分类讨论思想在一元二次方程中的运用(含答案)
分类讨论思想在一元二次方程中的应用
② 若 一 元 二 次 方程 有 实 数 根 , 于 分式 方程 无 实 数 解 , 由
故 它 的 解 为X 0, = . = 或 1
把 它 们 代 入 一 — 2 0 m= . m+ = 得 2
一 7
综上所述, 的取值范围是m ÷或m 2 m <I : =. -
-
四 、 个 方 程 有公 共 根 的 分 类讨 论 两
三 、 式 方 程 无 实 数 解 的 分 类讨 论 分
例 3 ( 07i" 20 -- f, -  ̄北省 孝 感 市 中考 题 )分 式 方 程 一 2
1
一
:1 +
~
无 实 数 解 , m的取 值 范 围. 求
—
1
分 析 : 分 式 方程 化 为 一元 二 次 方 程 时 , 使 原 分 式 方 程 无 实 将 要
② 当J l , 方 程 均为 x+ - : , 得 :-  ̄X  ̄ j 时 两 } : 2x 3 0 解 —l /
—
.
Z
由此 可 见 , 当 k 2 ,有 公 共 根 一 ; 当 k 1 , 有 公 共 根 =时 3 =时
6
6
…… …… …
维普资讯
例 4 ( 07 湖 北 省 黄 石 市 中考 题 ) k 何 值 时 , 程 + 20 年 当 取 方
k 一 = 和 + 一 k 0 公 共 根 ? 并 求 出 公 共 根 . x 3 0 z 3 = 有 分析 : 当两 个 一 元 二 次 方 程 有 公 共 根 时 , 分 两 种 情 况 讨 论 : 要
例 6 (07 江 苏省 淮 安 市 中考 题 ) 知 : 数 口 b 足 条 件 20 年 已 实 、满
最全最新初中数学竞赛专题讲解一元二次方程的求解
初中数学竞赛专题讲解一元二次方程的求解方程是一种重要的数学模型,也是重要的数学思想之一。
有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。
解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。
1.形如方程的解的讨论:⑴若=0,①当=0时,方程有无数个解;②当≠0时,方程无解; ⑵若≠0,方程的解为=。
2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数的关系等相关知识。
⑴若,则它有一个实数根1x =;若,则它有一个实数根1x =-。
⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数()0a ≠的图象结合起来考虑是常用方法。
几个基本模型(1)设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ⎧<-<⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩,()()00af m af n >⎧⎪⎨>⎪⎩(2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x n x p <<>的充要条件是()()()000af m af n af p >⎧⎪<⎨⎪>⎩(3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12m x n p x q <<≤<<的充要条件是()()()()0000af m af n af p af q >⎧⎪<⎪⎨<⎪⎪>⎩(4)一般地设m n ≤设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤⎧⎪⎨≤⎪⎩3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。
分类讨论思想在数学中的应用
一、 数轴中的分类讨论
1、点A在数轴上距原点2个单位,将 点A向右移动5个单位长度,再向左 移动7个单位长度,此时点A表示的数 是 0或-4 。 2、数轴上点A表示的数为-1,点B到 点A的距离为3个单位长度,则点B表 示的数为2或-4 。
4、已知线段AB=12cm,直线AB上有一点 C,且BC=4cm,M是AC的中点,求AM的长
解:(1)点C在线段AB的延长线上时:
∵ ∴MAM为=A12 CA中C点= (12已(知AB)+BC)=
1 2
(12+4)=8cm
(2)点C在线段AB的上时:
∵M为A1 C中点(1已知) ∴AM=2 AC= 2 (AB-BC)=
1 2
(12-4)=4cm
8cm或4cm
5、在数轴上,点A对应的数为1, 点B对应的数为-3,点P在数轴上, 若PA+PB=6,求点P对应的数。
6、某地上网有两种收费方式 ,用户可任选其一: A、记时制:2.8元/时; B、包月制:60元/月,此 外每一种上网方式都加收通信费1.2元/时.
某用户有120元钱用于上网(一个月),选用哪种方 式比较合算?
解:设某用户的上网时间为x小时,则 若用户用A方式上网
(2.8+1.2)x=120
x=30 若用户用B方式上网
60+1.2x=120 x=50
答:用B方式上网比较划算
二、绝对值中的分类讨论
1、若|a|=5,|b|=2,则|a+b|= 7或3 .
解(1)当a=5,b=2时,|a+b|=7 (2)当a=5,b=-2时,|a+b|=3 (3)当a=-5,b=2时,|a+b|=3 (4)当a=-5,b=-2时,|a+b|=7 综上所述|a+b|的值为7或3
例谈分类讨论思想在解初中数学题中的应用
例谈分类讨论思想在解初中数学题中的应用
分类讨论思想是解决数学问题的一种重要方法之一,它通过将问题按照不同的情况进
行分类讨论,从而得到最终的解答。
在初中数学题中,分类讨论思想特别适用于解决一些
复杂的实际问题,可以帮助学生更好地理解和掌握相关的数学概念和方法。
1. 方程的分类讨论:在解决一元一次方程和一元二次方程等问题时,常常需要通过
分类讨论的方式来解决。
在解决关于年龄、长度、面积等实际问题时,往往需要设定不同
的条件和方程式,然后通过分类讨论的方式求解。
2. 整式的分类讨论:在计算多项式的值、展开多项式等问题时,常常需要将多项式
按照不同的情况进行分类讨论,并采用相应的方法来计算。
求多项式的值时,可以通过将
多项式按照不同的变量取值情况进行分类,然后分别计算得到最终的结果。
1. 几何图形的分类讨论:在解决诸如三角形、四边形、多边形等几何图形的性质和
计算问题时,常常需要将图形按照不同的情况进行分类讨论。
在解决三角形的面积问题时,可以将三角形按照是否为直角三角形、是否为等边三角形等进行分类讨论,然后采用相应
的公式和方法求解。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(包含答案解析)
一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 2.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+b 2+a +b 的值是( ) A .0 B .2020 C .4040 D .4042 3.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( )A .2-B .4-C .2D .44.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .211x x +=C .x 2+2x =y 2-1D .3(x +1)2=2(x +1) 5.一元二次方程20x x +=的根的情况为( ) A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 6.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( )A .()1121x x x ++=B .()11121x x ++=C .()21121x +=D .()1121x x += 7.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程23100x x --=解法的构图是( )A .B .C .D .8.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+ 9.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-=10.关于x 的一元二次方程2430x x -+=的实数根有( ) A .0个 B .1个 C .2个D .3个 11.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60 12.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 二、填空题13.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.14.已知m ,n 是一元二次方程230x x --=的两个实数根,则代数式2219m n +-的值为________.15.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.16.用换元法解方程时1321x x x x -=--,设1x y x-=,换元后化成关于y 的一元二次方程的一般形式为______.17.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是______.18.已知一元二次方程x 2-10x +21=0的两个根恰好分别是等腰三角形ABC 的底边长和腰长,则△ABC 的周长为_________.19.