2﹣x1>0,x1x2>0;∴f(x1)>f(x2);∴f(x)在(﹣∞,0)上是减函数.2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.【解答】证明:设0<x1<x2<,则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+=(x1﹣x2)(),又由0<x1<x2<,则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,设≤x3<x4,同理可得:f(x3)﹣f(x4)=(x3﹣x4)(),又由≤x3<x4,则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)内是增函数.【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:=;∵x1,x2∈[0,+∞),且x1<x2;∴;∴f(x1)<f(x2);∴f(x)在定义域[0,+∞)上是增函数.4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.【解答】证明:任取x1,x2∈(0,2),且x1<x2,则f(x1)﹣f(x2)=﹣(=因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)=x+在(0,2)上为减函数.5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.【解答】解:设x1<x2<0,∴f(x1)﹣f(x2)=2x1﹣﹣2x2+=(x1﹣x2)(2+),∵x1<x2<0,∴x1﹣x2<0,2+>0,∴f(x1)﹣f(x2)<0,即:f(x1)<f(x2),∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.【解答】解:任取0≤x1<x2,则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0,故原式f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.7.证明:函数y=在(﹣1,+∞)上是单调增函数.【解答】解:∵函数f(x)==1﹣在在区间(﹣1,+∞),可以设﹣1<x1<x2,可得f(x1)﹣f(x2)=1﹣﹣1+=∵﹣1<x1<x2<0,∴x1+1>0,1+x2>0,x1﹣x2<0,∴<0∴f(x1)<f(x2),∴f(x)在区间(﹣∞,0)上为增函数;8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣﹣(﹣)=﹣=,∵x1<x2,∴x1﹣x2<0,∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.即f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.【解答】解:∵函数y=在区间(0,+∞),可以设0<x1<x2,可得f(x1)﹣f(x2)=﹣=>0,∴f(x1)>f(x2),∴f(x)在区间(﹣∞,0)上为减函数;10.已知函数f(x)=x+.(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=,∵2≤x1<x2,所以x1﹣x2<0,x1x2>4,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在[2,+∞)上为增函数;(Ⅱ)解:∵>0对任意x∈[4,5]恒成立,∴x﹣a>0对任意x∈[4,5]恒成立,∴a<x对任意x∈[4,5]恒成立,∴a<4.11.证明:函数f(x)=在x∈(1,+∞)单调递减.【解答】证明:设x1>x2>1,则:;∵x1>x2>1;∴x2﹣x1<0,x1﹣1>0,x2﹣1>0;∴;即f(x1)<f(x2);∴f(x)在x∈(1,+∞)单调递减.12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.【解答】证明:①在(0,1)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈(0,1),x1<x2,∴x1﹣x2<0,1﹣<0,∴f(x1)﹣f(x2)>0,∴f(x)=x+在(0,1)上是减函数.②在[1,+∞)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈[1,+∞),x1<x2,∴x1﹣x2<0,1﹣>0,∴f(x1)﹣f(x2)<0,∴f(x)=x+在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性.【解答】解:f(x)=在(﹣1,+∞)上的单调递减.证明如下:在(﹣1,+∞)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=﹣=,∵x1,x2∈(﹣1+∞),x1<x2,∴x2﹣x1>0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)>0,∴f(x)=在(﹣1,+∞)上的单调递减.14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2f(x1)﹣f(x2)=x1+﹣x2﹣=(x1﹣x2)+﹣=(x1﹣x2),∵0<x1<x2<2∴x1﹣x2<0,0<x1x2<4,即x1x2﹣4<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).所以f(x)在(0,2)上是单调减函数.15.求函数f(x)=的单调增区间.【解答】解:根据反比例函数的性质可知,f(x)==1﹣的单调递增区间为(﹣∞,0),(0,+∞)故答案为:(﹣∞,0),(0,+∞)16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.【解答】证明:设x1<x2<0,则:;∵x1<x2<0;∴x1﹣x2<0,x1x2>0;∴;∴f(x1)<f(x2);∴f(x)在区间(﹣∞,0)上是单调增函数.17.求函数的定义域.【解答】解:根据题意,得,解可得,故函数的定义域为2≤x<3和3<x<5.18.求函数的定义域.【解答】解:由.故函数定义域为{x|x<}19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+(2)f(x)+2f()=3x.【解答】解:(1)f(x+)=x2+=(x+)2﹣2,即f(x)=x2﹣2,(x>2或x<﹣2)(2)∵f(x)+2f()=3x,∴f()+2f(x)=,消去f()得f(x)=﹣x.20.若3f(x)+2f(﹣x)=2x+2,求f(x).【解答】解:∵3f(x)+2f(﹣x)=2x+2…①,用﹣x代替x,得:3f(﹣x)+2f(x)=﹣2x+2…②;①×3﹣②×2得:5f(x)=(6x+6)﹣(﹣4x+4)=10x+2,∴f(x)=2x+.21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)【解答】解:(1)∵已知f(x+1)=x2 ,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣1)2,∴f(x)=(x﹣1)2.(2)∵已知f()=x,令=t,求得x=,∴f(t)=,∴f(x)=.(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求∴f(x)=3x+,或f(x)=﹣3x﹣.(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=②,由①②求得f(x)=x2+.22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).【解答】解:∵2f(x)+f()=2x①令x=,则2f()+f(x)=②,①×2﹣②得:3f(x)=4x﹣,∴f(x)=x﹣.23.已知3f(x)+2f()=x(x≠0),求f(x).【解答】解:∵3f(x)+2f()=x,①等号两边同时以代x,得:3f()+2f(x)=,②由①×3﹣2×②,解得5f(x)=3x﹣,∴函数f(x)的解析式:f(x)=x﹣(x≠0).24.已知函数f(x+)=x2+()2(x>0),求函数f(x).【解答】解:∵x>0时,x+≥2=2,且函数f(x+)=x2+()2=﹣2;设t=x+,(t≥2);∴f(t)=t2﹣2;即函数f(x)=x2﹣2(其中x≥2).25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).【解答】解:∵2f(﹣x)+f(x)=3x﹣1,∴2f(x)+f(﹣x)=﹣3x﹣1,联立消去f(﹣x),可得f(x)=﹣3x﹣.26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.【解答】解:∵2f(x)+f(﹣x)=3x+1…①,用﹣x代替x,得:2f(﹣x)+f(x)=﹣3x+1…②;①×2﹣②得:3f(x)=(6x+2)﹣(﹣3x+1)=9x+1,∴f(x)=3x+.27.已知4f(x)﹣5f()=2x,求f(x).【解答】解:∵4f(x)﹣5f()=2x…①,∴4f()﹣5f(x)=…②,①×4+②×5,得:﹣9f(x)=8x+,∴f(x)=﹣x﹣.28.已知函数f(+2)=x2+1,求f(x)的解析式.【解答】解:令t=+2,(t≥2),则,x=(t﹣2)2.由f(+2)=x2+1,得f(t)=(t﹣2)4+1.∴f(x)=(x﹣2)4+1(x≥2).29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①,可得3f(﹣x)+2f(x)=﹣4x…②,①×3﹣②×2可得:5f(x)=20x.∴f(x)=4x.f(x)的解析式:f(x)=4x.30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)【解答】解:∵f(x)=ax+b且af(x)+b=9x+8,∴a(ax+b)+b=9x+8,即a2x+ab+b=9x+8,即,解得a=3或a=﹣3,若a=3,则4b=8,解得b=2,此时f(x)=3x+2,若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.31.求下列函数的解析式:(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).【解答】解:(1)令2x+1=t,则x=(t﹣1),∴f(t)=(t﹣1)2+1,∴f(x)=(x﹣1)2+1;(2)令m=(m≠0),则x=,∴f(m)==,∴f(x)=(x≠0).32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.【解答】解:(1)令2x+1=t,则x=;则f(t)=4()2﹣6•+5=t2﹣5t+9,故f(x)=x2﹣5x+9.33.已知f(2x)=x2﹣x﹣1,求f(x).【解答】解:令t=2x,则x=t,∴f(t)=t2﹣t﹣1,∴f(x)=x2﹣x﹣1.34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.【解答】解:设f(x)=ax+b,∴f(f(x)=a(ax+b)+b,∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,∴,解得:,∴f(x)=x﹣.35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.【解答】解:f(x+2)=x2﹣3x+5,设x+2=t,则x=t﹣2,∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15,∴f(x)=x2﹣7x+15.36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.【解答】解:令x﹣2=t,则x=t+2,代入原函数得f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6则函数f(x)的解析式为f(x)=2x2+5x+637.若3f(x)+2f(﹣x)=2x,求f(x)【解答】解:∵3f(x)+2f(﹣x)=2x…①,用﹣x代替x,得:3f(﹣x)+2f(x)=﹣2x…②;①×3﹣②×2得:5f(x)=6x﹣(﹣4x)=10x,∴f(x)=2x.38.f(+1)=x2+2,求f(x)的解析式.【解答】解:设+1=t,则t≥1,∴x=(t﹣1)2;∵f(+1)=x2+2,∴f(t)=(t﹣1)4+2(t﹣1),∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).39.若函数f()=+1,求函数f(x)的解析式.【解答】解:令=t(t≠1),则=t﹣1,∴f(t)=2+(t﹣1)2=t2﹣2t+3,∴f(x)=x2﹣2x+3(x≠1).40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣3,∴f(x)的解析式为f(x)=x2﹣2x﹣3;(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0,化简可得x2﹣4=0,解得x=2或x=﹣2。
函数的单调性例题
