2023-2024学年九年级数学上册《第二十三章 旋转》单元测试卷有答案(人教版)

合集下载

人教版九年级数学上册 第二十三章 旋转 单元测试题(有答案)

人教版九年级数学上册 第二十三章 旋转 单元测试题(有答案)

第二十三章旋转单元测试题(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )2.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为( )A.6B.8C.10D.123.如图,将线段AB绕点P按顺时针方向旋转90°得到线段A'B',其中点A,B的对应点分别是点A',B',则点A'的坐标是( )A.(-1,3)B.(4,0)C.(3,-3)D.(5,-1)4.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从下面四个点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以A,B,C及该点为顶点的四边形是中心对称图形的个数为( )A.1B.2C.3D.45.如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不正确的是( )A.S△ABC=S△A'B'C'B.AB=A'B',AC=A'C',BC=B'C'C.AB∥A'B',AC∥A'C',BC∥B'C'D.S△A'B'O=S△ACO6.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B'处,此时,点A的对应点A'恰好落在BC 边的延长线上,下列结论错误的是( )A.∠BCB'=∠ACA'B.∠ACB=2∠BC.∠B'CA=∠B'ACD.B'C平分∠BB'A'7.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D'E'B,则点A在△D'E'B的( )A.内部B.外部C.边上D.以上都有可能8.如图,将n个边长都为1 cm 的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的对称中心,则n个这样的正方形重叠部分的面积和为( )A. cm2B. cm2C. cm2D. cm2二、填空题(每小题5分,共20分)9.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B是对应点,点C'与点C是对应点),连接CC',则∠CC'B'的度数是.10.一个正方形要绕它的中心至少旋转度,才能和原来的图形重合.11.如图,将△ABC绕点A逆时针旋转得到△ADE.点C和点E是对应点.若∠CAE=90°,AB=1,则BD= .12.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4 cm,则△BCD的面积为.三、解答题(共48分)13.(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.14.(12分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.15.(12分)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成图案,种植花草部分用阴影表示.请你运用平移、旋转、轴对称等知识,在图③、图④、图⑤中画出三种不同的设计图案(温馨提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种).16.(12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC'.(1)如图②,将△ACD沿A'C'边向上平移,使点A与点C'重合,连接A'D和BC,则四边形A'BCD是形;(2)如图③,将△ACD的顶点A与A'点重合,然后绕点A沿逆时针方向旋转,使点D,A,B在同一条直线上,则旋转角为度,连接CC',则四边形CDBC'是形;(3)如图④,将AC边与A'C'边重合,并使顶点B和D在AC边的同一侧,设AB,CD相交于E点,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.参考答案一、选择题1.A2.C 由旋转可得∠CAC1=60°,∴∠BAC1=∠BAC+∠CAC1=60°+30°=90°.在Rt△BAC1中,AB=8,AC1=6,∴BC1==10,故选C.3.D 如图,将点A绕点P按顺时针方向旋转90°得到点A',则点A'的坐标为(5,-1).4.C5.D6.C7.C 由三角板DEB绕点B逆时针旋转45°得到△D'E'B,设△D'E'B与直线AB交于点M,可知∠EBE'=45°,∠E'=∠DEB=90°,∵∠DEB=90°,∠D=30°,BD=10,∴BE=5,∴BE'=BE=5,∴BM=5.又∠ABC=90°,∠A=45°,AC=10,∴AB=5,∴BM=AB,∴点A在△D'E'B的D'E'的边上.8.C 连接正方形的中心和其余两个顶点可证得含45°角的两个三角形全等,进而求得阴影部分面积等于正方形面积的,即是 cm2.5个这样的正方形重叠部分(阴影部分)的面积和为cm2,n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1)=(cm2).二、填空题9.15°10.9011.因为将△ABC绕点A逆时针旋转得到△ADE,所以AB=AD,因为∠CAE=90°,所以∠DAB=90°,因为AB=1,所以BD=.12.3 cm2过点D作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4 cm,∠ABC=30°,则AC=2 cm,BC=2 cm.由旋转的性质可知BD=BC=2 cm,DE=AC=2 cm,BE=AB=4 cm.由面积法:DF·BE=BD·DE,求得DF= cm.所以△BCD的面积为BC·DF=×2=3(cm2).三、解答题13.解 (1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(-2,2).(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0).(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(-4,0).14.解 (1)画出△A1B1C如图,画出△A2B2C2如图.(2)旋转中心坐标为.(3)点P的坐标为(-2,0).15.解答案不唯一,如下各图供参考.16.解 (1)因为AD=AB,AA'=AC,所以A'C与BD互相平分.所以四边形A'BCD是平行四边形.故答案为“平行四边”.(2)因为DA垂直于AB,又知逆时针旋转到点D,A,B在同一直线上,所以旋转角为90度. 因为∠D=∠B=90°,A,D,B在同一条直线上,所以CD∥BC'.所以四边形CDBC'是直角梯形.故答案为“90直角梯”.(3)四边形ADBC是等腰梯形.理由如下:如图,过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,因为有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A'BC',所以△ACD≌△A'BC'.所以BM=ND.所以BD∥AC.因为AD=BC,所以四边形ADBC是等腰梯形.。