已知1x ,2x 是方程2310x x --=的两个根,则2212x x +=____.20.响应国家号召打赢脱贫攻坚战,小明家利用信息技术开了一家网络商店,将家乡的土特产销往全国,今年6月份盈利24000元,8月份盈利34560元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为x ,根据题意,可列方程为______ .三、解答题21.已知x =2是方程280x mx +-=的一个根,求:(1)m 的值;(2)1211+x x 的值. 22.解方程:(1)2(2)3(2)0x x ++=-;(2)2101x x-=+. 23.在△ABC 中,BC =2,AB =AC =b ,且关于x 的方程x 2﹣4x +b =0有两个相等的实数根,求AC 边上的中线长及∠A 的度数.24.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?25.解下列方程:(1)24830x x --=; (2)2(3)5(3)x x +=+.26.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围.【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B .【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.D解析:D【分析】根据一元二次方程的解及根与系数的关系可得出a+b=-1,ab=-2021,将其代入a 2+b 2+a +b =(a+b )2+(a+b )-2ab 中即可求出结论.【详解】解:∵a ,b 是方程x 2+x-2020=0的两个实数根,∴a+b=-1,ab=-2021∴a 2+b 2+a +b =(a+b )2+(a+b )-2ab=1-1+4042=4042.故选:D .【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系找出a+b=-1,ab=-2021是解题的关键.3.B解析:B【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案.【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0,()12121x x x x ∴-++<0,()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.4.D解析:D【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2,二次项系数不为0,是整式方程,含有一个未知数;【详解】A 、20ax bx c ++=当a=0时,不是一元二次方程,故A 错误;B 、2112x x+= ,不是整式方程,故B 错误; C 、2221x x y +=- ,含有两个未知数,故C 错误; D 、()()23121x x +=+ 是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,正确理解一元二次方程的概念是解题的关键. 5.D解析:D【分析】确定a 、b 、c 计算根的判别式,利用根的判别式直接得出结论;【详解】∵20x x += ,∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根;故选:D .【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.6.C解析:C【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可.【详解】解:设每轮传染中平均一个人传染了x个人,依题意得1+x+x(1+x)=121,即(1+x)2=121,故选:C.【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.7.C解析:C【分析】根据题意,画出方程x2-3x-10=0,即x(x-3)=10的拼图过程,由面积之间的关系可得出答案.【详解】解:方程x2-3x-10=0,即x(x-3)=10的拼图如图所示;中间小正方形的边长为x-(x-3)=3,其面积为9,大正方形的面积:(x+x-3)2=4x(x-3)+9=4×10+9=49,其边长为7,因此,C选项所表示的图形符合题意,故选:C.【点睛】本题考查完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.8.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.D解析:D【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程.【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积,∴设丝绸花边的宽为 xcm ,根据题意,可列方程为:2×40x+60x-2x×x=650,即2x⋅40+x⋅(60−2x)=650,故选D.【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.10.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:一元二次方程2430-+=的根的判别式为:x xb2-4ac=(-4)2-4×3×1=4>0,所以,方程有两个不相等的实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.二、填空题13.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.14.【分析】根据m与n是方程的两个实数根得到根与系数关系式原式变形后代入计算即可求出值【详解】解:∵mn是一元二次方程x2﹣x﹣3=0的两个实数根∴m+n=1mn=-3∵(m+n)2=m2+n2+2mn解析:12【分析】根据m与n是方程的两个实数根,得到根与系数关系式,原式变形后代入计算即可求出值.【详解】解:∵m,n是一元二次方程x2﹣x﹣3=0的两个实数根,∴m+n=1,mn=-3,∵(m+n)2=m2+n2+2mnm2+n2=(m+n)2-2mn∴m2+n2=12-2×(-3)=7∴m2+n2-19=7-19=-12故答案为:-12.【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握根与系数的关系是解题的关键.15.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.16.【分析】将代入得出再化为一般形式即可【详解】根据题意原方程可化为故答案为:【点睛】本题考查利用换元法解分式方程正确的换元是解题的关键 解析:2230y y +-=【分析】 将1x y x-=代入得出32y y =-,再化为一般形式即可. 【详解】 根据题意原方程可化为32y y=-, 232y y =-,2230y y +-=.故答案为:2230y y +-=.【点睛】本题考查利用换元法解分式方程.正确的换元是解题的关键. 17.【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积经过变形得到两根差的值即可求得第三边的范围【详解】解:∵三角形两边长是方程x2−11x +30=0的两个根∴x1+x2=11x1x2=30∵解析:111<<m【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.18.17【分析】先求出方程的解然后分两种情况进行分析结合构成三角形的条件即可得到答案【详解】解:∵一元二次方程x2-10x+21=0有两个根∴∴∴或当3为腰长时3+3<7不能构成三角形;当7为腰长时则周解析:17【分析】先求出方程的解,然后分两种情况进行分析,结合构成三角形的条件,即可得到答案.【详解】解:∵一元二次方程x 2-10x+21=0有两个根,∴210210x x -+=,∴(3)(7)0x x --=,∴3x =或7x =,当3为腰长时,3+3<7,不能构成三角形;当7为腰长时,则周长为:7+7+3=17;故答案为:17.【点睛】本题考查了解一元二次方程,等腰三角形的定义,构成三角形的条件,解题的关键是掌握所学的知识,注意运用分类讨论的思想进行解题.19.11【分析】根据根与系数的关系得出x1+x2=3x1x2=-1再根据x12+x22=(x1+x2)2-2x1x2即可求出答案【详解】解:根据题意x1+x2=3x1x2=-1则x12+x22=(x1+解析:11【分析】根据根与系数的关系得出x 1+x 2=3,x 1x 2=-1,再根据x 12+x 22=(x 1+x 2)2-2x 1x 2即可求出答案.【详解】解:根据题意x 1+x 2=3,x 1x 2=-1,则x 12+x 22=(x 1+x 2)2-2x 1x 2=32-2×(-1)=11,故答案为:11.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= b a -,x 1x 2= c a.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 20.【分析】设该商店从6月份到8月份每月盈利的平均增长率为x 根据该商店6月份及8月份的利润可得出关于x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为x 故答案为:【点睛】本题考查了 解析:()224000134560x +=【分析】设该商店从6月份到8月份每月盈利的平均增长率为 x ,根据该商店6月份及8月份的利润,可得出关于 x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为 x()224000134560x +=故答案为:()224000134560x +=.