1.3.1函数的单调性题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; 2322++-=x x y ; (3)2)2(1-++=x x y ; 4969622++++-=x x x x y相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论①取值,即_____________________________;②作差变形,作差____________,变形手段有__________、_____、_____、_______等; ③定号,即____________________________________________________________;④下结论,即______________________________________________________;例2.用定义法证明下列函数的单调性(1)证明:1)(3+-=x x f 在()+∞∞-,上是减函数.▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔>--⇔>--在[]b a ,上是增函数;[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔<--⇔<--在[]b a ,上是减函数.(2)证明:x x x f -+=1)(2在其定义域内是减函数;(3)证明:21)(xx f =在()0,∞-上是增函数; 法一: 作差 法二:作商(4)已知函数)(x f y =在()+∞,0上为增函数,且)0(0)(><x x f ,试判断)(1)(x f x F =在()+∞,0上的单调性,并给出证明过程;▲方法技巧归纳——判断函数单调性的方法:1、直接法:熟悉的函数,如一次函数、二次函数、反比例函数等;如,练习册P272P31上5、12、图象法;3、定义法;4、运算性质法:①当0>a 时,函数)(x af 与)(x f 有相同的单调性; 当0<a 时,函数)(x af 与)(x f 有相反的单调性; ②当函数)(x f 恒不等于零时,)(x f 与)(1x f 单调性相反;③若0)(≥x f ,则)(x f 与)(x f 具有相同的单调性;④若)(x f 、)(x g 的单调性相同,则)()(x g x f +的单调性与之不变; ▲即:增+增=增 减+减=减⑤若)(x f 、)(x g 的单调性相反,则)()(x g x f -的单调性与)(x f 同.▲即:增-减=增 减-增=增注意:1可熟记一些基本的函数的单调性,一些较复杂的函数可化为基本函数的组合形式,再利用上述结论判断; 2)()(x g x f 与)()(x g x f 的单调性不能确定.相应作业2:1讨论函数1)(2-=x axx f 在()1,1-上的单调性0≠a ; ▲2务必记住“对勾”函数)0()(>+=k xkx x f 的单调区间见练习册P29探究之窗.探究1知识拓展——复合函数单调性▲难点一、复习回顾:复合函数的定义:如果函数)(t f y =的定义域为A,函数)(x g t =的定义域为D,值域为C,则当A C ⊆时,称函数))((x g f y =为f 与g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫内层函数,)(x f y =叫外层函数;二、引理1 已知函数y=fgx.若t=gx 在区间a,b 上是增函数,其值域为c,d,又函数y=ft 在区间c,d 上是增函数,那么,原复合函数y=fgx 在区间a,b 上是增函数.引理2 已知函数y=fgx.若t=gx 在区间a,b 上是减函数,其值域为c,d,又函数y=ft 在区间c,d 上是减函数,那么,复合函数y=fgx 在区间a,b 上是增函数. 引理1的证明:▲重要结论1:复合法则规律可简记为“_____________________”四个字▲重要结论2:若一个函数是由多个简单函数复合而成的,则此复合函数的单调性由简单函数中减函数的个数决定:①若减函数有偶数个,则复合函数为增函数; ②若减函数有奇数个,则复合函数为减函数. 规律可简记为“_____________________”四个字题型三、求复合函数的单调区间 例3. 求下列函数的单调区间. (1)267x x y --=23212--=x x y ▲小结:1、注意:1求单调区间必先求定义域; (2)单调区间必须是定义域的子集;(3)写多个单调区间时,区间之间不能用“ ”并起来,应用“,”隔开. 2、判断复合函数单调性步骤: ①求函数的定义域;②将复合函数分解成基本初等函数:)(t f y =与)(x g t =; ③确定两个函数的单调性;④由复合法则“同増异减”得出复合函数单调性. 相应作业3:求下列函数的单调区间.(1)228x x y --= 23212--=x x y3xx y 412-=单调性的应用题型四、比较函数值的大小例4.已知函数)(x f y =在[)+∞,0上是减函数,试比较)43(f 与)1(2+-a a f 的大小.题型五、已知单调性,求参数范围 例5.已知函数2)(2)(2+--=x a x x x f (1)若)(x f 的减区间是(]4,∞-,求实数a 的值; (2)若)(x f 在(]4,∞-上单调递减,求实数a 的取值范围.例6.若函数⎩⎨⎧≤-+->-+-=0,)2(0,1)12()(2x x b x x b x b x f 在R 上为增函数,求实数b 的取值范围.题型六、利用单调性,求解抽象不等式例7.已知函数)(x f y =是()1,1-上的减函数,且)1()1(2->-a f a f ,求实数a 的取值范围.例8.已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f yx f -=,且1)2(=f ,解不等式2)31()(≤--x f x f .相应作业4:已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f xy f +=,且1)2(=f ,解不等式3)2()(≤-+x f x f .题型七、抽象函数单调性的判断——定义法 解决此类问题有两种方法:①“凑”,凑定义或凑已知条件,从而使用定义或已知条件得出结论; ②赋值法,给变量赋值要根据条件与结论的关系,有时可能要进行多次尝试.例9.已知函数)(x f 对任意实数x 、y 都有)()()(y f x f y x f +=+,且当0>x 时0)(>x f ,求证:)(x f 在R 上单调递增.例10.已知定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,恒有)()()(y f x f xy f +=,且当10<<x 时0)(>x f ,判断)(x f 在()+∞,0上单调性.相应作业5:定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,满足)()()(n f m f mn f +=,且当1>x 时0)(>x f .(1)求)1(f 的值; (2)求证:)()()(n f m f nmf -=; 3求证:)(x f 在()+∞,0上是增函数;4若1)2(=f ,解不等式2)2()2(>-+x f x f ;函数的最大小值1、函数的最大小值定义2、利用单调性求最值常用结论(1)若函数)(x f y =在闭区间[]b a ,上单调递增,则)(min a f y =,)(max b f y =; (2)若函数)(x f y =在闭区间[]b a ,上单调递减,则)(min b f y =,)(max a f y =; (3)若函数)(x f y =在开区间()b a ,上单调递增,则函数无最值,但值域为())(),(b f a f ; (4)若函数)(x f y =在闭区间[]b a ,上单调递增,在闭区间[]c b ,上单调递减,那么函数)(x f y =,[]c a x ,∈在b x =处有最大值,即)(max b f y =;(5)若函数)(x f y =在闭区间[]b a ,上单调递减,在闭区间[]c b ,上单调递增,那么函数)(x f y =,[]c a x ,∈在b x =处有最小值,即)(min b f y =.题型八、单调性法求函数最值值域 例11、1函数121)(-=x x f 在[]5,1上的最大值为________,最小值为________;(2)函数112++=x x y 在[]4,2上的最大值为________,最小值为________;(3)函数x x y 212--=的值域为________________;(4)函数1-+=x x y 的值域为________________;(5)函数212+--=x x y 的值域为________________;6函数x xy +=1的值域为________________;二次函数的区间最值的求法二次函数在给定区间[]n m ,上求最值,常见类型: (1)定轴定区间:对称轴与区间[]n m ,均是确定的;(2)动轴定区间: (3)定轴动区间: (4)动轴动区间: 1、定轴定区间可数形结合,较易解决,注意对称轴与区间位置关系; 例12.当22≤≤-x 时,求函数322--=x x y 的最值.相应作业6:求函数542++-=x x y 在[]5,1上的最值.2、动轴定区间例13.已知函数22)(2++=ax x x f ,求)(x f 在[]5,5-上的最值.▲动轴定区间问题一般解法:对对称轴在区间左侧、右侧、内部三种情况进行讨论,从而确定最值在区间端点处还是在顶点处取得.相应作业7:求函数12)(2--=ax x x f 在[]2,0上的最值.3、定轴动区间例14.已知函数22)(2+-=x x x f ,当[]1,+∈t t x 时,求)(x f 的最小值)(t g .相应作业8:已知函数34)(2-+-=x x x f ,当[]2,+∈m m x 时,求)(x f 的最大值)(m g . 4、动轴动区间解决方法:可将对称轴和区间之一看做不动,进行讨论.例15.求函数ax x y +-=2在[]a x ,1-∈上的最大值.相应作业9:求函数222--=ax x y 在[]1,a x -∈上的最值.。
单调性专题训练
单调性专题训练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1 D .f (x )=-|x |2.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 3.函数cos 2xy -=的单调递增区间是4.函数22(log 2)y x x =-的单调增区间为_________.5.函数()f x =__________6.函数13ln y x x=+的单调增区间为 。
7.函数221()(1)x f x x x -=-的单调增区间为___________.8.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x的取值范围是 。
9.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R 。
10.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________.11.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 。
12.若偶函数()f x 在(-∞,0]上为增函数,则不等式(21)(2)f x f x +>-的解集__________.13.已知函数3 0(){ 1 0x a x f x x x +>=+≤在R 上是增函数,则实数a 的取值范围是________.14.若函数()()2212f x x a x =+-+在区间(),4-∞上是单调减函数,则实数a 的取值范围是________.15.若函数f (x )=|x -2|(x -4)在区间(5a,4a +1)上单调递减,则实数a 的取值范围是____.16.已知函数23()2x af x x +=+在(2,)-∞上单调递增,则实数a 的取值范围__________.17.已知(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______18.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,ax ,x >1是R 上的增函数,则实数a 的取值范围是单调性答案1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1 D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 【答案】B【解析】[①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.] 3.函数cos 2xy -=的单调递增区间是 。
(6)函数的单调性的证明以及典型题型
函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。
3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。
6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。
8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。
(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。
2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。
3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。
二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。
2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。
三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。
3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习
即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3
2023届高考数学导数满分通关:函数的单调性
专题04 函数的单调性函数的单调性与导数的关系已知函数f (x )在区间(a ,b )上可导,(1)如果f ′(x )>0,那么函数y =f (x )在(a ,b )内单调递增;(2)如果f ′(x )<0,那么函数y =f (x )在(a ,b )内单调递减;(2)如果f ′(x )=0,那么函数y =f (x )在(a ,b )内是常数函数.注意:1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.(1)在函数定义域内讨论导数的符号.(2)两个或多个增(减)区间之间的连接符号,不用“∪”,可用“,”或用“和”.考点一 不含参数的函数的单调性【方法总结】利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f ′(x )的零点;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.【例题选讲】[例1](1)定义在[-2,2]上的函数f (x )与其导函数f ′(x )的图象如图所示,设O 为坐标原点,A ,B ,C ,D四点的横坐标依次为-12,-16,1,43,则函数y =f (x )e x 的单调递减区间是( )A .⎝⎛⎭⎫-16,43B .⎝⎛⎭⎫-12,1C .⎝⎛⎭⎫-12,-16 D .(1,2) 答案 B 解析 若虚线部分为函数y =f (x )的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不符合题意;若实线部分为函数y =f (x )的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,符合题意.对函数y =f (x )e x 求导得y ′=f ′(x )-f (x )e x,由y ′<0,得f ′(x )<f (x ),由图象可知,满足不等式f ′(x )<f (x )的x 的取值范围是⎝⎛⎭⎫-12,1,因此,函数y =f (x )e x 的单调递减区间为⎝⎛⎭⎫-12,1.故选B . (2)已知函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可以是( )答案 C 解析 根据导函数的正负与原函数的单调性的关系,结合导函数f ′(x )的图象可知,原函数 f (x )先单调递增,再单调递减,最后缓慢单调递增,选项C 符合题意,故选C .(3)函数f (x )=x 2+x sin x 的图象大致为( )答案 A 解析 函数f (x )=x 2+x sin x 的定义域为R ,且f (-x )=(-x )2+(-x )sin(-x )=x 2+x sin x = f (x ),即函数f (x )为偶函数.当x >0时,x +sin x >0,故f ′(x )=x (1+cos x )+(x +sin x )>0,即f (x )在(0,+∞)上单调递增,故选A .