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册第二十三章旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是()2.下列说法中正确的有()(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=2AC D.AE=AB+CD(第3题)(第4题)(第5题)(第7题) 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5) 6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是()A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为()A.60°B.90°C.100°D.30°8.如图,点A-1,52,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为()A.-1,-52 B.1,52 C.52,1 D.1,-52(第8题)(第9题)(第10题)(第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=2,BP=10,则DP的长度为()A.2 B.6C.22 D.1010.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x 轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标为()A.(3,3)B.(3,-3)C.(-3,1)D.(1,-3)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)(第14题)(第15题)(第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA 绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=10,求BC边的长.21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM 与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB ,过点C 作CP ⊥OA ,垂足为P ,如图所示.∵AB =CB ,OA =OC ,OB =OB ,∴△AOB ≌△COB (SSS ).∴∠AOB =∠COB =12∠AOC =30°.在Rt △AOB 中,AB =2,∠AOB =30°,∴OB =2AB =4.∴OA =OB 2-AB 2=2 3.∴OC =2 3.在Rt △COP 中,∠POC =60°,∴∠OCP =30°.∴OP =12OC =3.∴CP =OC 2-OP 2=3.∴点C 的坐标为(3,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C 的位置和最开始时点C 的位置相同.∴第2025次旋转结束时,点C 的坐标为(3,3).故选A.二、11.6012.(-1,2)13.(1)△EDB(2)814.-1415.4-216.(1)40°(2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA =OB =OP ,进而得∠OBP =∠OPB ,然后根据三角形外角的性质得到∠OBP=12∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG =65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=5,∴DE=5. 18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=10,所以(10)2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH =AC,B=∠ACH,=CH,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°. 23.解:(1)①=②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11∴∠CPN +∠NPB =90°,∠ABP =∠C .∵MP ⊥PN ,∴∠BPM +∠NPB =90°.∴∠BPM =∠CPN .在△MPB 和△NPCBPM =∠CPN ,=CP ,MBP =∠C ,∴△MPB ≌△NPC (ASA ).∴PM =PN .(3)不变.∵S △ABC =4,O 是AC 的中点,P 在O 处,∴S △BCP =12S △ABC =2.由(2)知△MPB ≌△NPC ,∴三角尺PEF 与△ABC 重叠部分的面积=△MPB 的面积+△BON 的面积=△NPC 的面积+△BON 的面积=△BCP 的面积=2.。