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程. 三、解答题21.(1)2;(2)14【分析】(1)由x =2是方程280x mx +-=的一个根,把x =2代入280x mx +-=即可得到关于m 的一元一次方程,求之即可;(2)将m=2代入280x mx +-=得到关于x 的一元二次方程,根据根与系数的关系求出两根之和与两根之积,将所求的式子通分并利用同分母分式的加法法则计算,将求出的两根之和与两根之积代入计算即可.【详解】解:(1)把x =2代入280x mx +-=,得 22280m +-=,解得m=2(2)将m=2代入280x mx +-=,得2280x x +-=,∴12122,8x x x x +=-=-, ∴121212112184x x x x x x +-+===-. 【点睛】本题考查了一元二次方程的解,解一元一次方程,分式的加法,以及根与系数的关系.方程的解即为能使方程左右两边相等的未知数的值,熟练掌握根与系数的关系是解题的关键,22.(1)122=1x x =-,;(2)2x =-是原方程的解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用方程两边都乘以x(x+1)把分式方程转化为整式方程,解方程,检验即可.【详解】解:(1)2(2)3(2)0x x ++=-,因式分解()(2)230x x ++-=,化为20-1=0x x +=,,∴122=1x x =-,;(2)2101x x-=+, 方程两边都乘以x(x+1)得()210x x +-=,去括号得:2+20x x -=,移项合并得:2x =-,检验当2x =-时,()()122120x x +=-⨯-+=≠,所以2x =-是原方程的解.【点睛】本题考查一元二次方程的解法与可化为一元一次方程的分式方程的解法,掌握一元二次方程的解法与可化为一元一次方程的分式方程的解法是解题关键.23.AC 边上的中线长为2,∠A =30°.【分析】根据一元二次方程x 2﹣4x +b =0有两个相等的实数根求出b 的值,再判断△ABC 为直角三角形,由直角三角形的性质可得结论.【详解】解:∵一元二次方程x 2﹣4x +b =0有两个相等的实数根,∴b 2﹣4ac =0,即(﹣4)2﹣4b =0,∴b =4.∴AC =4,∴AB 2+BC 2=AC 2,∵△ABC 为直角三角形,∵直角三角形斜边上的中线等于斜边的一半,∴AC 边上的中线长=2,∵AC =4,∴∠A =30°.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形,三角形的内角和定理,并考查了直角三角形斜边上的中线等于斜边的一半的性质.24.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步, 根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)∴当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.25.(1)121,1x x =+=;(2)123,2x x =-= 【分析】(1)根据配方法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)移项,得2483x x -=.方程两边都除以4,得2324x x -=. 方程两边都加1,得232114x x -+=+. 配方,得27(1)4x -=.开平方,得12x -=±.1x ∴=+,121,1x x ∴=+=. (2)移项,得(2(3)5(3)0x x +-+=.(3)(35)0x x ∴++-=,(3)(2)0x x ∴+-=,123,2x x ∴=-=.【点睛】本题考查了解一元二次方程,熟练掌握解方程的方法是解题关键.26.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.。
分类讨论思想在一元二次方程中的应用
分类讨论思想在一元二次方程中的应用
一元二次方程由一个简单的数学表达式组成,表达式形式为ax^2+bx+c=0(a≠0),描述了一条二次函数曲线,这条曲线根据x轴上的不同值,在y轴上也会产生不同的值,而其根的特点是一个确定的"x"值,满足一元二
次方程的两条直线连接起来的交点,叫做这个方程的根,由此可以确定当方程满足一元二次方程的条件时,方程的根的个数。
在一元二次方程的思想应用中,我们可以用来求解物理、数学以及其他复杂问题。
例如,物理问题,如牛顿第二定律:牛顿第二定律可以用一元二次方程准确表达,其中a可以表示物体的质量,b可以表示物体的运动阻力,c可以表示物体的动能,这样一来可以帮助我们快速精
准地求解出运动物体在初始速度不同时的最终速度;数学问题,如数学建模:通过研究函数的曲率,利用一元二次方程,可以对函数的变化趋势进行比较和分析,从而作出正确的数学模型;其他复杂问题,例如图像处理:利用光流原理,通过研究图像中物体形状及其参数,可
以用一元二次方程设计出物体的初始位置变化方程,并结合其他图像处理技术来识别物体,从而实现自动图像处理的功能。
此外,一元二次方程的思想还可以应用在运筹学中,运筹学是求解多元函数最值问题的数学理论。
如可以用拉格朗日乘子法求解多元函数的最大值或最小值。
假设有一个多元函数,可以把它表示成一元二次方程的形式,那么可以轻松求解出此方程的极值以及对应的乘子值,从而求得极值。
总而言之,一元二次方程的应用非常广泛,可以用于求解物理、数学以及其它复杂问题,也可以用来解决运筹学求解多元函数最值问题,其中将一元二次方程的思想作为基础。
浅谈利用分类讨论解一元二次不等式
浅谈利用分类讨论解一元二次不等式摘要:三个“二次”问题是高考的“常青树”.其中,利用导数工具解决含参数的函数的单调性、极值、最值等问题是高考的热点和难点,而解含参一元二次不等式是解决此类问题的关键,同时也是解题的难点,是高考试题中有较大区分度的题目.合理的对参数进行分类讨论是解题的关键.关键词:浅谈分类讨论一元二次不等式含参一元二次不等式是由于不等式中含有参数字母,导致决定不等式解集的因素不确定,从而需要分类讨论.通过体验含参一元二次不等式的解题过程,能提高逻辑分析能力.在理解函数和不等式的关系时,需要借助直观的图像解决抽象问题,从而提高数形结合以及分类讨论的能力.因此规范的解答含参数的一元二次不等式,能进一步加强数形结合、分类讨论等数学思想方法的渗透.一、三个“二次”间的关系()判别式x1x无根例1:解不等式 .解答:原不等式可化为,方程的根为:.不等式的解集为 .方法归纳:通过三个二次的关系体会决定一元二次不等式的解集的三要素:(1)二次项系数的符号,(2)判别式的符号,(3)两实根的大小.二、解题初探含参一元二次不等式是由于决定解集的三要素不确定,导致需要分类讨论.首先应注意此类不等式的二次项系数是否为参数,若为参数应先对二次项系数为零和不为零分类讨论;若二次项系数为零则不等式为一元一次不等式,容易写出解集;若二次项系数不为零则不等式为含参一元二次不等式,含参一元二次不等式可分为两大类型:(一)“可因式分解”型例2:解关于的不等式 .分析:原不等式可因式分解为,对应方程的两根分别为,此时,由于与的大小关系不确定,所以需按照的大小关系分类;进而画出对应二次函数的简图,画图应注意开口方向,根据图像写出解集.解答:原不等式可化为 ,令得 .(1)若,即则解集为R.(2)若,即,则:解集为 .1.若,即,则:解集为 .综上所述:当时,不等式的解集为 ;当时,不等式的解集为 ;当时,不等式的解集为 .方法归纳:此类含参一元二次不等式可因式分解(),因为不等式对应方程的根含有参数,则需对两根分, ,三种情况从的取值范围分类讨论,同时应注意二次项系数的符号,画出对应二次函数的简图,画图时注意开口方向,根据图像写出解集.(二)“不可因式分解”型例3:解关于的不等式 .分析:原不等式的二次项系数为参数,所以需对二次项系数a=0和a≠0两大类分类讨论.当二次项系数a=0时,原不等式是一元一次不等式,容易写出解集为;二次项系数a≠0时,原不等式为一元二次不等式,由于不可以因式分解,所以应围绕决定一元二次不等式的解集的三要素讨论.首先按a>0和a<0分类;其次在a>0和a<0的前提下的符号也不确定,又需在a>0和a<0的前提下按再分类讨论;再次在时还需注意两根的大小关系.解答:(1)当时,不等式的解集为 .(2)当时,若,即 ,令得:,不等式的解集为 .若,即时,不等式的解集为 .(3)当时,若,即 ,令得:,不等式的解集为 .若,即时,不等式的解集为 .若,即时,不等式的解集为综上所述:时,不等式的解集为;时,不等式的解集为 ;时,不等式的解集为 ;时,不等式的解集为 ;时,不等式的解集为 ;时,不等式的解集为 .方法归纳:首先应注意此类不等式的二次项系数为参数,所以应先对二次项系数为零和不为零讨论;其次,二次项系数不为零时,此一元二次不等式不可因式分解,应围绕决定解集的二次项系数、判别式的符号和两根的大小三要素依次分类讨论.通过近三年的高考试题分析,含参不等式问题越来越受到高考命题者的青睐,由于新课标高考对导数应用的加强,这些不等式的问题往往与导数交织在一起,题型多以解答题出现,难度较大.例4:已知函数,求函数的单调区间.分析:该题利用导数法求单调区间,定义域为,求导得,分别令和,即令和得到单调递增区间和单调递减区间,也即解关于的含参一元二次不等式.解答:定义域为 ,.,令,即,,得 .令,即,,得 .函数在上单调递增,在上单调递减.三、探究总结通过以上分析研究,对于含有参数的一元二次不等式的求解,若二次项系数为参数,则应先考虑二次项系数是否为零;若二次项系数不为零应先考虑分解因式,若可因式分解则围绕两根的大小关系进行分类讨论,若不可因式分解则应围绕决定解集的三要素依次分类讨论.分类原则:二次项系数、判别式的符号和两根的大小不定时需讨论.分类标准:二次项系数按分类讨论;判别式按分类讨论;两根按分类讨论.解题步骤:分类画图写解集整合解集解答含参一元二次不等式的关键和难点是合理的对参数进行分类讨论,对参数进行的讨论是根据解题的需要而自然引出的,并非一开始就对参数加以分类讨论.只要做到解题时不随意下手,注意二次项系数、判别式、(若 )两根的大小三要素是否确定,可以把含参一元二次不等式分为“可因式分解”型和“不可因式分解"两大类型,从而进行合理的分类必将轻松解答此类问题.。