(4)函数f (x )=x +21-x 的单调递增区间是________;单调递减区间是________.答案 (-∞,0) (0,1) 解析 f (x )的定义域为{x |x ≤1},f ′(x )=1-11-x.令f ′(x )=0,得x =0.当0<x <1时,f ′(x )<0.当x <0时,f ′(x )>0.∴f (x )的单调递增区间为(-∞,0),单调递减区间为(0,1).(5)设函数f (x )=x (e x -1)-12x 2,则f (x )的单调递增区间是________,单调递减区间是________. 答案 (-∞,-1),(0,+∞) [-1,0] 解析 ∵f (x )=x (e x -1)-12x 2,∴f ′(x )=e x -1+x e x -x =(e x - 1)(x +1).令f ′(x )=0,得x =-1或x =0.当x ∈(-∞,-1)时,f ′(x )>0.当x ∈[-1,0]时,f ′(x )≤0.当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1),(0,+∞)上单调递增,在[-1,0]上单调递减.(6)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1) B .(0,1) C .(1,+∞) D .(0,+∞)答案 B 解析 y =12x 2-ln x ,y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′<0,得0<x <1,∴递减区间为(0,1).(7)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,1 C .(1,+∞) D .(0,+∞) 答案 B 解析 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x-2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,选B .(8)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为 .答案 ⎝⎛⎭⎫0,π6,⎝⎛⎭⎫5π6,π 解析 f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =π6或x =5π6,当0<x <π6时,f ′(x )>0,当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,π6和⎝⎛⎭⎫5π6,π上单调递增,在⎝⎛⎭⎫π6,5π6上单调递减.(9)函数f (x )=2|sin x |+cos2x 在[-π2,π2]上的单调递增区间为( ) A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 答案 A 解析 由题意,因为f (-x )=2|sin(-x )|+cos(-2x )=2|sin x |+cos2x =f (x ),所以f (x )为偶函数,当0≤x ≤π2时,f (x )=2sin x +cos2x ,则f ′(x )=2cos x -2sin2x ,令f ′(x )≥0,得sin x ≤12,所以0≤x ≤π6,由f (x )为偶函数,可得当-π6≤x ≤0时,f (x )单调递减,则在[-π2,-π6]上单调递增,故选A . (10)下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x答案 B 解析 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.故选B . [例2] 已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.解析 (1)f ′(x )=1x -ln x -k e x (x >0).又由题意知f ′(1)=1-k e=0,所以k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x (x >0).设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0, 所以h (x )在(0,+∞)上单调递减.由h (1)=0知,当0<x <1时,h (x )>0,所以f ′(x )>0;当x >1时,h (x )<0,所以f ′(x )<0.综上,f (x )的单调增区间是(0,1),单调减区间为(1,+∞).【对点训练】1.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( )A .在区间(-2,1)上f (x )单调递增B .在区间(1,3)上f (x )单调递减C .在区间(4,5)上f (x )单调递增D .在区间(3,5)上f (x )单调递增1.答案 C 解析 在(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.答案 D 解析 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x ) 的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),所以函数f (x )在(-∞,x 1),(x 2,x 3)上单调递减,在(x 1,x 2),(x3,+∞)上单调递增,观察各选项,只有D 选项符合.3.(多选)已知函数f (x )的导函数f ′(x )的图象如图所示,那么下列图象中不可能是函数f (x )的图象的是( )3.答案 BCD 解析 由导函数图象可得:当x <0时,f ′(x )>0,即函数f (x )在(-∞,0)上单调递增;当0<x <2 时,f ′(x )<0,即函数f (x )在(0,2)上单调递减;当x >2时,f ′(x )>0,即函数f (x )在(2,+∞)上单调递增.故选B 、C 、D .4.函数f (x )的导函数f ′(x )有下列信息:①f ′(x )>0时,-1<x <2;②f ′(x )<0时,x <-1或x >2;③f ′(x )=0时,x =-1或x =2.则函数f (x )的大致图象是( )4.答案 C 解析 由题意可知函数f (x )在(-1,2)上单调递增,在(-∞,-1)和(2,+∞)上单调递减,故 选C .5.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )5.答案 D 解析 由函数f (x )的图象可知,f (x )在(-∞,0)上单调递增,f (x )在(0,+∞)上单调递减,所以 在(-∞,0)上,f ′(x )>0;在(0,+∞)上,f ′(x )<0,选项D 满足.6.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )A B C D 6.答案 A 解析 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )=2-2cos x ≥0.所以函数f ′(x )在R 上单调递增,故 选A .7.函数y =4x 2+1x的单调递增区间为( )A .(0,+∞)B .⎝⎛⎭⎫12,+∞C .(-∞,-1)D .⎝⎛⎭⎫-∞,-12 7.答案 B 解析 由y =4x 2+1x (x ≠0),得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2 +1x的单调递增区间为⎝⎛⎭⎫12,+∞.故选B . 8.函数f (x )=(x -2)e x 的单调递增区间为 .8.答案 (1,+∞) 解析 f (x )的定义域为R ,f ′(x )=(x -1)e x ,令f ′(x )=0,得x =1,当x ∈(1,+∞) 时,f ′(x )>0;当x ∈(-∞,1)时,f ′(x )<0,∴f (x )的单调递增区间为(1,+∞).9.函数f (x )=(x -1)e x -x 2的单调递增区间为 ,单调递减区间为 .9.答案 (-∞,0),(ln 2,+∞) (0,ln 2) 解析 f (x )的定义域为R ,f ′(x )=x e x -2x =x (e x -2),令f ′(x ) =0,得x =0或x =ln 2,当x 变化时,f ′(x ),f (x )的变化情况如下表,∴f (x )10.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)10.答案 A 解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x(x >0),令f ′(x )=0,得x =1,∴当x ∈(0,1)时,f ′(x )<0, f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.11.函数y =x +3x+2ln x 的单调递减区间是( ) A .(-3,1) B .(0,1) C .(-1,3) D .(0,3)11.答案 B 解析 y ′=1-3x 2+2x =x 2+2x -3x 2(x >0),令y ′<0得⎩⎪⎨⎪⎧x 2+2x -3<0x >0,解得0<x <1,故选B . 12.函数f (x )=x ln x +x 的单调递增区间是( )A .⎝⎛⎭⎫1e 2,+∞B .⎝⎛⎭⎫0,1e 2C .⎝⎛⎭⎫e e ,+∞D .⎝⎛⎭⎫0,e e 12.答案 A 解析 因为函数f (x )=x ln x +x (x >0),所以f ′(x )=ln x +2,由f ′(x )>0,得ln x +2>0,可得x >1e2,故函数f (x )=x ln x +x 的单调递增区间是⎝⎛⎭⎫1e 2,+∞. 13.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A .⎝⎛⎭⎫0,12和(1,+∞)B .(0,1)和(2,+∞)C .⎝⎛⎭⎫0,12和(2,+∞) D .(1,2) 13.解析 C 答案 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞).f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x ,令f ′(x )>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞). 14.函数f (x )=x ln x的单调递减区间是________. 14.答案 (0,1)和(1,e) 解析 由f ′(x )=ln x -1ln x 2<0得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,解得0<x <1或1<x <e .∴f (x )的单 调递减区间为(0,1)和(1,e).15.函数f (x )=e x cos x 的单调递增区间为________. 15.答案 ⎣⎡⎦⎤2k π-34π,2k π+π4(k ∈Z ) 解析 f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ),令f ′(x )>0得cos x >sin x ,∴2k π-34π<x <2k π+π4,k ∈Z ,即函数f (x )的单调递增区间为⎣⎡⎦⎤2k π-34π,2k π+π4(k ∈Z ). 16.函数y =x cos x -sin x 在下面哪个区间上单调递增( )A .⎝⎛⎭⎫π2,3π2B .(π,2π)C .⎝⎛⎭⎫3π2,5π2 D .(2π,3π) 16.答案 B 解析 y ′=-x sin x ,经验证,4个选项中只有在(π,2π)内y ′>0恒成立,∴y =x cos x -sinx 在(π,2π)上单调递增.17.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.17.答案 ⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2 解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区 间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2. 18.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x ) 具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x 18.答案 ACD 解析 对于A ,f (x )=1x ,则g (x )=e xx ,g ′(x )=e x (x -1)x 2,当x <1且x ≠0时,g ′(x )<0,当 x >1时,g ′(x )>0,∴g (x )在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增;对于B ,f (x )=x 2+1,则g (x )=e x f (x )=e x (x 2+1),g ′(x )=e x (x 2+1)+2x e x =e x (x +1)2>0在实数集R 上恒成立,∴g (x )=e x f (x )在定义域R 上是增函数;对于C ,f (x )=sin x ,则g (x )=e x sin x ,g ′(x )=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4,显然g (x )不单调;对于D ,f (x )=x ,则g (x )=x e x ,则g ′(x )=(x +1)e x .当x <-1时,g ′(x )<0,所以g (x )在R 上先减后增;∴具有M 性质的函数的选项为B ,不具有M 性质的函数的选项为A ,C ,D .19.已知函数f (x )=12x 3+x 2. (1)求曲线f (x )在点⎝⎛⎭⎫-43,f ⎝⎛⎭⎫-43处的切线方程; (2)讨论函数y =f (x )e x 的单调性.19.解析 (1)∵f (x )=12x 3+x 2,∴f ′(x )=32x 2+2x .∴f ′⎝⎛⎭⎫-43=0.又f ⎝⎛⎭⎫-43=1627, ∴曲线f (x )在⎝⎛⎭⎫-43,f ⎝⎛⎭⎫-43处的切线方程为y =1627. (2)令g (x )=f (x )e x =⎝⎛⎭⎫12x 3+x 2e x ,∴g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4,当x <-4时,g ′(x )<0,g (x )单调递减;当-4<x <-1时,g ′(x )>0,g (x )单调递增;当-1<x <0时,g ′(x )<0,g (x )单调递减;当x >0时,g ′(x )>0,g (x )单调递增.综上可知,g (x )在(-∞,-4)和(-1,0)上单调递减,在(-4,-1)和(0,+∞)上单调递增.20.设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.20.解析 (1)∵f (x )=x e a -x +bx ,∴f ′(x )=(1-x )e a -x +b .由题意得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e . (2)由(1)得f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增,∴g (x )≥g (1)=1在R 上恒成立,∴f ′(x )>0在R 上恒成立.