人教版九年级数学上册《第二十三章旋转》单元测试题-带答案

人教版九年级数学上册《第二十三章旋转》单元测试题-带答案

人教版九年级数学上册《第二十三章旋转》单元测试题-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.若点,关于原点成中心对称,则a,b的值分别为()A.a=3,b=-2 B.a=-3,b=-2C.a=3,b=2 D.a=-3,b=23.在《数学知识PK赛》上,天逸同学给竞争对手抛出了一道旋转题,做为观赛选手,请大家都来挑战一下:如图,将绕点逆时针旋转,得到,若点在线段的延长线上,则的大小是()A.B.C.D.4.如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若则旋转角的度数为()A.B.C.D.5.如图所示,将绕点按顺时针方向旋转,使点落在AB边上点处,此时,点的对应点恰好落在BC边的延长线上.下列结论中,错误的是().A.B.C.D.平分6.如图,在中,点D,E分别为,中点,将线段绕点B旋转到边上,点D的对应点为点 F.若,BD=3cm,则的长度为()A.B.C.D.7.如图,已知中,于点,以点为中心,取旋转角等于,把顺时针旋转,得到,连接若,则的大小为()A.B.C.D.8.已知,矩形中,点是线段上的一个动点,将线段绕点逆时针旋转得到,过作于点,连接,取的中点,连接,AH.点在运动过程中,下列结论:①;②当点和点互相重合时,AE=6;③;④.正确的有()个.A.1 B.2 C.3 D.4二、填空题9.已知点关于轴的对称点的坐标是,那么点关于原点的对称点的坐标是.10.如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC= .11.如图,把绕点A逆时针旋转,得到,点恰好落在边AB上,连接,则.12.如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置,已知斜边AB=10cm,BC=6cm,设A′B′的中点是M,连结AM,则AM= cm.13.如图,将绕点逆时针旋转得到,点A,P,Q,B在同一直线上,连接,若,AP=4,QB=3,则.三、解答题14.如图,在中,将逆时针旋转后得到,C点落在BD边上求的度数.15.如图所示的正方形方格(每个小正方形的边长为1个单位).的三个顶点均在小方格的顶点上.(1)①画出关于O点的中心对称图形;②画出将沿直线l向上平移5个单位得到的;(2)要使与重合,则绕点顺时针方向至少旋转的度数为.16.如图,在中,AB=BC,,点在上,将绕点顺时针方向旋转90°后,得到.(1)求的度数;(2)若,求的长.17.如图,等边三角形的外部有一点P,且,将绕点B逆时针旋转60°得到,连接.(1)求证:.(2)若,BP=3,求P,C两点之间的距离.18.将一副直角三角板与叠放在一起,如图1,∠O=90°,∠A=30°,∠E=45°,在两三角板所在平面内,将三角板绕点O顺时针方向旋转()度到位置,使,如图2.(1)求的值;(2)如图3,继续将三角板绕点O顺时针方向旋转,使点E落在边上点处,点D落在点处.设交于点G,交于点H,若点G是的中点,试判断四边形的形状,并说明理由.参考答案:1.B2.D3.B4.C5.C6.D7.C8.C9.10.70°11.22°12.13.514.解:∵逆时针旋转后得到,C点落在BD边上∴∵∴∵∴∴即的度数为40°15.(1)解:如图、即为所求.(2)90°16.(1)解:在中.由旋转的性质可知..(2)解:由旋转的性质可知:在中17.(1)证明:由旋转的性质可知(SAS)(2)解:连接为等边三角形18.(1)解:根据题意,得旋转角∵∴故.(2)解:根据题意,得旋转角∵∴∵∴∴∵∴∴∴∴四边形是矩形∵∴四边形是正方形。