(完整版)一元二次方程应用题经典题型汇总含答案
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
例谈分类讨论思想在解初中数学题中应用
例谈分类讨论思想在解初中数学题中的应用摘要:“分类讨论”是一种重要的数学思想,也是一种重要的解题策略,它体现了化整为零、化零为整的思想与归类整理的方法。
它揭示着数学对象之间的内在规律,有助于学生总结归纳,使所学知识条理化,提高思维的条理性和概括性。
关键词:分类讨论初中数学应用引言:“物以类聚,人以群分”。
日常生活中,人们习惯于把各种事物进行分类以简化问题、解决问题。
我们在平时解决数学问题时,经常会碰到这样的情况:当问题解到某一步后,我们所研究的对象,需要按一定的标准分成若干个子问题来讨论,这种处理问题的方法实际上就是分类讨论的思想方法,它是中学数学一种常用的数学思想方法。
一、分类讨论思想的意义当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究;或者由于在研究问题过程中出现了不同情况,因而需对不同情况进行分类研究。
通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并增加条件,使问题易于解决。
“分类讨论”,简言就是先分类,后讨论。
阅读大纲和教材会发现,初中数学对分类讨论本着先易后难、循序渐进的原则,把“分类讨论思想”分两个层次,即“分类思想”和“讨论思想”。
分类思想在初中数学占有相当重要的地位,通过教学应使学生确立分类思想,学会分类方法,而“讨论思想”则要求通过有关知识的传授起到潜移默化的作用。
二、分类讨论思想的分类原则1.基本原则分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下4大原则:(1)同一性原则分类应按同一标准进行,即每次分类不能同时使用几个不同的分类根据。
案例1:有些同学把三角形分为锐角三角形、直角三角形、钝角三角形、不等边三角形、等腰三角形。
这个分类就不正确了,因为这个分类同时使用了按边和按角两个分类标准。
事实上,等腰三角形可以是锐角三角形,也可以是直角三角形,还可以是钝角三角形;而钝角三角形、直角三角形、锐角三角形可以是等腰三角形,也可以是不等腰三角形。
分类讨论思想在解数学题中的应用_6
数学解题中的思考------分类讨论思想的应用【摘要】解数学问题往往可以有众多的思想方法,如转化化归,数形结合,分类讨论,数学建模等等,而在这些思想方法中分类讨论是一种重要的数学思想,学习数学的过程经常会遇到分类问题,如数的分类,图形的分类,代数式的分类等等,在研究数学问题中常常需要通过分类讨论解决问题,本文从渗透在教材中的分类思想出发,结合例题阐述了分类讨论的思想,分类的原则,分类讨论的应用,从而体现分类讨论思想在初中数学解题中的作用和地位。
【关键词】分类讨论的思想分类的原则分类讨论的应用数学课程标准明确提出数学思想方法是数学基础知识的重要组成部分,数学教学中如何挖掘课本中所蕴含的数学思想方法,如何有效的进行数学思想方法教学,如何培养和发展学生的数学思想已经成为数学教育工作者普遍关注和潜心探索的一项重要课题。
在新课程中,分类思想在教材中的体现是丰富多彩的,在整个初中阶段很多问题都用了分类的思想,将不同的事物分为不同的种类,寻找它们各自的共同点及内在的规律性。
一.分类讨论的思想所谓分类讨论就是分别归类再进行讨论的意思,数学中的分类过程就是对事物共性的抽象过程,解题时要使学生体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程如何认识事物的属性,如何区分不同事物的不同属性,通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想,它体现了化整为零,化零为整与归类整理的思想,它:揭示着数学事物之间的内在规律,学会分类有助于学生总结归纳所学的知识,使所学的知识条理化,提高思维的概括性,从而提高分析问题和解决问题的能力。
我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。
我们平时在解决问题时还经常碰到这样的情况,当问题解答到某一步骤后,需要按一定的标准来分为若干个子问题进行讨论,这样常常可以使问题化繁为简,更清楚地暴露事物的属性。
初中数学一元二次方程的应用题型分类——动态几何问题7(附答案)
初中数学一元二次方程的应用题型分类——动态几何问题7(附答案)1.如图,ABC 中,90C =∠,8AC cm =,4BC cm =,一动点P 从点C 出发沿着CB 方向以1/cm s 的速度运动,另一动点Q 从A 出发沿着AC 边以2/cm s 的速度运动,P ,Q 两点同时出发,运动时间为()t s .()1若PCQ △的面积是ABC 面积的14,求t 的值? ()2PCQ 的面积能否为ABC 面积的一半?若能,求出t 的值;若不能,说明理由.2.小张准备把一根长为32cm 的铁丝剪成两段,并把每一段各围成一个正方形. (1)要使这两个正方形的面积之和等于40cm 2,小张该怎么剪?(2)小李对小张说:“这两个正方形的面积之和不可能等于30cm 2.”他的说法对吗?请你用两种不同的方法说明理由.3.如图,在Rt △ABC 中,∠B=90°,AC=60cm ,∠A=60°,点D 从点C 出发沿CA 方向以4cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设点D 、E 运动的时间是t 秒(0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF.(1)当t 为何值时,DF=DA ?(2)当t 为何值时,△ADE 为直角三角形?请说明理由.(3)是否存在某一时刻t ,使点F 在线段AC 的中垂线上,若存在,请求出t 值,若不存在,请说明理由.(4)请用含有t 式子表示△DEF 的面积,并判断是否存在某一时刻t ,使△DEF 的面积是△ABC 面积的19,若存在,请求出t 值,若不存在,请说明理由.4.如图,在ABC 中,B 90∠=,AB 12cm =,BC 24cm =,动点P 从点A 开始沿着边AB 向点B 以2cm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着边BC 向点C 以4cm /s 的速度移动(不与点C 重合).若P 、Q 两点同时移动()t s ; 1()当移动几秒时,BPQ 的面积为232cm .2()设四边形APQC 的面积为()2S cm ,当移动几秒时,四边形APQC 的面积为2108cm ?5.如图所示,在△ABC 中,∠B =90°,BC =8cm ,AB =6cm .点P 从点A 开始沿AB 边向点B 以1cm ∕s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4 cm ∕ s 的速度移动.如果点P 、Q 分别从点A 、B 同时出发,经过几秒钟,△PBQ 的面积等于10cm 2?6.已知:如图,在ABC 中,90B ∠=,5AB cm =,7BC cm =.点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,同时点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为x 秒,()1求几秒后,PBQ 的面积等于26cm ?()2求几秒后,PQ 的长度等于5cm ?()3运动过程中,PQB 的面积能否等于28cm ?说明理由.7.由点P (14,1),A (a ,0),B (0,a )确定的△PAB 的面积为18.(1)如图,若0<a <14,求a 的值.(2)如果a >14,请画图并求a 的值.8.如图,在Rt ABC 中,90B ∠=,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点C 同时出发,沿边AB ,CB 向终点B 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.9.如图,△ABC 中,∠ACB=90°,AB=5cm ,BC=4cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣B ﹣C ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在BC 上,且满足PA=PB ,求此时t 的值;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;10.A 、B 、C 、D 为矩形的四个顶点,16AB cm =,6AD cm =,动点P 、Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向点B 移动,一直到达B 为止,点Q 以2/cm s 的速度向D 移动.