∴f (x )的单调递增区间为(-∞,+∞),无单调递减区间.考点二 比较大小或解不等式【方法总结】利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.【例题选讲】[例3](1)在R 上可导的函数f (x )的图象如图所示,则关于x 的不等式xf ′(x )<0的解集为( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞)答案 A 解析 在(-∞,-1)和(1,+∞)上,f (x )单调递增,所以f ′(x )>0,使xf ′(x )<0的范围为(-∞,-1);在(-1,1)上,f (x )单调递减,所以f ′(x )<0,使xf ′(x )<0的范围为(0,1).综上,关于x 的不等式xf ′(x )<0的解集为(-∞,-1)∪(0,1).(2)已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 答案 A 解析 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . (3)已知奇函数f (x )是R 上的增函数,g (x )=xf (x ),则( )A .g ⎝⎛⎭⎫log 314>g (2-32)>g (2-23)B .g ⎝⎛⎭⎫log 314>g (2-23)>g (2-32) C .g (2-32)>g (2-23)>g ⎝⎛⎭⎫log 314 D .g (2-23)>g (2-32)>g ⎝⎛⎭⎫log 314 答案 B 解析 由奇函数f (x )是R 上的增函数,可得f ′(x )≥0,以及当x >0时,f (x )>0,当x <0时,f (x )<0.由g (x )=xf (x ),得g (-x )=-xf (-x )=xf (x )=g (x ),即g (x )为偶函数.因为g ′(x )=f (x )+xf ′(x ),所以当x >0时,g ′(x )>0,当x <0时,g ′(x )<0.故当x >0时,函数g (x )单调递增,当x <0时,函数g (x )单调递减.因为g ⎝⎛⎭⎫log 314=g (log 34),0<2-32<2-23<20=1<log 34,所以g ⎝⎛⎭⎫log 314>g (2-23)>g (2-32).故选B . (4)对于R 上可导的任意函数f (x ),若满足1-x f ′(x )≤0,则必有( ) A .f (0)+f (2)>2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)<2f (1) D .f (0)+f (2)≥2f (1) 答案 A 解析 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).(5)已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为 .答案 ⎝⎛⎭⎫32,+∞ 解析 f (x )=e x -e -x -2x +1,定义域为R ,f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”,∴f (x )在R 上单调递增,又f (0)=1,∴原不等式可化为f (2x -3)>f (0),即2x -3>0,解得x >32,∴原不等式的解集为⎝⎛⎭⎫32,+∞. (6)设函数f (x )为奇函数,且当x ≥0时,f (x )=e x -cos x ,则不等式f (2x -1)+f (x -2)>0的解集为( )A .(-∞,1)B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫13,+∞ D .(1,+∞) 答案 D 解析 根据题意,当x ≥0时,f (x )=e x -cos x ,此时有f ′(x )=e x +sin x >0,则f (x )在[0,+∞)上为增函数,又f (x )为R 上的奇函数,故f (x )在R 上为增函数.f (2x -1)+f (x -2)>0⇒f (2x -1)>-f (x -2)⇒f (2x -1)>f (2-x )⇒2x -1>2-x ,解得x >1,即不等式的解集为(1,+∞).【对点训练】1.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为 .1.答案 ⎣⎡⎦⎤0,12∪[2,+∞) 解析 由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上 f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 2.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a2.答案 D 解析 根据题意,函数f (x )=3x +2cos x ,f ′(x )=3-2sin x ,因为f ′(x )=3-2sin x >0在R 上恒成 立,所以f (x )在R 上为增函数.又由2=log 24<log 27<3<32,则b <c <a .故选D .3.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a3.答案 A 解析 f (x )的定义域为R ,f ′(x )=cos x -sin x -2=2cos ⎝⎛⎭⎫x +π4-2<0,∴f (x )在R 上单调递 减,又2e >1,0<ln 2<1,∴-π<ln 2<2e ,故f (-π)>f (ln 2)>f (2e ),即a >c >b .4.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a4.答案 C 解析 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C .5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围 是 .5.答案 ⎣⎡⎦⎤-1,12 解析 f (-x )=(-x )3+2x +e -x -e x =-f (x ),所以函数f (x )为奇函数.又f ′(x )=3x 2-2 +e x +1e x ≥0-2+2=0,所以函数f (x )为单调递增函数.不等式f (a -1)+f (2a 2)≤0可化为f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12.6.已知函数f (x )=13x 3-4x +2e x -2e -x ,其中e 为自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是( )A .(-∞,-1]B .⎣⎡⎭⎫12,+∞C .⎝⎛⎭⎫-1,12D .⎣⎡⎦⎤-1,12 6.答案 D 解析 f ′(x )=x 2-4+2e x +2e -x ≥x 2-4+24e x ·e -x =x 2≥0,∴f (x )在R 上是增函数.又f (- x )=-13x 3+4x +2e -x -2e x =-f (x ),知f (x )为奇函数.故f (a -1)+f (2a 2)≤0⇔f (a -1)≤f (-2a 2),∴a -1≤-2a 2,解之得-1≤a ≤12.7.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为 .7.答案 (1,2] 解析 f (x )的定义域为(0,+∞),∴f ′(x )=1x +e x -cos x .∵x >0,∴e x >1,∴f ′(x )>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,原不等式的解集为(1,2]. 8.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为 . 8.答案 ⎝⎛⎭⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝⎛⎭⎫ln 1x =f (-ln x )=f (ln x ).则原不等式 可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1).又f ′(x )=x cos x +2x =x (2+cos x ),由2+cos x >0,得当x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增.∴|ln x |<1⇔-1<ln x <1⇔1e <x <e .考点三 根据函数的单调性求参数 【方法总结】利用单调性求参数的两类热点问题的处理方法(1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题;方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 【例题选讲】[例4](1)若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,1) C .(-∞,2] D .(-∞,2)答案 C 解析 f ′(x )=6x 2-6mx +6,由已知条件知x ∈(1,+∞)时,f ′(x )≥0恒成立,设g (x )=6x 2-6mx +6,则g (x )≥0在(1,+∞)上恒成立,解法一:若Δ=36(m 2-4)≤0,即-2≤m ≤2,满足g (x )≥0在(1,+∞)上恒成立;若Δ=36(m 2-4)>0,即m <-2或m >2,则⎩⎪⎨⎪⎧m 2<1,g (1)=12-6m ≥0,解得m <2,∴m <-2,综上得m ≤2,∴实数m 的取值范围是(-∞,2].解法二:问题转化为m ≤x +1x 在(1,+∞)上恒成立,而当x ∈(1,+∞)时,函数y =x +1x >2,故m ≤2,故选C .(2)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是 .答案 (1,2] 解析 易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x .又x >0,由f ′(x )=x -9x≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2.(3)若函数f (x )=e x (sin x +a )在区间(0,π)上单调递减,则实数a 的取值范围是( ) A .[-2,+∞) B .[1,+∞) C .(-∞,-2] D .(-∞,1]答案 C 解析 由题意,知f ′(x )=e x (sin x +cos x +a )≤0在区间(0,π)内恒成立,即a ≤-2sin ⎝⎛⎭⎫x +π4在 区间(0,π)内恒成立.因为x +π4∈⎝⎛⎭⎫π4,5π4,所以sin ⎝⎛⎭⎫x +π4∈⎝⎛⎦⎤-22,1,所以-2sin ⎝⎛⎭⎫x +π4∈[-2,1),所以a ≤-2.故选C .(4)若f (x )=⎩⎪⎨⎪⎧x +4a 2x +a -4a ,0<x ≤a ,x -x ln x ,x >a 是(0,+∞)上的减函数,则实数a 的取值范围是( )A .[1,e 2]B .[e ,e 2]C .[e ,+∞)D .[e 2,+∞)答案 D 解析 由题意,当x >a 时,f ′(x )=1-(ln x +1)=-ln x ,则-ln x ≤0在x >a 时恒成立,则a ≥1;当0<x ≤a 时,f ′(x )=1-4a 2(x +a )2,则1-4a 2(x +a )2≤0在0<x ≤a 时恒成立,即-3a ≤x ≤a 在0<x ≤a 时恒成立,解得a >0,且a +4a 2a +a-4a ≥a -a ln a ,解得ln a ≥2,即a ≥e 2,故⎩⎪⎨⎪⎧a ≥1,a >0,a ≥e 2,解得a ≥e 2,故选D .(5)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是 . 答案 ⎝⎛⎭⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .由题意知,f ′(x )>0 在⎣⎡⎭⎫23,+∞上有解,当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞. (6)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是 .答案 ⎣⎡⎭⎫1,32 解析 f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x,当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增,依题意有⎩⎪⎨⎪⎧k +1>k -1,k -1≥0,k +1>12,k -1<12,解得1≤k <32.[例5] 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围; (3)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围.解析 (1)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). (2)h (x )在[1,4]上存在单调递减区间,则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1, 所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞).(3)因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x 有解,令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎫-1,-716. [例6] 已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )的图象在x =1处相切,求g (x );(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解析 (1)由已知得f ′(x )=1x ,所以f ′(1)=1=12a ,所以a =2.又因为g (1)=12a +b =f (1)=0,所以b =-1.所以g (x )=x -1.(2)因为φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.所以φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),因为x +1x ≥2,当且仅当x =1时取等号,所以2m -2≤2,即m ≤2.故实数m 的取值范围是(-∞,2]. 【对点训练】1.已知函数f (x )=x 2+ax,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞) 1.答案 B 解析 f ′(x )=2x -a x 2,∴当x ∈[2,+∞)时,f ′(x )=2x -ax 2≥0恒成立,即a ≤2x 3恒成立,∵x ≥2,∴(2x 3)min =16,故a ≤16.2.已知函数f (x )=13ax 3-x 2+x 在区间(0,2)上是单调增函数,则实数a 的取值范围为________.2.答案 [1,+∞) 解析f ′(x )=ax 2-2x +1≥0⇒a ≥-1x 2+2x=-⎝⎛⎭⎫1x -12+1在(0,2)上恒成立,即a ≥1.3.