人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A .20°B .30°C .40°D .50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.已知a <0,则点P (﹣a 2,﹣a+1)关于原点的对称点P ′在( )A .第一象限B .第二象限C .第三象限D .第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.四边形ABCD 的对角线相交于O ,且AO=BO=CO=DO ,则这个四边形( ) A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A B CA B C DA.︒30 B.︒9045 C.︒60 D.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.410.如图,在正方形网格中,将∠ABC绕点A旋转后得到∠ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四A边形ABCD=.16.如图,设P是等边三角形ABC内任意一点,∠ACP′是由∠ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt∠OAB中,∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上. (1)如图11(1), 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF与BF的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图11(2)为例说明理由.图1022.如图,在Rt∠ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:∠BCD∠∠FCE;(2)若EF∠CD,求∠BDC的度数.23.如图,将正方形ABCD中的∠ABD绕对称中心O旋转至∠GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,∠ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,∠ABC旋转后能与∠FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∠PA <PB+PC .16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB ,所以,∠OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA 1=OA=6,对应角∠A 1OB 1=∠AOB=45°,旋转角∠AOA 1=90°,所以,∠AOB 1的度数是90°+45°=135°.(2)证明:∠∠AOA 1=∠OA 1B 1=90°,∠OA ∠A 1B 1,又∠OA=AB=A 1B 1,∠四边形OAA 1B 1是平行四边形.(3)解:∠OAA 1B 1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯= 21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a ,∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图,∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.22.(1)证明:∠将线段CD绕点C按顺时针方向旋转90°后得CE,∠CD=CE,∠DCE=90°,∠∠ACB=90°,∠∠BCD=90°﹣∠ACD=∠FCE,在∠BCD和∠FCE中,,∠∠BCD∠∠FCE(SAS).(2)解:由(1)可知∠BCD∠∠FCE,∠∠BDC=∠E,∠BCD=∠FCE,∠∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∠EF∠CD,∠∠E=180°﹣∠DCE=90°,∠∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∠BO=DO,∠BDA=∠DBA=45°,∠∠GEF为∠ABD绕O点旋转所得,∠FO=DO,∠F=∠BDA,∠OB=OF,∠OBM=∠OFN,在∠OMB和∠ONF中,∠∠OBM∠∠OFN,∠BM=FN.24.解:(1)∠BC=BE,BA=BF,∠BC和BE,BA和BF为对应边,∠∠ABC旋转后能与∠FBE重合,∠旋转中心为点B;(2)∠∠ABC=90°,而∠ABC旋转后能与∠FBE重合,∠∠ABF等于旋转角,∠旋转了90度;(3)AC=EF,AC∠EF.理由如下:∠∠ABC绕点B顺时针旋转90°后能与∠FBE重合,∠EF=AC,EF与AC成90°的角,即AC∠EF.。