(1)P 、Q 两点从出发开始到几秒时四边形PBCQ 是矩形?(2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10cm ?11.已知:如图所示,在ABC 中,90B ∠=,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.() 1如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ 的面积等于24cm ? ()2在()1中,PQB 的面积能否等于27cm ?请说明理由.12.如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.13.如图,在ABC 中,B 90∠=,AB 12cm =,BC 24cm =,动点P 从点A 开始沿着边AB 向点B 以2cm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着边BC 向点C 以4cm /s 的速度移动(不与点C 重合).若P 、Q 两点同时移动()t s ;()1当移动几秒时,BPQ 的面积为232cm .()2设四边形APQC 的面积为()2S cm ,当移动几秒时,四边形APQC 的面积为14.如图,在矩形ABCD 中,AB 6cm =,BC 12cm =,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm /s 的速度移动,设运动的时间为t 秒,有一点到终点运动即停止.问:是否存在这样的时刻,使2DPQ S 28cm =?若存在,请求出t 的值;若不存在,请说明理由.15.已知:如图,在△ABC 中,∠B=90°,AB=5cm ,BC=7cm .点P 从点A 开始沿AB边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于6cm 2? (2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于8cm 2?说明理由.16.如图,在ABC 中,90B ∠=,12AB cm =,24BC cm =,动点P 从点A 开始沿着边AB 向点B 以2/cm s 的速度移动,同时动点Q 从点B 开始沿着边BC 向点C 以4/cm s 的速度移动,P 、Q 分别到达B 、C 后运动停止.若P 、Q 两点同时移动()t s ;()1当t 为何值时,BPQ 的面积为232cm .()2设四边形APQC 的面积为()2S cm ,当移动几秒时,四边形APQC 的面积为() 3 在P 、Q 运动过程中,BPQ 面积是否有最大值?若有,求出BPQ 面积最大时t 的值;若没有,请说明理由。
高中数学分类讨论思想在一元二次方程中的运用
分类讨论思想在一元二次方程中的运用在数学中,常常要根据研究对象的性质差异,分别对各种不同的情况予以分析的思想方法叫分类讨论。
本文以一元二次方程为例,谈谈分类讨论思想在解题中的运用。
例1 方程()222110m x m x +++=有实数根,求m 的取值范围。
分析:字母系数的取值范围问题,首先引起警觉,想到分类讨论。
因为这里并没有指明是二次方程,故要考虑是一次方程的可能。
解:⑴当20m =,即0m =时,方程为一元一次方程10x +=,有实数根1x =-。
⑵当20m ≠,即0m ≠时,方程为二次方程,由有实根的条件得, ()22214410m m m ∆=+-=+≥,14m ≥-。
所以14m ≥-,且0m ≠。
综合⑴、⑵,得14m ≥-。
评注:字母系数的取值范围问题是否要讨论,要看清题目的条件。
一般设问方式有两种⑴前置式,即“二次方程〞;⑵后置式,即“两实数根〞。
这都说明是二次方程,不需讨论,但切不可忽视二次项系数不为零的要求。
本例是根据二次项系数是否为零进行分类讨论。
例2 当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数。
解:由于给出的关于x 的方程是一元二次方程,∴二次项系数不为零,即0m ≠。
又由于方程均有实根,()214440m ∴∆=--⨯≥,解得1m ≤。
又()()2224414450m m m ∆=--⨯⨯--≥,解得54m ≥-。
514m ∴≤≤。
又m 是整数,且0m ≠,1m ∴=-或1. 当1m =-时,方程2440mx x -+=为2440x x --+=,解得方程的根为2x =-±1m =-舍去。
当1m =时,方程2440mx x -+=的根为122x x ==,方程2244450x mx m m -+--=根为15x =,21x =-,均为整数,1m ∴=。
评注:本例是根据方程的根是否为整数进行分类讨论。
一元二次方程专题能力培优(含答案)
第2章 一元二次方程一元二次方程专题一 利用一元二次方程的定义确定字母的取值1.已知2(3)1m x -+=是关于x 的一元二次方程,则m 的取值范围是( )≠3 ≥3 C.m ≥-2 D. m ≥-2且m ≠32. 已知关于x 的方程21(1)(2)10mm x m x +++--=,问:(1)m 取何值时,它是一元二次方程并写出这个方程; (2)m 取何值时,它是一元一次方程^专题二 利用一元二次方程的项的概念求字母的取值3.关于x 的一元二次方程(m-1)x 2+5x+m 2-1=0的常数项为0,求m 的值.4.若一元二次方程2(24)(36)80a x a x a -+++-=没有一次项,则a 的值为 .专题三 利用一元二次方程的解的概念求字母、代数式5.已知关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),则a-b 值为( ) A.-1 .0 C )6.若一元二次方程ax 2+bx+c=0中,a -b+c=0,则此方程必有一个根为 .7.已知实数a 是一元二次方程x 2-2013x+1=0的解,求代数式22120122013a a a +--的值.知识要点:1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2.一元二次方程的一般形式是ax 2+bx+c=0(a ≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根.温馨提示: *1.一元二次方程概念中一定要注意二次项系数不为0的条件.2.一元二次方程的根是两个而不再是一个.方法技巧:+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.答案:1. D 解析:3020mm-≠⎧⎨+≥⎩,解得m≥-2且m≠32.解:(1)当212,10mm⎧+=⎨+≠⎩时,它是一元二次方程.解得:m=1.<当m=1时,原方程可化为2x2-x-1=0;(2)当20,10mm-≠⎧⎨+=⎩或者当m+1+(m-2)≠0且m2+1=1时,它是一元一次方程.解得:m=-1,m=0.故当m=-1或0时,为一元一次方程.3.解:由题意,得:210,10.mm⎧-=⎨-≠⎩解得:m=-1.=-2 解析:由题意得360,240.aa+=⎧⎨-≠⎩解得a=-2.5. A 解析:∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),∴a2-ab+a=0.∴a(a-b+1)=0.∵a≠0,∴1-b+a=0.∴a-b=-1.=-1 解析:比较两个式子{会发现:(1)等号右边相同;(2)等号左边最后一项相同;(3)第一个式子x2对应了第二个式子中的1,第一个式子中的x对应了第二个式子中的-1.故211xx⎧=⎨=-⎩.解得x=-1.7. 解:∵实数a是一元二次方程x2-2013x+1=0的解,∴a2-2013a+1=0.∴a2+1=2013a,a2-2013a=-1.∴}一元二次方程的解法专题一利用配方法求字母的取值或者求代数式的极值1.若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A.-9或11 B.-7或8 C.-8或9 C.-8或92.如果代数式x2+6x+m2是一个完全平方式,则m= .3. 用配方法证明:无论x为何实数,代数式-2x2+4x-5的值恒小于零.:专题二利用△判定一元二次方程根的情况或者判定字母的取值范围4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的方程kx2+3x+2=0有实数根,则k的取值范围是()6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结|论正确的是()A.a=c B.a=b C.b=c D.a=b=c专题三解绝对值方程和高次方程7.若方程(x2+y2-5)2=64,则x2+y2= .8. 阅读题例,解答下题:例:解方程x2-|x-1|-1=0.解:(1)当x-1≥0,即x≥1时,x2-(x-1)-1=0,∴x2-x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x-1<0,即x<1时,x2+(x-1)-1=0,∴x2+x-2=0.解得x1=1(不合题设,舍去),x2=-2.—综上所述,原方程的解是x=1或x=-2.依照上例解法,解方程x2+2|x+2|-4=0.专题四一元二次方程、二次三项式因式分解、不等式组之间的微妙联系9.探究下表中的奥秘,并完成填空:10.请先阅读例题的解答过程,然后再解答:代数第三册在解方程3x (x+2)=5(x+2)时,先将方程变形为3x (x+2)-5(x+2)=0, 这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知 ;道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个 因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方程 x+2=0或3x-5=0,得到原方程的解为x 1=-2,x 2=53. 