若y =x +a 2x(a >0)在[2,+∞)上是增函数,则a 的取值范围是 .3.答案 (0,2] 解析 由y ′=1-a 2x 2≥0,得x ≤-a 或x ≥a .∴y =x +a 2x 的单调递增区间为(-∞,-a ],[a ,+∞).∵函数在[2,+∞)上单调递增,∴[2,+∞)⊆[a ,+∞),∴a ≤2.又a >0,∴0<a ≤2. 4.若函数f (x )=x 2+1+ax 2x 在[13,+∞)上是增函数,则实数a 的取值范围是______. 4.答案 [253,+∞) 解析 由已知得,f ′(x )=2x +a -1x 2,若函数f (x )在[13,+∞)上是增函数,则当x ∈[13,+∞)时,2x +a -1x 2≥0恒成立,即a ≥1x 2-2x 恒成立,即a ≥⎝⎛⎭⎫1x 2-2x max ,设u (x )=1x 2-2x ,x ∈[13,+∞),则u ′(x )=-2x 3-2<0,即函数u (x )在[13,+∞)上单调递减,所以当x =13时,函数u (x )取得最大值u ⎝⎛⎭⎫13=253,所以a ≥253.故实数a 的取值范围是[253,+∞).5.已知函数f (x )=sin2x +4cos x -ax 在R 上单调递减,则实数a 的取值范围是( )A .[0,3]B .[3,+∞)C .(3,+∞)D .[0,+∞)5.答案 B 解析 f ′(x )=2cos 2x -4sin x -a =2(1-2sin 2x )-4sin x -a =-4sin 2x -4sin x +2-a =-(2sin x +1)2+3-a .由题设,f ′(x )≤0在R 上恒成立,因此a ≥3-(2sin x +1)2恒成立,则a ≥3. 6.若函数g (x )=ln x +12x 2-(b -1)x 存在单调递减区间,则实数b 的取值范围是( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]6.答案 B 解析 函数g (x )=ln x +12x 2-(b -1)x 的定义域为(0,+∞),且其导数为g ′(x )=1x +x -(b -1).由g (x )存在单调递减区间知g ′(x )<0在(0,+∞)上有解,即x +1x +1-b <0有解.因为函数g (x )的定义域为(0,+∞),所以x +1x ≥2.要使x +1x +1-b <0有解,只需要x +1x 的最小值小于b -1,所以2<b -1,即b >3,所以实数b 的取值范围是(3,+∞).故选B .7.已知函数f (x )=ln x +(x -b )2(b ∈R )在⎣⎡⎦⎤12,2上存在单调递增区间,则实数b 的取值范围是________. 7.答案 ⎝⎛⎭⎫-∞,94 解析 由题意得f ′(x )=1x +2(x -b )=1x +2x -2b ,因为函数f (x )在⎣⎡⎦⎤12,2上存在单调递 增区间,所以f ′(x )=1x +2x -2b >0在⎣⎡⎦⎤12,2上有解,所以b <⎝⎛⎭⎫12x +x max ,x ∈⎣⎡⎦⎤12,2,由函数的性质易得当x =2时,12x +x 取得最大值,即⎝⎛⎭⎫12x +x max =12×2+2=94,所以b 的取值范围为⎝⎛⎭⎫-∞,94. 8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.8.答案 (0,1)∪(2,3) 解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.9.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .2 9.答案 BD 解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,故⎩⎪⎨⎪⎧a ≠0,Δ=36+12a >0解得a >-3且a ≠0.故选BD .10.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图所示,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎫1,m +12上是单调函数,求实数m 的取值范围.10.解析 (1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,得⎩⎪⎨⎪⎧ b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,所以h (x )=x 2-8x +2,f (x )=6ln x +x 2-8x +2. (2)由(1)得f ′(x )=6x +2x -8=2(-1)(x -3)x .因为x >0,所以f ′(x ),f (x )的变化如表所示.所以f (x )的单调递增区间为(0,1)和(3,+∞),单调递减区间为(1,3),要使函数f (x )在区间⎝⎛⎭⎫1,m +12 上是单调函数,则⎩⎨⎧1<m +12,m +12≤3,解得12<m ≤52.故实数m 的取值范围是⎝⎛⎦⎤12,52. 11.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x 在[1,+∞)上单调,求实数a 的取值范围.11.解析 (1)由题意,知函数f (x )的定义域为(0,+∞),当a =-2时,f ′(x )=2x -2x =2(x +1)(x -1)x ,由f ′(x )<0得0<x <1,故f (x )的单调递减区间是(0,1). (2)由题意,得g ′(x )=2x +a x -2x2,∵函数g (x )在[1,+∞)上单调,当g (x )为[1,+∞)上的单调增函数时,则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x-2x 2.∵φ(x )在[1,+∞)上单调递减,∴在[1,+∞)上,φ(x )max =φ(1)=0,∴a ≥0.当g (x )为[1,+∞)上的单调减函数时,则g ′(x )≤0在[1,+∞)上恒成立,易知其不可能成立. ∴实数a 的取值范围为[0,+∞). 12.已知函数f (x )=e x -ax e x -a (a ∈R ).(1)若f (x )在(0,+∞)上单调递减,求a 的取值范围;(2)求证:x 在(0,2)上任取一个值,不等式1x -1e x -1<12恒成立(注:e 为自然对数的底数).12.解析 (1)由已知得f ′(x )=e x (x +1)⎝⎛⎭⎫1x +1-a .由函数f (x )在(0,+∞)上单调递减得f ′(x )≤0恒成立. ∴11+x -a ≤0,即a ≥11+x ,又11+x∈(0,1),∴a 的取值范围为[1,+∞).(2)要证原不等式恒成立,即证e x -1-x <12x (e x -1),即(x -2)e x +x +2>0在x ∈(0,2)上恒成立.设F (x )=(x -2)e x +x +2,则F ′(x )=(x -1)e x +1.在(1)中,令a =1,则f (x )=e x -x e x -1,f (x )在(0,2)上单调递减,∴F ′(x )=-f (x )在(0,2)上单调递增, 而F ′(0)=0,∴在(0,2)上F ′(x )>0恒成立,∴F (x )在(0,2)上单调递增,∴F (x )>F (0)=0, 即当x ∈(0,2)时,1x -1e x -1<12恒成立.。
函数单调性的七类经典题型
单调性类型一:三角函数单调区间 1.函数tan 3y x π⎛⎫=-⎪⎝⎭的单调增区间为__________. 【答案】5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【解析】试题分析: 因为232πππππ+<-<-k x k ,所以Z k k x k ∈+<<-,656ππππ,故应填答案5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭. 2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( )A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).答案:[0,1)类型二:对数函数单调区间1.函数f(x)=ln(4+3x -x2)的单调递减区间是( ) A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32 D.⎣⎡⎭⎫32,4解析:函数f(x)的定义域是(-1,4),u(x)=-x2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4, ∵e >1,∴函数f(x)的单调减区间为⎣⎡⎭⎫32,4.2.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].类型三:分段函数单调性 1.已知函数f(x)=⎩⎨⎧>≤--1,log 1,1)2(x x x x a a ,若f(x)在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)解析:要保证函数f (x)在(-∞,+∞)上单调递增,则首先分段函数应该在各自定义域内分别单调递增.若f(x)=(a -2)x -1在区间(-∞,1]上单调递增,则a -2>0,即a >2. 若f(x)=logax 在区间(1,+∞)上单调递增,则a >1.另外,要保证函数f(x)在(-∞,+∞)上单调递增还必须满足(a -2)×1-1≤loga1=0,即a≤3.故实数a 的取值范围为2<a≤3. 答案:C类型四:利用单调性求参数范围1.已知函数()f x 为定义[]2,3a -在上的偶函数,在[]0,3上单调递减,并且()22225a f m f m m ⎛⎫-->-+- ⎪⎝⎭,则m 的取值范围是_______________.【答案】112m ≤< 【解析】试题分析: 由偶函数的定义可得032=+-a ,则5=a ,因为01)1(22,01222>+-=+->+m m m m ,且)22()22(),1()1(2222+-=-+-+=--m m f m m f m f m f ,所以322122≤+-<+m m m ,解之得112m ≤<.故应填答案112m <. 2.已知y =f(x)是定义在(-2,2)上的增函数,若f(m -1)<f(1-2m),则m 的取值范围是__________.解析:依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m ⇒⎩⎪⎨⎪⎧-1<m <3-12<m <32m <23⇒-12<m <23.答案:⎝⎛⎭⎫-12,233.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1] 4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________. 解析:∵函数f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1. 又∵函数g (x )=ax +1在区间[1,2]上也是减函数,∴a >0.∴a 的取值范围是(0,1].5.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.解析:由于f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有0<a <3a -1≤1,解得12<a ≤23.答案:⎝⎛⎦⎤12,23 类型五:范围问题1.设函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f (1)<f (lg x10)的x 的取值范围是________. 押题依据 利用函数的单调性、奇偶性求解不等式是高考中的热点,较好地考查学生思维的灵活性.答案 (0,1)∪(100,+∞) 解析 由题意得,f (1)<f (|lgx 10|)⇒1<|lg x 10|⇒lg x 10>1或lg x10<-1⇒x >100或0<x <1.2.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案 ⎝⎛⎭⎫12,32解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.3.设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是__________. 答案 (-∞,3]解析 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又因为f (x )=x |x -a |,所以当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,所以f (x )在⎝⎛⎭⎫-∞,a2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,所以0<a ≤3. 综上,实数a 的取值范围是(-∞,3].类型六:综合题1.(作图)已知f(x)是定义在实数集R 上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于( ) A .{x|x≤0或1≤x≤4} B .{x|0≤x≤4} C .{x|x≤4} D .{x|0≤x≤1或x≥4}解析:画出函数f(x)和g(x)的草图如图,由图可知当f(x)g(x)≥0时,x 的取值范围是x≤0或1≤x≤4,即{x|f(x)g(x)≥0}={x|x≤0或1≤x≤4},故选A.2.函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,求不等式f ⎝⎛⎭⎫x ⎝⎛⎭⎫x -12<0的解集.(数形结合)解:∵y =f (x )是奇函数,∴f (-1)=-f (1)=0. 又∵y =f (x )在(0,+∞)上是增函数, ∴y =f (x )在(-∞,0)上是增函数,若f ⎝⎛⎭⎫x ⎝⎛⎭⎫x -12<0=f (1),∴⎩⎨⎧x ⎝⎛⎭⎫x -12>0,x ⎝⎛⎭⎫x -12<1,即0<x ⎝⎛⎭⎫x -12<1,解得12<x <1+174或1-174<x <0. f ⎝⎛⎭⎫x ⎝⎛⎭⎫x -12<0=f (-1),∴⎩⎨⎧x ⎝⎛⎭⎫x -12<0,x ⎝⎛⎭⎫x -12<-1.∴x ⎝⎛⎭⎫x -12<-1,解得x ∈∅. ∴原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1+174或1-174<x <0. 3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).答案:B4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y=f (x )是区间I 上的“缓增函数”,区间I 叫作“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].答案:D6.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析:因为f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2,所以当x ≤2时,f (x )≥4;又函数f (x )的值域为[4,+∞),所以⎩⎪⎨⎪⎧a >1,3+log a2≥4.解得1<a ≤2,所以实数a 的取值范围为(1,2].答案:(1,2]7.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-a (a ∈R ).若∀x ∈R ,f (x +2 016)>f (x ),则实数a 的取值范围是_________. 数形结合当a =0时,f (x )=x ,x ∈R ,满足条件;当a <0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >0,0,x =0,x +2a ,x <0为R 上的单调递增函数,也满足条件;当a >0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >a ,-x ,-a ≤x ≤a ,x +2a ,x <-a ,要满足条件,需4a <2 016 ,即0<a <504, 综上实数a 的取值范围是a <504.。