九年级数学上册《第二十三章 旋转》单元测试卷及答案-人教版

九年级数学上册《第二十三章 旋转》单元测试卷及答案-人教版

九年级数学上册《第二十三章 旋转》单元测试卷及答案-人教版一、选择题1.如图,将ABC 绕点A 顺时针旋转60︒得到AED (点B 旋转至点E ,点C 旋转至点D ),若线段4AB =,则BE 的长为( )A .4B .5C .6D .72.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列图形既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .等腰三角形C .平行四边形D .菱形4.若点()2A a -,,()3B b ,关于原点成中心对称,则a ,b 的值分别为( ) A .3a =和2b =- B .3a =-和2b =- C .3a =和2b =D .3a =-和2b =5.下列大学校微可以看成是由图案自身的一部分经平移后得到的为( )A .B .C .D .6.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒若αBAE ∠=,则FEC ∠一定等于( )A .2αB .902α︒-C .45α︒-D .90α︒-7.如图,在平面直角坐标系中,点A 的坐标是()23-,,将线段OA 绕点O 顺时针旋转90︒得到线段OB ,则点B 的坐标为( )A .()23,B .()32,C .()32--,D .()23-,8.如图,以平行四边形ABCD 对角线的交点O 为原点.平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若D 点坐标为()53,.则B 点坐标为( )A .()43--,B .()35--,C .()53--,D .()34--,9.下面四个图案中,不能由基本图案(图中阴影部分)旋转得到的是( )A .B .C .D .10.如图,在 33⨯ 的正方形网格中两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有( )A .4种B .5种C .6种D .7种二、填空题11.如图,将ABC 绕着点A 逆时针旋转得到ADE ,使得点B 的对应点D 落在边AC 的延长线上若8AB =,5AE =则线段CD 的长为 .12.在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 (填序号).13.在直角坐标系中,点(4,5)绕原点O 逆时针方向旋转90°,得到的点的坐标是 .14.把18个边长都为1的等边三角形如图拼接成平行四边形,且其中6个涂上了阴影,现在,可以旋转、翻折或平移某一个阴影等边三角形到某一个空白的等边三角形处,使新构成的阴影部分图案是轴对称图形,共可得 种轴对称图形.三、解答题15.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,且45EAF ∠=︒.把ADF 绕点A 顺时针旋转90︒得到ABG .求证:AGE AFE ≌.16.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).( 1 )把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C ; ( 2 )把111A B C 绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的122A B C .17.ABC 在平面直角坐标系xoy 中的位置如图所示.( 1 )作ABC 关于点C 成中心对称的111A B C .( 2 )将111A B C 向右平移3个单位,作出平移后的222A B C .( 3 )在x 轴上求作一点P ,使12PA PC +的值最小,并求出点P 的坐标.18.如果点 (11)P x y --,在第二象限,那么点 (11)Q x y --, 关于原点的对称点 M 在第几象限?19.如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.四、综合题20.如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点24DE AB ==,(1)将CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将CDE绕顶点C逆时针旋转120 (如图2),求MN的长.21.知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线EF经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个矩形如图所示摆放,O为小矩形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用两种方法分割).22.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图①、图②、图③所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图③)逆时针旋转90°后得到的划分方法与我的划分方法(图①)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图④的划分方法是否正确?(2)判断图⑤的划分方法与图②小易的划分方法是否相同,并说明你的理由.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图⑥中画出来.参考答案与解析1.【答案】A【解析】【解答】解:由旋转的性质得:60BAE AE AB ∠=︒=,ABE ∴是等边三角形4BE AB ∴==故答案为:A.【分析】由旋转的性质得∠BAE=60°,AE=AB ,根据有一个角是60°的等腰三角形是等边三角形得∠ABE 是等边三角形,进而根据等边三角形的三边相等得BE=AB=4.2.【答案】C【解析】【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、即不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 、即是轴对称图形,也是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意. 故答案为:C.【分析】把一个平面图形,沿着某一条直线折叠,直线两旁的部分能完全重合的平面图形就是轴对称图形;把一个平面图形,沿着某一点旋转180°后,能与自身重合的图形就是中心对称图形,根据定义即可一一判断得出答案.3.【答案】D【解析】【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形,故不符合题意;B 、等腰三角形是轴对称图形,不是中心对称图形,故不符合题意;C 、平行四边形是中心对称图形,不是轴对称图形,故不符合题意;D 、菱形既是轴对称图形,又是中心对称图形,故符合题意; 故答案为:D.【分析】中心对称图形:把一个图形绕着某一点旋转180°后,旋转后的图形能够与原来的图形重合,轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此逐项判断即可.4.【答案】D【解析】【解答】解:∵A (a ,-2)、B (3,b )关于原点成中心对称∴a=-3,b=2. 故答案为:D.【分析】关于原点对称的点:横、纵坐标均互为相反数,据此解答.5.【答案】C【解析】【解答】解:A 、是一个轴对称图形,不能由平移得到,故此选项错误,不符合题意;B 、是一个轴对称图形,不能由平移得到,故此选项错误,不符合题意;C 、图案是由自身一部分沿着直线平移后得到的, 故此选项正确,符合题意;D 、此图案不能由平移得到,故此选项错误,不符合题意. 故答案为:C.【分析】根据平移不会改变图形的方向、形状及大小,只会改变图形的位置,即可一一判断得出答案.6.【答案】A【解析】【解答】解:将∠FDA 绕点A 逆时针旋转90°到∠HBA ,如图所示:∵四边形ABCD 为正方形∴∠C=∠D=∠DAB=∠ABC=90°,AB=AD由旋转可知AF=AH ,∠ABH=90°,∠HAF=90°,∠AHB=∠AFD ,∠FAD=∠HAB ∵45EAF ∠=︒ αBAE ∠= ∴∠FAD=45°-α ∴∠FAD=∠HAB=45°-α∴∠AHB=∠AFD=45°+α,∠HAE=45° ∴∠AEH∠∠AEF (SAS ) ∴∠AHB=∠AFE=45°+α ∴∠EFD=90°+2α ∵∠EFD 为∠CEF 的外角 ∴∠EFD=∠C+∠CEF ∴2FEC α∠= 故答案为:A【分析】将∠FDA 绕点A 逆时针旋转90°到∠HBA ,先根据正方形性质得到∠C=∠D=∠DAB=∠ABC=90°,AB=AD ,再根据旋转的性质得到AF=AH ,∠ABH=90°,∠HAF=90° ∠AHB=∠AFD ,∠FAD=∠HAB ,进而得到∠AHB=∠AFD=45°+α,∠HAE=45°,再根据三角形全等的判定与性质结合外角的性质即可求解。