根据上面解一元二次方程的过程,王力推测:a ﹒b >0,则有 0,0a b >⎧⎨>⎩或者0,0.a b <⎧⎨<⎩请判断王力的推测是否正确若正确,请你求出不等式51023x x ->-的解集,如果不正确,请说明理由.专题五 利用根与系数的关系求字母的取值范围及求代数式的值11. 设x 1、x 2是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2﹣3)+a =2,则a = . 12.(2012·怀化)已知x 1、x 2是一元二次方程()0262=++-a ax x a 的两个实数根,⑴是否存在实数a ,使-x 1+x 1x 2=4+x 2成立若存在,求出a 的值;若不存在,请你说明理由; >⑵求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.13.(1)教材中我们学习了:若关于x 的一元二次方程ax 2+bx+c=0的两根为x 1、x 2,x 1+x 2=-ba , x 1·x 2=c a .根据这一性质,我们可以求出已知方程关于x 1、x 2的代数式的值.例如:已知x 1、x 2为方程x 2-2x-1=0的两根,则:(1)x 1+x 2=____,x 1·x 2=____,那么x 12+x 22=( x 1+x 2)2-2 x 1·x 2=__ __. 请你完成以上的填空.......... (2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值.解:由210n n +-=可知0n ≠.∴21110n n +-=.∴21110n n --=. 又210,m m --=且1mn ≠,即1m n ≠.∴1,m n是方程210x x --=的两根.∴11m n +=.∴1mn n+=1.~(3)根据阅读材料所提供的的方法及(1)的方法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n+的值.知识要点:1.解一元二次方程的基本思想——降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的根的判别式△=b-4ac 与一元二次方程ax 2+bx+c=0(a ≠0)的根的关系: 当△>0时,一元二次方程有两个不相等的实数解; 当△=0时,一元二次方程有两个相等的实数解; △<0时,一元二次方程没有实数解. ;3.一元二次方程ax 2+bx+c=0(a ≠0)的两根x 1、x 2与系数a 、b 、c 之间存在着如下关系: x 1+x 2=﹣,x 1•x 2=.温馨提示:+6x+m 2是一个完全平方式,易误以为m=3. 2.若一元二次方程ax 2+bx+c=0(a ≠0)的两根x 1、x 2有双层含义:(1)ax 12+bx 1+c=0,ax 22+bx 2+c=0;(2)x 1+x 2=﹣,x 1•x 2=.方法技巧:1.求二次三项式ax 2+bx+c 极值的基本步骤:(1)将ax 2+bx+c 化为a (x+h )2+k ;(2)当a>0,k>0时,a (x+h )2+k ≥k ;当a<0,k<0时,a (x+h )2+k ≤k.2.若一元二次方程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).3.解绝对值方程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式子与0的大小关系.4.解高次方程的基本思想是将高次方程将次转化为关于某个式子的一元二次方程求解. 、5.利用根与系数求解时,常常用到整体思想.答案:解析:根据题意知,-(k-1)=±2×5×1,∴k-1=±10,即k-1=10或k-1=-10,得k=11或k=-9. 2. ±3 解析:据题意得,m 2=9,∴m=±3.3.证明:-2x 2+4x -5=-2(x 2-2x )-5=-2(x 2-2x+1)-5+2=-2(x -1)2-3. ∵(x -1)2≥0,∴-2(x -1)2≤0,∴-2(x -1)2-3<0.∴无论x 为何实数,代数式-2x 2+4x-5的值恒小于零. 解析:△=(2c )2﹣4(a +b )(a +b )=4(a +b +c )(c ﹣a ﹣b ).根据三角形三边关系,得c ﹣a ﹣b <0,a +b +c >0.∴△<0.∴该方程没有实数根.解析:当kx 2+3x+1=0为一元一次方程方程时,必有实数根,此时k=0; < 当kx 2+3x+1=0为一元二次方程且有实数根时,如果有实数根,则203420k k ≠⎧⎨-⨯⨯≥⎩.解得98k ≤且k ≠0.综上所述98k ≤.解析:∵一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴△=b 2-4ac =0,又a +b +c =0,即b =-a -c ,代入b 2-4ac =0得(-a -c )2-4ac =0,化简得(a -c )2=0,所以a =c .解析:由题意得x 2+y 2-5=±8.解得x 2+y 2=13或者x 2+y 2=-3(舍去).8.解:①当x+2≥0,即x≥-2时,x 2+2(x+2)-4=0,∴x 2+2x=0.解得x 1=0,x 2=-2; ②当x+2<0,即x <-2时,x 2-2(x+2)-4=0,∴x 2-2x -8=0. 解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去). 综上所述,原方程的解是x=0或x=-2. 9.41-,﹣3;41,3.@发现的一般结论为:若一元二次方程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).解析:∵x 1x 2=-3,x 22+4x 2-3=0,∴2x 1(x 22+5x 2-3)+a =2转化为2x 1(x 22+4x 2-3+ x 2)+a =2. ∴2x 1x 2+a =2.∴2×(-3)+a =2.解得a =8. 12.解:(1)根据题意,得△=(2a )2-4×a (a -6)=24a ≥0.∴a ≥0. 又∵a -6≠0,∴a ≠6. 由根与系数关系得:x 1+x 2=-62-a a ,x 1x 2=6-a a.由-x 1+x 1x 2=4+x 2 得x 1+x 2 +4=x 1x 2.∴-62-a a +4 =6-a a,解得a =24. 。
谈谈运用分类讨论思想解题的步骤
分类讨论思想是根据题目的特点和要求,把所有研究的问题分成若干类,转化成若干个小问题,按不同情况分类,然后再逐一进行讨论、求解的思想.分类讨论思想是解答复杂问题的重要工具,尤其对于一些结论不唯一,表示形式不唯一,含有参数的复杂问题,运用分类讨论思想求解最为有效.运用分类讨论思想解题的步骤可以概括为以下几步:1.明确研究的对象.仔细分析题意,明确哪些变量、参数可直接影响所求的结果,据此确定研究的对象.常见的研究对象有参数、自变量、绝对值内部式子、方程的根,函数的定义域、直线的位置、角度等.2.明确分类标准.在确定了需要讨论的对象后,就可以选择合适的分类标准,按照其特征将所有可能会出现的情况全部罗列出来.常见的分类标准有概念、公式、定理的应用条件,代数式的意义,曲线的范围等.3.逐级讨论.在分类后,原先的复杂、困难的问题已经被分为若干个简单、容易的子问题,把所有子问题逐个逐级进行解答,计算出结果即可.当子问题也无法解答时,需要对子问题进一步分类,并且依然要遵循分类标准统一的原则,分类时要做到不重复、不遗漏任何一种情况.4.得出结论.最后需要将所有子问题的结果进行汇总,得到完整的结论.下面举例说明.例1.已知集合M ={a 2,a +1,-3},N ={a -3,2a -1,a 2+1},若M ∩N ={-3},求a 的值.解:因为M ∩N ={-3},所以-3∈N ={a -3,2a -1,a 2+1},(1)若a -3=-3,则a =0,此时M ={1,0,-3},N ={-3,-1,1},M ∩N ={-3,1},故不满足题意;(2)若2a -1=-3,则a =-1,此时M ={}1,0,-3,N ={}-4,-3,2,M ∩N ={}-3,满足题意;(3)若a 2+1=-3,此方程无实数解;所以a =-1.对于集合中求参数的值和参数的取值范围问题,通常要运用分类讨论思想求解.往往需讨论集合中元素的取值,集合是否为空集,含参方程是否有解.只有明确参数的不同取值会导致哪些不同的结果,找到进行分类讨论的原因,才能确定问题研究的对象和分类原则,合理进行分类.例2.设函数f ()x =a ln x +x -1x +1,其中a 为常数,试讨论函数f ()x 的单调性.解:由题意可知函数f ()x 的定义域为(0,+∞),对其求导可得f ′()x =ax 2+()2a +2x +ax (x +1)2,(1)当a ≥0时,f ′()x ≥0,则函数f ()x 在(0,+∞)上单调递增,(2)当a <0时,令g ()x =ax 2+()2a +2x +a ,可得∆=4()2a +1,①当a =-12时,∆=0,f ′()x ≤0,则函数f ()x 在(0,+∞)上单调递减,②当a <-12时,∆<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减,③当-12<a <0时,∆>0,所以f ′()x ≤0,设x 1,x 2()x 1<x 2是函数g ()x 的两个零点,则x 1=-()a +1+2a +1a ,x 2=-()a +1-2a +1a,因为x 1=0,所以x ∈(0,x 1)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减;当x ∈(x 1,x 2)时,g (x )>0,f ′()x >0,则函数f ()x 在(0,+∞)上单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减.