方法技巧专题12 函数单调性、极值、最值与导数问题(解析版)
方法技巧专题12 函数单调性、极值、最值与导数问题解析篇【一】判断函数单调性1.例题【例1】已知函数()xf x ax e =-判断函数()f x 的单调性。
【解析】由题意可求,()´xf x a e =-1.当0a ≤时,()()´0,f x f x <在R 上为减函数;2.当0a >时,令()´0f x >,解得x lna <, 令()´0f x <,解得x lna > 于是()f x 在(,ln ]a -∞为增函数,在[ln ,)a +∞为减函数;【例2】已知函数2()ln 1a f x x x +=++,其中a ∈R ,讨论并求出f (x )在其定义域内的单调区间. 【解析】()222121()1(1)(1)a f x x ax x x x x +'=-=-+++,设g (x )=x 2-ax +1, ∵x >0,∴①当a <0时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立, 此时函数f (x )在区间(0,+∞)上单调递增;②当a >0时,222()1124a a g x x ax x ⎛⎫=-+=-+-⎪⎝⎭. 当1-24a ≥0,即0<a ≤2时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立,此时函数f (x )在区间(0,+∞)上单调递增;当a >2时,方程g (x )=0的两根分别为12,22a a x x +==,且0<x 1<x 2, ∴当x ∈(0,x 1)时,g (x )>0,f ′(x )>0,故函数f (x )在(0,x 1)上单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,故函数f (x )在(x 1,x 2)上单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,故函数f (x )在(x 2,+∞)上单调递增. 综上所述,当a ≤2时,函数f (x )的单调增区间为(0)∞,+,没有减区间;当a >2时,函数f (x )的减区间为12()x x ,;增区间为(0,x 1),(x 2,+∞).2.巩固提升综合练习【练习1】已知函数()xf x e =,()()210g x ax x a =++>.设()()()g x F x f x =,讨论函数()F x 的单调性;【解析】因为2()1()()xg x ax x F x f x e++==, 所以221(21)'()xx a ax x ax a x a F x e e -⎛⎫-- ⎪-+-⎝⎭==, ①若12a =,2'()0xax F x e-=≤.∴()F x 在R 上单调递减. ②若12a >,则210a a->, 当0x <,或21a x a ->时,'()0F x <,当210a x a-<<时,'()0F x >,∴()F x 在(,0)-∞,21,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在210,a a -⎛⎫⎪⎝⎭上单调递增.③若102a <<,则210a a-<, 当21a x a -<,或0x >时,'()0F x <,当210a x a-<<时,'()0F x >. ∴()F x 在21,a a -⎛⎫-∞ ⎪⎝⎭,(0,)+∞上单调递减,在21,0a a -⎛⎫⎪⎝⎭上单调递增. 【练习2】已知x ax x x ax x f +--=2221ln )()(,求)(x f 单调区间. 【解析】该函数定义域为),(∞+0(第一步:对数真数大于0求定义域)令x ax x f ln 12)(')(-=,解得121,12x x a==(第二步,令导数等于0,解出两根21,x x ) (1)当0≤a 时,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减 (第三步,1x 在不在进行分类,当其不存在得到0≤a ;第四步数轴穿根或图像判断正负)(2)当121=a 时即21=a '(0,),()0,()x f x f x ∈+∞>单调增, (第五步,x 1在区间时,进行比较大小,当21x x =得到21=a 第四步图像判断正负)①当1210<<a 时,即21>a'1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a∈<单调减(当21x x <得到21>a ;第四步图像判断正负)②当121>a 时,即210<<a'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a∈<单调减(21x x >得到210<<a ;第四步图像判断正负)综上可知:0≤a ,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减;21=a ,'(0,),()0,()x f x f x ∈+∞>单调增 21>a '1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a ∈<单调减210<<a ,'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a ∈< 单调减【二】根据单调性求参数 1.例题【例1】(1)若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是 . (2)函数()()2244xf x exx =--在区间()1,1k k -+上不单调,实数k 的范围是( )(3)若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为 .(4)若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .【解析】(1)因为函数2()2(1)2f x x a x =+-+的单调减区间为(],1a -∞-,又函数()f x 在区间(],4-∞上是减函数,则(],4-∞⊆(],1a -∞-,则14a -≥,解得:3a ≤-, (2)()()2244xf x exx =--,()()228x f x e x '∴=-,令()0f x '=,得2x =±. 当2x <-或2x >时,()0f x '>;当22x -<<时,()0f x '<. 所以,函数()y f x =的极大值点为2-,极小值点为2.由题意可得121k k -<-<+或121k k -<<+,解得31k -<<-或13k <<. (3)由2450x x -++>,即2450x x --<,解得15x -<<. 二次函数245y x x =-++的对称轴为2x =.由复合函数单调性可得函数()()212log 45f x x x =-++的单调递增区间为()2,5.要使函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增, 则()()32,22,5m m -+⊆,即32225322m m m m -≥⎧⎪+≤⎨⎪-<+⎩,解得423m ≤<.(4)若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.【例2】已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞ D .[)3,-+∞【解析】(1)2'()361f x ax x =+-,∴()f x 有三个单调区间,∴036120a a ≠⎧⎨∆=+>⎩,解得3a >-且0a ≠.故选B .2.巩固提升综合练习 【练习1】函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a > B .1a ≥C .2a >D .2a ≥【答案】D【解析】由题意得:()22f x ax x '=-()f x 在[]1,2上单调递增等价于:()0f x '≥在[]1,2上恒成立即:220ax x -≥ 222x a x x∴≥=当[]1,2x ∈时,22x≤ 2a ∴≥本题正确选项:D【练习2】已知函数f(x)=x 3+ax 2+x +1(a ∈R )在(−23,−13)内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3] C .(√3,+∞) D .(√3,3)【答案】C【解析】f ′(x )=3x 2+2ax +1 假设f(x) 在(−23,−13)内不存在单调递减区间,而f(x)又不存在常函数情况,所以f(x) 在(−23,−13)内递增,即有x ∈ (−23,−13)时不等式f ′(x )=3x 2+2ax +1≥0恒成立,即x ∈ (−23,−13)时,a ≤−32x −12x =−32(x +13x)恒成立,解得a ≤√3,所以函数f(x) 在(−23,−13)内存在单调递减区间,实数a 的取值范围是(√3,+∞)故选C【练习3】若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞【答案】B【解析】22222122(2)(1)()ln '()1(0)x x x x f x x x f x x x x x x x+-+-=++⇒=+-==> 1x ≥单调递增,01x <<单调递减.函数2()ln f x x x x=++在区间[],2t t +上是单调函数 区间[],2t t +上是单调递减不满足只能区间[],2t t +上是单调递增. 故1t ≥故答案选B【三】函数的极值问题1.例题【例1】(1)函数3()12f x x x =-的极大值点是_______,极大值是________。
高三函数的单调性(高职)
函数的单调性1.函数单调性的判断方法:(1)图像法:增函数 减函数图像呈上升趋势. 图像呈下降趋势例1:已知正比例函数y =(k+1)x 在定义域内是增函数,求k 取值范围.课堂练习:1.设函数y=(k+1)x+b 在R 上是增函数则( )A.k ≥-1 B.k ≤-1 C.k>-1 D.K<-12.若y =(2k -1)x +b 是R 上的减函数,则有 ( ) A. 21>k B. 21<k C. 21->k D. 21-<k3.函数y=-2x+1在定义域R 内是( )A 、减函数B 、增函数C 、非增非减函数D 、既增又减函数例2:函数y=1x-2 的单调区间是( )A 、RB 、(-∞,0)C 、(-∞,2),(2,+∞)D 、(-∞,2)⋃(2,+∞)课堂练习:函数13+=x y 的单调区间是( ) A 、R B 、(-∞,-1)C 、(-∞,-1)⋃(1,+∞)D 、(-∞,-1),(-1,+∞)例3:讨论下列函数的单调性。
(1)y=x 2+2x+5; (2)y=9-2x-x 2.课堂练习:讨论下列函数的单调性。
(1)5422--=x x y ; (2)322++-=x x y例4:求函数245x x y --=的单调递增区间?课堂练习:求函数22--=x x y 的单调递减区间?例5:函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( )A . [-8,+∞)B .[8,+∞)C .(-∞,- 8]D .(-∞,8]课堂练习:若函数()()2122+-+=x a x x f 在区间()4,∞-上是减函数,则实数a 的取值范()A.3-≤aB.3-≥aC.5≤aD.3≥a1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x < 时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(新高考地区专用)(解析版)
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。
2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
[多选]例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。
A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(-=x x h D 、12)(+=x x w【答案】BC【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(-=x x h 在]1(,-∞上是减函数,12)(+=x x w 在R 上是增函数,则)(x g 和)(x h 在区间)10(,上单调递减的函数,选BC 。
(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。
函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。
但在某个区间上单调,在整个定义域上不一定单调。
如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。
专题07 函数:高中常见函数的单调性