2023-2024学年九年级数学上册《第二十三章 图形的旋转》同步练习有答案(人教版)

2023-2024学年九年级数学上册《第二十三章 图形的旋转》同步练习有答案(人教版)

2023-2024学年九年级数学上册《第二十三章图形的旋转》同步练习有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法不正确的的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°3.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°4.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A. B. C. D.是等边三角形5.如图,将绕点按逆时针方向旋转,得到,若点在线段的延长线上,则的大小为()A.B.C.D.6.如图,点在轴上,和,将绕点按顺时针方向旋转得到,则点的坐标是()A.B.C.D.7.如图所示,P是等边内的一点,连结PA、PB、PC,将绕B点顺时针旋转得,连接,若,则等于()A.B.C.D.8.如图,点E在边长为5的正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作FE的垂线,垂足为点H,与BC交于点G.若CG=2,则CE的长为()A.B.C.4 D.二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B'恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.10.如图所示,在中,已知,点在边上,将绕点按顺时针旋转后,当点恰好落在初始的边所在直线上时,那么.11.如图,将绕点A逆时针旋转,得到,这时点B、C、D恰好在同一直线上,则的度数为.12.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于.13.如图,在平面直角坐标系中,已知菱形OABC的顶点O、B的坐标分别为(0,0)、(2,2),若菱形绕点O逆时针旋转135°时,菱形的对角线交点D的坐标为.三、解答题:(本题共5题,共45分)14.如图,点A′在Rt△ABC的边AB上,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,A'B'与BC交于点D,连接BB′,求线段BB′的长度.15.将矩形绕点A顺时针旋转得到矩形,点在上.求证:.16.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,求△AED的周长.17.如图,将△ABC绕点C逆时针旋转90°得△DEC,其中点A,点B的对应点分别是点D,点E,点B落在DE上,延长AC交DE于点F,AB、DC交于点G.(1)求证:AB⊥DE;(2)求证:FB+BG=BC.18.在中,AB=AC, D是射线上一点,连接,把绕着点A逆时针旋转,得到.(1)如图1,当点D在的延长线上时,连接,求证:;(2)如图2,当点D在边上时,若,过点E作,分别交AB,AD,AC于点F,M,N.求证:.参考答案:1.C 2.B 3.B 4.D 5.C 6.B 7.A 8.B 9.2510.100°11.12.213.14.解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2 ∴AB=2AC=4∴BC= =2∵∠A=60°∴△AA′C是等边三角形∴AA′= AB=2∴A′C=A′B∴∠A′CB=∠A′BC=30°∵△A′B′C是△ABC旋转而成∴∠A′CB′=90°,BC=B′C∴∠B′CB=90°﹣30°=60°∴△BCB′是等边三角形∴BB′=BC=215.证明(方法不唯一):由旋转可得,又又又.16.证明:∵△ABC是等边三角形∴AC=AB=BC=10∵△BAE△BCD逆时针旋旋转60°得出∴AE=CD,BD=BE,∠EBD=60°∴AE+AD=AD+CD=AC=10∵∠EBD=60°,BE=BD∴△BDE是等边三角形∴DE=BD=9∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.17.(1)证明:∵将△ABC绕点C逆时针旋转90°得△DEC∴∵∴∴AB⊥DE;(2)证明:∵将△ABC绕点C逆时针旋转90°得△DEC∴∴∴∴∴∴∵∴为等腰直角三角形∴即FB+BG= BC.18.(1)证明:∵,D是射线上一点,连接,把绕着点A逆时针旋转,得到∴又∵∴∴(2)证明:过点E作,分别交,AD,于点F,M,N,如下图:∵在中和∴是等边三角形∴和∵∴和∵把绕着点A逆时针旋转,得到∴和∵∴又∵和∴∴∴∴。