综上可知:当a ≥0时,函数f ()x 在(0,+∞)上单调递增,当a ≤-12时,函数f ()x 在(0,+∞)上单调递减,当-12<a <0时,函数f ()x 在æèççöø÷÷0,-()a +1+2a +1a ,思路探寻46(-()a+1-2a+1a,+∞)上单调递减,在(-()a+1+2a+1a,-()a+1-2a+1a)上单调递增.含参函数问题主要有两种类型,一是由于函数的概念或性质的限制,需要分类讨论参数的取值或取值范围;二是当参数为函数的系数时,需对参数进行分类讨论,此时要根据函数图象及函数对应方程的判别式来确定分类讨论的分界点.对于二次函数y=ax2+bx+c,当二次项的系数a>0时,二次函数图象的开口向上;当a=0时,该函数为一次函数;当a<0时,二次函数图象的开口向下.二次方程ax2+bx+c=0的判别式∆又决定了二次函数的零点的个数,如下表所示.因此,在讨论二次函数的零点时,可以分∆>0、=0、例3.已知函数f()x=ln xx+1+1x,当x>0且x≠1时,f()x>ln xx−1+k x,求k的取值范围.解:f()x-(ln x x-1+k x)=11-x2[2ln x+()k-1()x2-1x],令h()x=2ln x+()k-1()x2-1x()x>0,则h′()x=()k-1()x2+1+2xx2=k()x2+1-(x-1)2x2,(1)当k≤0时,由h′()x=k()x2+1-(x-1)2x2可知,当x≠1时,h′()x<0,h()1=0,当x∈()0,1时,h()x>0,可得11-x2h()x>0,当x∈()1,+∞时,h′()x<0,可得11-x2h()x>0,所以当x>0且x≠1时,f()x-æèöøln xx-1+k x>0,即f()x>ln xx-1+k x,(2)当0<k<1时,x∈æèöø1,11-k,()k-1(x2+1)+2x>0,所以当x∈æèöø1,11-k时,h()x>0,可得11-x2h()x<0,与题意不相符;(3)当k≥1时,此时h′()x>0,可得11-x2h()x<0,与题意不相符;综上所述,k的取值范围为(-∞,0].解答含参不等式问题,通常需要运用分类讨论思想对不等式的二次项系数以及一元二次不等式对应的方程的根来进行分类讨论.若含参一元二次不等式对应的方程存在两个根,则需要讨论两根的大小关系,进而确定解集.例4.设F1,F2为椭圆x29+y24=1的两个焦点,点P为椭圆上一点,已知点P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则PF1|PF2|=________.解:(1)若∠PF2F1=90°,则|PF1|2=|PF2|2+|F1F2|2,又|PF1|+|PF2|=6,|F1F2|=25,解得|PF1|=143,|PF2|=43,可得|PF1||PF2|=72.(2)若∠F1PF2=90°,则|F1F2|2=|PF1|2+|PF2|2,所以|PF1|2+(6-|PF1|)2=20,又|PF1|>|PF2|,可得|PF1|=4,|PF2|=2,所以|PF1||PF2|=2.综上可知,|PF1||PF2|=72或2.要求|PF1||PF2|,需寻找满足|PF1|>|PF2|的条件,分两种情况讨论Rt△PF1F2的直角所在的位置.解答几何问题,经常要讨论图形中点、直线、曲线的位置,图形的形状、角的取值范围等.总之,对于某些不确定的数量、不确定图形的形状或位置、不确定的结论等,都需运用分类讨论思想,通过分类讨论,保证其完整性,使之具有确定性.分类讨论思想是解答含参集合问题、含参函数问题、含参不等式问题、含参解析几何问题、含参数列问题的重要工具.同学们要熟练掌握分类讨论思想的应用技巧和步骤,使复杂问题简单化.(作者单位:哈尔滨师范大学教师教育学院)思路探寻47。
一元二次方程(知识点+考点+题型总结)
一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2":①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 .★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A 。
m=n=2 B 。
m=2,n=1 C 。
n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 .针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 .★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
一元二次方程知识点以及考点分析(可编辑修改版)
x2
b 2a
;
当 b2 4ac 0 时,方程无实数根.
公式法的一般步骤:①把一元二次方程化为一般式;②确定 a, b, c 的值;③代入 b2 4ac 中计算其值,
判断方程是否有实数根;④若 b2 4ac 0 代入求根公式求值,否则,原方程无实数根。
(因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的 一元二次方程。) (4)因式分解法: ①因式分解法解一元二次方程的依据:如果两个因式的积等于 0,那么这两个因式至少有一个为 0,即:
(3) 8x 2
10x 3
0 ( x1
1 4 , x2
3 2
)
(2) y 2 4 y 45 0 ( y1 9, y2 5 ) (4) 7x 2 21x 0 ( x1 0, x2 3 )
(5) 6x 2 3 3x 2 2x
6 ( x1
3 2
, x2
2 3
)
(6) (x 5)2
2.应用一元二次方程的定义求待定系数或其它字母的值
(1) m 为何值时,关于 x 的方程 (m 2)x m2 (m 3)x 4m 是一元二次方程。( m 2 )
(2)若分式 x 2 7x 8 0 ,则 x x 1
(x 8)
3.由方程的根的定义求字母或代数式值
(1)关于 x 的一元二次方程 (a 1)x 2 x a 2 1 0 有一个根为 0,则 a
3.增长率问题(下降率):在此类问题中,一般有变化前的基数( a ),增长率( x ),变化的次数( n ),
变化后的基数( b ),这四者之间的关系可以用公式 a(1 x)n b 表示。
4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。 (五)新题型与代几综合题 (1)有 100 米长的篱笆材料,想围成一矩形仓库,要求面积不小于 600 平方米,在场地的北面有一堵 50 米的旧墙,有人用这个篱笆围成一个长 40 米、宽 10 米的仓库,但面积只有 400 平方米,不合要求,问 应如何设计矩形的长与宽才能符合要求呢? (2)读诗词解题(列出方程,并估算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与 寿符,哪位学子算得准,多少年华属周瑜?(36 岁)
分类讨论思想在解答一次函数多解问题中的应用
数学篇数苑纵横有些与一次函数有关的数学问题,在题目给定的条件下,其答案有两种或两种以上的结果,常常需要进行分类讨论.引起分类讨论的原因主要有:(1)涉及的数学概念是分类阐述的;(2)涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的;(3)解含有参数的题目时,必须根据参数的不同取值范围进行讨论;(4)题目存在某些不确定的数量、不确定的图形形状或位置、不确定的结论等.所以在解答有关一次函数问题时,一定要缜密思考,避危以偏概全,漏掉特殊情况.下面就分类讨论思想在解答一次函数问题中的应用方法举例分析.一、根据函数的概念分类一般地,如果y =kx +b (k ,b 是常数,k ≠0),那么y 叫作x 的一次函数.当k 、b 是变化的量时,会影响函数的性质,解答此类问题往往需要对变量进行分类讨论.解题的关键是把握一次函数定义的特征:①k 不为0;②x 的指数为1;③b 可取任意实数.例1当m =时,函数y =(m +3)x 2m +1+4x -5(x ≠0)是一次函数.分析:由一次函数解析式y =kx +b (k ≠0),可知本题应分三种情况:①当m +3=0,即m =-3时,函数y =4x -5是一次函数;②当2m +1=1,即m =0时,函数y =7x -5是一次函数;③当2m +1=0,即m =-12时,函数y =4x -52是一次函数.综合①②③得m =-3或0或-12.点评:本题考查一次函数的定义.有些一次函数的系数含有变量或参数,它们取不同的值时会得到不同的结果,因此需要对变量或参数进行分类讨论.二、根据函数的性质分类一次函数y =kx +b (k ≠0)的性质:当k >0时,直线y =kx +b 从左向右上升,函数y 的值随自变量x 的增大而增大;当k <0时,直线y =kx +b 从左向右下降,函数y 的值随自变量x 的增大而减小.一次函数性质的核心是其增减性与系数k 的符号的关系.若系数含有参数,或k 这个常数量正负不确定时,就需要分类讨论,这样才可以避免漏解.例2已知一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则k -b 的值是.分析:一次函数的增减性与k 的符号有关,而一次函数中自变量的取值范围及相应的函数值没有明确是增函数还是减函数,所以应分k >0或k <0两种情况进行解答.