专题7 常见函数的单调性与值域、最值目录【题型一】单调性定义 .............................................................................................................................................. 1 【题型二】1:反比例函数 ........................................................................................................................................ 2 【题型三】2:一元二次函数 .................................................................................................................................... 3 【题型四】3:分段函数 ............................................................................................................................................ 4 【题型五】4:“对勾”函数 ...................................................................................................................................... 5 【题型六】5:“双刀”函数(双曲函数) .............................................................................................................. 6 【题型七】6:无理函数 ............................................................................................................................................ 6 【题型八】7:max 与min 函数 ................................................................................................................................. 7 【题型九】8:“放大镜”函数 .................................................................................................................................. 8 【题型十】9:取整函数(高斯函数) .................................................................................................................... 9 培优第一阶——基础过关练 .................................................................................................................................... 10 培优第二阶——能力提升练 .................................................................................................................................... 11 培优第三阶——培优拔尖练 (12)【题型一】单调性定义【典例分析】下列说法错误的是( ) A .函数()f x 的定义域为(),a b ,若()12,,x x a b ∀∈,当12x x <时,()()21f x f x <,则函数()f x 是(),a b 上的减函数B .函数()f x 的定义域为(),a b ,若()12,,x x a b ∃∈,当12x x <时,()()21f x f x <,则函数()f x 不是(),a b 上的增函数C .若函数()f x 在[],a b 上是增函数,在(],b c 上也是增函数,则函数()f x 在[],a c 上是增函数D .若函数()f x 在[],a b 上是增函数,在[],b c 上也是增函数,则函数()f x 在[],a c 上是增函数【提分秘籍】 基本规律单调性的运算关系:①一般认为,-f (x )和1f (x )均与函数f (x )的单调性 相反 ;②同区间,↑+↑= ↑ ,↓+↓= ↓ ,↑-↓= ↑ ,↓-↑= ↓ ;(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么有: ①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )是[a ,b ]上的 增函数 ;②f (x 1)-f (x 2)x 1-x 2<0⇔f (x )是[a ,b ]上的__减函数__;(3)复合函数单调性结论: 同增异减 .1.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( )A .()()12120f x f x x x ->- B .()()()12120x x f x f x -->⎡⎤⎣⎦ C .()()()()12f a f x f x f b ≤<≤ D .()()12f x f x ≠2.下列有关函数单调性的说法,不正确的是( )A .若()f x 为增函数,()g x 为增函数,则()()f x g x +为增函数B .若()f x 为减函数,()g x 为减函数,则()()f x g x +为减函数C .若()f x 为增函数,()g x 为减函数,则()()f x g x +为增函数D .若()f x 为减函数,()g x 为增函数,则()()f x g x -为减函数3.下列函数f x ()中,满足“对任意()120x x ∈+∞,,,且12x x <都有()()12f x f x >”的是( ) A .f x x =()B .2f x x x=-() C .22f x x x =+-() D .3f x x =-()【题型二】1:反比例函数【典例分析】()20212022x f x x -=-*N x ∈,则()f x 取得最大值时的x 值为______.【提分秘籍】基本规律反比例函数分式函数求值域: 1.若分子与分母同次用:分离常数法, 2.若分子与分母不同次用:上下同除法1.关于函数3125x y x -=-,下列说法正确的是( ) A .若x N ∈,则函数只有最大值没有最小值 B .若x N ∈,则函数只有最小值没有最大值 C .若x N ∈,则函数有最大值没有最小值 D .若x N ∈,则函数有最小值也有最大值2.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值753..已知函数31()1x f x x -=-,其定义域是[4-,2)-,则( )A .()f x 有最大值73-,最小值135-B .()f x 有最大值73-,无最小值C .()f x 有最大值135-,最小值73-D .()f x 有最小值135-,无最大值【题型三】2:一元二次函数【典例分析】若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -( ) A .有最大值,但无最小值 B .既有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值【提分秘籍】 基本规律二次函数求值域用: 1.配方法2.对称轴单调性法二次函数基础知识:①一般式顶点式:y =ax 2+bx +c =a ⎝⎛⎭⎫x +b 2a 2+4ac -b 24a. ②顶点是⎝⎛⎭⎫-b 2a,4ac -b 24a ,对称轴是:x =-b2a.③方程ax 2+bx +c =0(a ≠0)求根公式:x =-b ±b 2-4ac2a1.函数 23y x x + )A .3,2⎛⎫-∞- ⎪⎝⎭ B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--2..已知2()2a f x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .23.若函数2()45f x x mx =-+在区间[1,)-+∞上是增函数,则(2)f 的最小值是 A .8 B .8- C .37 D .37-【题型四】3:分段函数【典例分析】.已知函数()21,=,2x c f x x x x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( )A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【提分秘籍】 基本规律分段函数求值域或者最值,分段讨论,数形结合画图1.已知()32f x x =-,()22g x x x =-,若()()()()()()(),,g x f x g x F x f x f x g x ⎧≥⎪=⎨<⎪⎩,则()F x 的最值是( )A .最大值为3,最小值1-B .最大值为727-C .最大值为3,无最小值D .无最大值,最小值为1-2..函数2,[1,0]()1,(0,1]x x f x x x⎧∈-⎪=⎨∈⎪⎩的最值情况为( ).A .最小值0,最大值1B .最小值0,无最大值C .最小值0,最大值5D .最小值1,最大值5【题型五】4:“对勾”函数【典例分析】.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( ) A .103B .152C .3D .4【提分秘籍】 基本规律对勾函数:by ax a b 0x=+>,(,)图像特征 1.有“渐近线”:y=ax 2.“拐点”:解方程bax x =(即第一象限均值不等式取等处)1.若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( )A .132⎡⎤⎢⎥⎣⎦, B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦,2.设0a >,函数100()f x x x=+在区间(0,]a 上的最小值为m 1,在区间[,)a +∞上的最小值为m 2,若122020m m =,则a 的值为( ) A .1 B .2 C .100 D .1或1003..函数()()2404xf x x x x x =++>+的最小值为( )A .2B .103C .174D .2654..函数224y x =+ )A .2B .52C .1D .不存在【题型六】5:“双刀”函数(双曲函数)【典例分析】已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为( )A .13a > B .13a < C .14a > D .14a <【提分秘籍】基本规律b by ax y ax a b 0x x =-=->(两支各自增),或者(两支各自减),(,)1.有“渐近线”:y=ax 与y=-ax2.“零点”:解方程bax x =(即方程等0处)1.函数y =x -1x在[1,2]上的最大值为( )A .0B .32C .2D .32..函数()12f x x x=-在区间[]1,2上的最小值是( )A .72- B .72 C .1D .-13.已知0x >,则92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭的最小值为A .15B .48C .79316D .60【题型七】6:无理函数【典例分析】若()2224f x x x x --+()g x x a x a =+-(0a >)的最大值相等,则a 的值为( )A .1B 2C .2D .22【提分秘籍】 基本规律无理函数,注意几点: 1.定义域;2.是否具有单调性3.双根号,是否可以“分子有理化”来化简。
高职单招数学之函数单调性专题练习试题及答案
高职单招数学之函数单调性专题练习试题一、单选题1.函数的单调增区间是A .B .C .D .2.已知函数1()x xf x e e =-,其中e 是自然对数的底数.则关于x 的不等式(21)(1)0f x f x -+-->的解集为A .4,(2,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭B .(2,)∞C .4,(2,)3⎛⎫-∞⋃+∞ ⎪⎝⎭D .(,2)-∞3.(多选题)已知函数()f x 的定义域是(0,)+∞且()()()f x y f x f y ⋅=+,当1x >时,()0f x >,且113f ⎛⎫=- ⎪⎝⎭,下列说法正确的是()A .()10f =B .函数()f x 在(0,)+∞上单调递减C .()()()1112320210232021f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭D .满足不等式()()12f x f x --≥的x 的取值范围为91,8⎛⎤ ⎥⎝⎦二、填空题4.用{}min ,a b 表示a ,b 两数中的最小值,若函数{}()min ,2f x x x =-的递增区间为_______.5.函数()f x =__________.6.已如函数3()5,(2,2)f x x x x =+∈-,若()2()20f t f t +->.则t 的取值范围为___________.7.设函数()f x 的导函数为()f x ',若对任意的x R ∈,都有()()0f x f x '+>成立,且()12f =,则不等式()12e xf x ->的解集为______________.8.若函数2,1()(4),1x ax x f x a x x ⎧-+<=⎨-≥⎩在R 上单调递增,则实数a 的取值范围为________.9.设()f x 是定义在R 上的偶函数,且当0x ≥时,()e x f x =,若对任意的[]0,1x b ∈+,不等式()()()2f x b f x +≥恒成立,则实数b 的取值范围为___________.10.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________.三、解答题11.已知函数()21mx n f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭,(1)求实数m ,n 的值;(2)用定义证明()f x 在()1,1-上是增函数.12.设函数()()m f x x m x=+∈R ,且()13f =.(1)请说明()f x 的奇偶性;(2)试判断()f x 在)+∞上的单调性,并用定义加以证明.13.函数()13133x x f x +-+=+.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在定义域上的单调性.高职单招数学之函数单调性专题练习试题参考答案1.B 【解析】试题分析:函数的定义域为(1,3)-,令2()23u f x x x ==-++,由二次函数性质可知()f x 在区间(1,1]-上单调递增,在区间[1,3)上单调递减,而14log y u =在定义域内是减函数,由复合的性质可知的递增区间为[1,3),故选B .2.B【解析】函数()1f x xx e e =-,其中e 是自然对数的底数,由指数函数的性质可得()f x 是递增函数,()()11x x x x f x e e f x e e---=-=-=- ,()f x \是奇函数,那么不等式()()2110f x f x -+-->,等价于()()()2111f x f x f x ->---=+,等价于211x x ->+,解得2x >,等式()()2110f x f x -+-->的解集为()2,∞,故选B.3.ACD【解析】令1x y ==得(1)(1)(1)f f f =+,所以(1)0f =,A 正确;设任意的12,(0,)x x ∈+∞,且12x x <,则211x x >,21()0x f x >,所以22211111()()()(()x x f x f x f x f f x x x =⋅=+>,所以()f x 在(0,)+∞上单调递增,B 错;令1y x =,则11(()(0f x f x f x x⋅=+=,所以()()()111232021232021f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1112320210000232021f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,C 正确;113f ⎛⎫=- ⎪⎝⎭,则1(3)()13f f =-=,(9)(33)(3)(3)2f f f f =⨯=+=,不等式()()12f x f x --≥化为()(1)(9)f x f x f ≥-+,即()(99)f x f x ≥-,又()f x 在(0,)+∞上递增,所以99990x x x ≥-⎧⎨->⎩,解得918x <≤,D 正确.