第23章 旋转 人教版九年级数学上册单元测试卷(含答案)

第23章 旋转 人教版九年级数学上册单元测试卷(含答案)

第二十三章 旋转一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江湖州期中)如图是神舟十三号载人飞行任务标识,该标识经过旋转能得到的是 ( ) A B C D2.(2022·河南三门峡期中)已知点P1(a,-2)与点P2(3,b)关于原点对称,则(a+b)2023=( )A.-1B.1C.-52023D.520233.在如图所示的方格纸中,将标有序号的小正方形中的一个涂上阴影,使它与图中阴影部分组成的新图形是中心对称图形,该小正方形的序号是( )A.①B.②C.③D.④(第3题) (第4题)4.(2021·浙江湖州吴兴区期末)如图,在正方形网格中,线段A'B'是线段AB绕某点顺时针旋转一定角度后所得,点A'与点A是对应点,则这个旋转角可能是( )A.45°B.60°C.90°D.135°5.(2021·山东济南市中区段考)如图,将△ABC绕点A逆时针旋转90°得到△ADE,若点D恰好在线段BC的延长线上,则下列结论中错误的是( )A.∠BAD=∠CAEB.∠CDE=90°C.∠ABC=45°D.∠ACB=120°(第5题) (第6题)6.(2021·山西运城盐湖区期末)如图,已知▱ABCD中,AE⊥BC,以点B为中心,取旋转角等于∠ABC,将△BAE顺时针旋转,得到△BA'E',连接DA'.若∠ADC=60°,∠ADA'=50°,则∠DA'E'的度数为( )A.130°B.150°C.160°D.170°7.(2021·江西南昌期中)如图,将△ABC绕点C(0,-1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为( ) A.(-a,-b-2) B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b)(第7题) (第8题)8.(2021·海南模拟)如图,将边长为1的正方形ABCD绕点C按逆时针方向旋转一定角度后,得到正方形FGCE,使得点B落在对角线CF上,则阴影部分的面积是( )A.1B.2-24C.2-1D.129.(2022·浙江杭州西湖区期中)上数学拓展课的时候,小明转动三角板发现了一个很奇妙的结论:如图(1),将含有45°角的三角板ABC绕点A顺时针旋转,当∠BAD<90°时,延长线段ED和线段CB使之相交于点F,如图(2),则CF-DF的值始终不变.若AB=5,则CF-DF的值为( )2A.102B.10C.15D.15210.(2022·甘肃白银期末改编)如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且B(2,0),以AB为边构造菱形ABEF,将菱形ABEF与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点F2022的坐标为( )A.(-2,22)B.(-2,-22)C.(22,-2)D.(-22,-2)二、填空题(共5小题,每小题3分,共15分)11.新风向开放性试题请任写一个成中心对称图形的汉字、字母或数字: .12.新风向新定义试题(2022·四川南充期中改编)若f(m,n)=(m,-n),g(m,n)=(-m,-n),则g[f(-2,3)]= .13.在如图所示的平面直角坐标系中,△ABC绕原点O顺时针旋转90°后得到△A'B'C',则点A的对应点A'的坐标是 .(第13题) (第14题)14.(2021·江西南昌红谷滩区模拟)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A'B'C是由△ABC绕点C顺时针旋转得到的,其中点A'与点A是对应点,点B'与点B是对应点,连接AB',且A,B',A'三点在同一条直线上,则AA'的长为 .15.