解:当k >0时,此函数是增函数,∵当1≤x ≤4时,3≤y ≤6,∴当x =1时,y =3;当x =4时,y =6,∴ìíîk +b =3,4k +b =6,解得ìíîk =1,b =2;当k <0时,此函数是减函数,∵当1≤x ≤4时,3≤y ≤6,∴当x =1时,y =6;当x =4时,y =3,∴ìíîk +b =6,4k +b =3,解得:{k =-1,b =7,∴k -b 的值是-1或-8.故答案为-1或-8.点评:本题主要考查运用待定系数法求函数解析式及一次函数的性质.结合一次函数的增减性,可得到关于k 、b 的方程组,求解分类讨论思想在解答一次函数多解问题中的应用安徽宣城顾燕妮24数学篇即可.解答此题时要注意分类讨论思想的应用.三、根据函数图象的位置特征分类一次函数y =kx +b 的图象是一条直线,这条直线与x 轴的交点是(-bk ,0),与y 轴的交点是(0,b ).①当k >0,b >0时,图象在第一、二、三象限内;②当k >0,b <0时,图象在第一、三、四象限内;③当k <0,b >0时,图象在第一、二、四象限内;④当k <0,b <0时,图象在第二、三、四象限内.如果一次函数y =kx +b 中的k 或b 不明确,那么一次函数图象在平面直角坐标系中的位置也将不明确,这就要求我们根据题意对问题进行分类讨论来解答.例3已知正比例函数和一次函数的图象都过点M (2,4),且正比例函数的图象,一次函数的图象与y 轴围成的三角形的面积为6,求正比例函数和一次函数的解析式.分析:设正比例函数关系式为:y =kx ,将M (2,4)代入即可求出正比例函数关系式为:y =2x ;设一次函数关系式为:y =kx +b ,分两种情况:①k >0,②k <0.然后结合图象解答.解:设正比例函数关系式为:y =kx ,将M (2,4)代入y =kx ,得:2k =4,所以k =2,所以正比例函数关系式为:y =2x ;设一次函数关系式为:y =kx +b ,①当k >0时,画出图象,如图所示.此时,正比例函数的图象,一次函数的图象与y 轴围成△MOP ,∵△MOP 的面积为6,∴12OP ⋅MH =6,即12OP ⋅2=6,∴OP =6,∵点P 在y 轴的负半轴上,∴点P (0,-6),将M (2,4),P (0,-6),分别代入y =kx +b 得:ìíî2k +b =4,①b =-6,②解得ìíîk =5,b =-6,∴一次函数关系式为:y =5x -6;②当k <0时,画出图象,如图所示.此时,正比例函数的图象,一次函数的图象与y 轴围成△MON ,∵△MON 的面积为6,∴12ON ⋅MH =6,即12ON ⋅2=6,∴ON =6,∵点P 在y 轴的正半轴上,∴点P (0,6),将M (2,4),P (0,6),分别代入y =kx +b 得:ìíî2k +b =4,①b =6,②解得:ìíîk =-1,b =6,∴一次函数关系式为:y =-x +6;综合上述结果,正比例函数的解析式为:y =2x ;一次函数的解析式为y =5x -6或y =-x +6.点评:一般地,若题目没有提供图形,而根据题意,图形的位置又有多种可能性,就要仔细分析题意,全面考虑,运用分类讨论思想来解答.分类讨论思想是指当数学对象无法统一研究时,需要按照一定标准,对其进行分类讨论,逐一求解,最后再综合归纳,得出最终答案.在求解一次函数问题时,若碰到多种情况,同学们要审清题意,认真分析可能产生的不同情形,巧用分类讨论思想解答问题.数苑纵横25。
“新思维具象图”在初中一元二次方程中的运用
“新思维具象图”在初中一元二次方程中的运用
李碧秀
【期刊名称】《福建基础教育研究》
【年(卷),期】2022()4
【摘要】一元二次方程在数学教学中占有很重要的位置,它是初中数学方程教学中的基础知识,也是近年来中考考查的重点知识点之一.一元二次方程的思想方法是从现实问题出发,抽象出一个“数学模型”,反过来,又回到实际的问题情境中去解决实际问题.旨在运用“新思维具象图”这一新的教学法和例题相结合的方式对一元二次方程的解法进行梳理、归类,在促进学生思维能力提升的同时,更深刻地理解一元二次方程在初中数学中的重要位置.
【总页数】4页(P53-56)
【作者】李碧秀
【作者单位】晋江市潘径中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.分类讨论思想在一元二次方程中的运用
2.分类讨论思想在一元二次方程中的运用
3.浅谈初中数学教学中怎样设计生活中的数学问题--以人教版《一元二次方程》的引入为例
4.指向提升思维能力的初中物理新思维具象图设计
5.用二次函数的图象求一元二次方程中的参数
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论思想在一元二次方程中的运用
在数学中,常常要根据研究对象的性质差异,分别对各种不同的情况予以分析的思想方法叫分类讨论。
本文以一元二次方程为例,谈谈分类讨论思想在解题中的运用。
例1. 已知方程有实数根,求m的取值范围。
分析:字母系数的取值范围问题,首先引起警觉,想到分类讨论。
因为这里并没有指明是二次方程,故要考虑是一次方程的可能。
解:(1)当,即,方程为一元一次方程,有实数根;
(2)当,即时,方程为二次方程。
由有实根的条件得:
所以,且
综合(1)、(2),得:
评注:字母系数的取值范围问题是否要讨论,要看清题目的条件。
一般设问方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
这都表明是二次方程,不需讨论,但切不可忽视二次项系数不为零的要求。
本例是根据二次项系数是否为零进行分类讨论。
例 2. 当m是什么整数时,关于x的一元二次方程与
的根都是整数。
解析:由于给出的关于x的方程是一元二次方程,所以二次项系数不为零,即。
又由于方程均有实数根,所以
解得:
又
解得:
所以
又m是整数,且,且或1
当时,方程为,解得方程的根为,它的根不是整数,故舍去。
当时,方程的根为,方程
根为,均为整数,所以。
评注:本例是根据方程的根是否为整数进行分类讨论。
例3. 已知关于x的方程:
(1)求证:无论m取什么实数值,这个方程总有两个相异实根。
(2)若这个方程的两个实数根满足,求m的值及相应的。
解:(1)
所以不论m取何值,总有
所以,即
所以方程总有两个相异的实根。
(2)因为
所以或
①若,则
所以
所以
此时
所以
②若,则
所以
所以,此时
所以
评注:本例是根据方程根的正负进行分类讨论,旨在去掉绝对值符号。
例4. 若实数a、b满足,求的值。
解:由方程根的定义,知a、b是方程的两个根
所以
所以
事实上,题设中的a与b是可以相等的,当时,原式=2
综上所述:当时,原式,当时原式=2
评注:本例是根据方程的根是否相等进行分类讨论。
从上面例题我们可以归纳出用分类讨论的数学思想方法解题的一般步骤是:(1)明确讨论的对象;(2)进行合理分类。
所谓合理分类,应该符合三个原则:①分类应按同一标准进行,②分类应当没有遗漏,③分类应是没有重复的;(3)逐类讨论,分级进行;(4)归纳并作出结论。
练习题
1.若方程x2=0的两根是a和b(a>b),方程x2-4=0的正根是c,试判断以a、b、c为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.
2.已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1,•其中a,b,c是△ABC的三边长.
(1)求方程的根;(2)试判断△ABC的形状.
3.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?
4.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11•公里,应收
29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,
请求出起步价N(
参考答案:
1.解:解方程x2=0,得x1x2
方程x2-4=0的两根是x1=2,x2=-2.
所以a、b、c2.
,所以以a、b、c为边的三角形不存在.
点拨:先解这两个方程,求出方程的根,再用两边的和与第三边相比较等来判断.2.解:(1)设方程的两根为x1,x2(x1>x2),则x1+x1=-1,x1-x2=1,解得x1=0,x2=-1.(2)当x=0时,(a+c)×02+2b×0-(c-a)=0.
所以c=a.当x=-1时,(a+c)×(-1)2+2b×(-1)-(c-a)=0.a+c-2b-c+a=0,所以a=b.即a=b=c,△ABC为等边三角形.
点拨:先根据题意,列出关于x,x的二元一次方程组,可以求出方程的两个根0和-1.进而把这两个根代入原方程,判断a、b、c的关系,确定三角形的形状.3.解:设该产品的成本价平均每月应降低x.
625(1-20%)(1+6%)-500(1-x)2=625-500
整理,得500(1-x)2=405,(1-x)2=0.81.
1-x=±0.9,x=1±0.9,
x1=1.9(舍去),x2=0.1=10%.
答:该产品的成本价平均每月应降低10%.
点拨:题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.
4.解:依题意,N+(6-3)×22
N
+(11-6)×
25
N
=29.10,
整理,得N2-29.1N+191=0,解得N1=19.1,N2=10,
由于N<12,所以N1=19.1舍去,所以N=10.
答:起步价是10元.
点拨:读懂表格是正确列出方程的基础,表格中的含义是:当行车里程不超过3公里时,价格是10元,当行车里程超过了3公里而不超过6公里时,除付10元外,超过的部
分每公里再22
N
付元;若行车里程超过6公里,除了需付以上两项费用外,超过6•公里的
部分,每公里再付25
N
元.。