故选:ACD .4.[]0,1,[2,)+∞【解析】试题分析:函数{}()min ,2f x x x =-的图象如下图所示,故由图可得:函数{}()min ,2f x x x =-的递增区间为[]0,1,[2,)+∞.所以答案应填:[]0,1,[2,)+∞.5.13,42⎡⎤⎢⎥⎣⎦【解析】令2230x x -++≥,解得31,2x ⎡⎤∈-⎢⎣⎦,设12y t =,223t x x =-++,外函数12y t =为增函数,则复合函数的减区间即为内函数的减区间,223t x x =-++,对称轴为14x =,其开口向下,故其减区间为13,42⎡⎤⎢⎥⎣⎦.故答案为:13,42⎡⎤⎢⎥⎣⎦.6.(1,0)(0,2)- 【解析】3()5f x x x =+,()3()5f x x x f x -==---,函数为奇函数.2()350f x x '=+>,函数单调递增,()2()20f t f t +->,即()2(2)f t f t ->,故22222222t t t t -<<⎧⎪-<-<⎨⎪>-⎩,解得(1,0)(0,2)t ∈-⋃.故答案为:(1,0)(0,2)- .7.()1,+∞【解析】令()()e x g x f x =,则()()()e x g x f x f x ⎡⎤=+⎣⎦'',因为()()e 0,,0x x R f x f x ∀∈+'>>,所以()0g x '>,所以()g x 是R 上的增函数,不等式()12x f x e ->等价于()e 2e x f x >,因为()12f =,所以()12e g =,()e 2e x f x >等价于()()1g x g >,解得1x >,即不等式的解集为()1,+∞.故答案为:()1,+∞8.52,2⎡⎤⎢⎥⎣⎦【分析】根据给定条件结合分段函数在R 上单调递增的性质列出不等式组,解此不等式组即可作答.【解析】因函数2,1()(4),1x ax x f x a x x ⎧-+<=⎨-≥⎩在R 上单调递增,于是得124014a a a a ⎧≥⎪⎪->⎨⎪-+≤-⎪⎩,解得522a ≤≤,所以实数a 的取值范围为52,2⎡⎤⎢⎥⎣⎦.故答案为:52,2⎡⎤⎢⎥⎣⎦9.314⎛⎤-- ⎥⎝⎦,【解析】因为()f x 是定义在R 上的偶函数,且对[01]x b ∀∈+,恒有2()()f x b f x +≥,所以2()()()f x b f x b f x +=+≥,因为0x ≥时,()x f x e =,所以22()x b x x e e e +≥=,又函数x y e =在[0)+∞,上得到递增,所以2x b x +≥,两边同时平方,得22224x bx b x ++≥,即22320x bx b --≤,令22()32g x x bx b =--,即()g x 对[01]x b ∀∈+,恒小于或等于0,所以(0)0(1)010g g b b ≤⎧⎪+≤⎨⎪+>⎩,即()()22203121010b b b b b b ⎧-≤⎪⎪+-+-≤⎨⎪+>⎪⎩,解得314b -<≤-.即b 的取值范围为3(1]4--,.故答案为:3(1]4--,10.()3,1-【解析】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数.所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<.故答案为:(3,1)-11.(1)1m =,0n =(2)证明见解析【解析】(1)()f x 为()1,1-上的奇函数,()00f ∴=,0n ∴=,1225f ⎛⎫= ⎪⎝⎭ ,22554m ∴=;1m ∴=(2)()21x f x x =+;设1x ,()21,1x ∈-,且12x x <,则:()()1212221211x x f x f x x x -=-++()()()()12122212111x x x x x x --=++1x ,()21,1x ∈-,且12x x <;120x x ∴-<,1210x x ->;()()120f x f x ∴-<,即()()12f x f x <;()f x \在()1,1-上是增函数.【点睛】本题考查奇函数的定义,以及根据增函数的定义证明函数为增函数的方法与过程.属于一般题.12.(1)奇函数,理由见解析(2)函数()f x在)+∞上为增函数,证明见解析【解析】(1)()113f m =+=,可得2m =,则()2f x x x=+,该函数的定义域为{}0x x ≠,对任意的0x ≠,()()2f x x f x x -=--=-,故函数()f x 为奇函数.(2)函数()f x在)+∞上为增函数,证明如下:任取1x、)2x ∈+∞且12x x >,则122x x >,120x x ->,则()()()()()()12121212121212121222220x x x x x x f x f x x x x x x x x x x x ---⎛⎫⎛⎫-=+-+=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12f x f x >,故函数()f x在)+∞上为增函数.13.(1)()f x 为奇函数,证明见解析;(2)在R 上为减函数,证明见解析.【解析】(1)()f x 为奇函数,()()1311333313x x x x f x +-+-==++ ,定义域为R ,关于原点对称,又()()()()()()31313313133313331x x xx x x x x f x f x --------====-+⨯⨯++,所以函数()f x 为奇函数.(2)()f x 在R 上为减函数,()()()()()21313213313313313x x x x x f x -+-===-+++ ,任取12R x x ∈、且12x x <,则()()()()1212212133313313x x f x f x ⎡⎤⎡⎤⎢⎥⎢⎥-=---++⎢⎥⎢⎥⎣⎦⎣⎦()()()()()2112122332231331331313x x x x x x -=-=++++()()21121212,330,130,130,0x x x x x x f x f x <∴->+>+>∴-> ,即()()12f x f x >.因此,函数()13133x x f x +-+=+在R 上为减函数.。
函数的单调性的题型分类及解析
函数的单调性知识点1、增函数定义、减函数的定义:(1)设函数)(x f y =的定义域为A ,区间M ⊆A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=∆x x x 时,都有0)()(12<-=∆x f x f y ,那么就称 函数)(x f y =在区间M 上是减函数,如图(2)注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)<f (x 2)能否推出x 1<x 2(x 1>x 2)2、我们来比较一下增函数与减函数定义中y x ∆∆,的符号规律,你有什么发现没有?3、如果将增函数中的“当012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ”改为当012<-=∆x x x 时,都有0)()(12<-=∆x f x f y 结论是否一样呢?4、定义的另一种表示方法如果对于定义域I 某个区间D 上的任意两个自变量x 1,x 2,若0)()(2121>--x x x f x f 即0>∆∆x y ,则函数y=f(x)是增函数,若0)()(2121<--x x x f x f 即0<∆∆x y,则函数y=f(x)为减函数。
判断题:①已知1()f x x=因为(1)(2)f f -<,所以函数()f x 是增函数.②若函数()f x 满足(2)(3)f f <则函数()f x 在区间[]2,3上为增函数.③若函数()f x 在区间(1,2]和(2,3)上均为增函数,则函数()f x 在区间(1,3)上为增函数.④因为函数1()f x x =在区间(,0),(0,)-∞+∞上都是减函数,所以1()f x x=在(,0)(0,)-∞⋃+∞上是减函数.通过判断题,强调几点:①单调性是对定义域某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域某个区间(如二次函数),也可以根本不单调(如常函数).③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性专题训练一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <124.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]二、填空题6.函数f (x )=|x -1|+2的单调递增区间为________.7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.10.已知函数f(x)=1x2-1.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上的单调性,并用定义加以证明.11.讨论函数f(x)=x+ax(a>0)的单调性.12.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.函数的单调性专题训练答案一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性解析:选D 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x在(0,+∞)上是增函数, 在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性.2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定解析:选 D 根据单调函数的定义,所取两个自变量必须是同一单调区间内的任意两个自变量,才能由该区间上函数的单调性来比较出函数值的大小,而本题中的x 1,x 2不在同一单调区间,故f (x 1)与f (x 2)的大小不能确定,选D.3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <12解析:选D ∵f (x )在R 上是减函数,故2a -1<0,即a <12. 4.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④解析:选 C ①y =|x |+1=-x +1(x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x |x |=x -1(x <0)在(-∞,0)上也是增函数.5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:选D 依题意得实数a 满足⎩⎪⎨⎪⎧ a -3<0,2a >0,a -3 +5≥2a ,解得0<a ≤2.二、填空题 6.函数f (x )=|x -1|+2的单调递增区间为________.解析:f (x )=⎩⎪⎨⎪⎧ x +1,x ≥1,3-x ,x <1,显然函数f (x )在x ≥1时单调递增.答案:[1,+∞)7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 解析:∵函数f (x )=x 2-(a -1)x +5的对称轴为x =a -12且在区间⎝ ⎛⎭⎪⎫12,1上是增函数, ∴a -12≤12,即a ≤2. 答案:(-∞,2]8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.解析:∵f (x )是定义域上的减函数,f (-3)=2,f (1)=-2,∴当x >-3时,f (x )<2,当x <1时,f (x )>-2,则当-3<x <1时,|f (x )|<2.答案:(-3,1)三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.解:由对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0知函数f (x )在R 上为减函数.当x <0时,函数f (x )=-x +3-3a 为一次函数,且为减函数,则此时f (x )>f (0)=3-3a ;当x ≥0时,函数f (x )=-x 2+a 为二次函数,也为减函数,且有f (x )≤f (0)=a .要使函数f (x )在R 上为减函数,则有a ≤3-3a ,解得a≤34.所以a 的取值范围是⎝⎛⎦⎥⎤-∞,34. 10.已知函数f (x )=1x 2-1. (1)设f (x )的定义域为A ,求集合A ;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明.解:(1)由x 2-1≠0,得x ≠±1,所以函数f (x )=1x 2-1的定义域为A ={x ∈R|x ≠±1}. (2)函数f (x )=1x 2-1在(1,+∞)上单调递减. 证明:任取x 1,x 2∈(1,+∞),设x 1<x 2,则Δx =x 2-x 1>0,Δy =y 2-y 1=1x 22-1-1x 21-1= x 1-x 2 x 1+x 2 x 21-1 x 22-1 , ∵x 1>1,x 2>1,∴x 21-1>0,x 22-1>0,x 1+x 2>0.又x 1<x 2,所以x 1-x 2<0,故Δy <0.因此,函数f (x )=1x 2-1在(1,+∞)上单调递减.11.讨论函数f (x )=x +a x (a >0)的单调性.解:f (x )=x +a x (a >0).∵定义域为{x |x ∈R ,且x ≠0},∴可分开证明,设x 1>x 2>0,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2. 当0<x 2<x 1≤a 时,恒有a x 1x 2>1, 则f (x 1)-f (x 2)<0,故f (x )在(0,a ]上是减函数;当x 1>x 2>a 时,恒有0<a x 1x 2<1, 则f (x 1)-f (x 2)>0,故f (x )在(a ,+∞)上是增函数.同理可证f (x )在(-∞,-a )上是增函数,在[-a ,0)上是减函数.综上所述,f (x )在(-∞,-a ),(a ,+∞)上是增函数,在[-a ,0),(0,a ]上是减函数.12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明: 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2 . ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1 x 1-a x 2-a . ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述a 的取值范围是(0,1].。