(2022·河南焦作段考)如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=38°,∠C=72°,点D在OA上.将△COD绕点O顺时针旋转一周,每秒旋转10°,在旋转过程中,当时间为 时,CD∥AB.三、解答题(共6小题,共55分)16.(6分)(2021·浙江宁波模拟)图(1)、图(2)、图(3)均是由边长为1的正三角形构成的网格,每个网格图中有5个正三角形已涂黑.请在余下的正三角形中按下列要求作图.(1)在图(1)中选择1个正三角形涂黑,使得阴影部分图形是中心对称图形,但不是轴对称图形;(2)在图(2)中选择2个正三角形涂黑,使得阴影部分图形是轴对称图形,但不是中心对称图形;(3)在图(3)中选择3个正三角形涂黑,使得阴影部分图形既是中心对称图形,又是轴对称图形.17.(8分)(2022·甘肃庆阳期中改编)在下列网格图中,每个小正方形的边长均为1,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并写出A,C两点的坐标;(3)根据(2)中的直角坐标系作出与△ABC关于原点对称的图形△A2B2C2,并写出B2,C2两点的坐标.18.(9分)如图(1),一个内角等于60°的菱形ABCD,将∠MAN的顶点与该菱形的顶点A重合,且∠MAN=60°.以点A为旋转中心,按顺时针方向旋转∠MAN,使它的两边分别交CB,DC于点E,F.(1)当BE=DF时,AE与AF的数量关系是 ;(2)如图(2),当BE≠DF时,(1)中的结论是否成立?若成立,请加以证明;若不成立,请说明理由.19.(9分)(2022·重庆江津区联考)如图,将△ABC绕点C逆时针旋转90°得到△DEC,其中点A,B的对应点分别是点D,E,点B落在DE边上,延长AC交DE于点F,AB,DC 交于点G.(1)判断AB与DE的位置关系,并说明理由.(2)求证:FB+BG=2BC.20.(11分)(2022·吉林长春期中)阅读与理解:图(1)是边长分别为a和b(a>b)的两个等边三角形纸片叠放在一起的图形(C和C'重合).操作与证明:(1)操作:固定△ABC,将△C'DE绕点C按顺时针方向旋转30°,连接AD,BE,如图(2),线段BE与AD之间具有怎样的大小关系?证明你的结论; 图(1) 图(2) 图(3)(2)操作:若将图(1)中△C'DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图(3),线段BE与AD之间具有怎样的大小关系?证明你的结论.猜想与发现:(3)若将图(1)中的△C'DE,绕点C'按逆时针方向旋转α(0°<α<360°),当α等于多少时,△BCD的面积最大?请直接写出结果.21.(12分)新风向探究性试题(2022·河南洛阳外国语学校期中)如图(1),已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P不与点A重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD 于点E.(1)如图(1),猜想∠QEP= °;(2)如图(2)和图(3),若当∠DAC为锐角或钝角时,其他条件不变,猜想∠QEP的度数,并选取一种情况加以证明;(3)如图(3),若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.图(1) 图(2)图(3)第二十三章 旋转答案1.B2.A ∵点P 1(a ,-2)与点P 2(3,b )关于原点对称,∴a=-3,b=2,∴(a+b )2023=(-3+2)2023=-1.3.B 4.C 连接AA',BB',作线段AA',BB'的垂直平分线交于点O ,点O 即为旋转中心.连接OA ,OA',即∠AOA'为旋转角,∴旋转角可能为90°.故选C .5.D ∵将△ABC 绕点A 逆时针旋转90°得到△ADE ,∴AB=AD ,∠ABC=∠ADE ,∠BAD=∠CAE=90°,∴∠ABC=∠ADC=∠ADE=45°,∴∠CDE=90°,∴选项A,B,C 正确.而∠ACB=120°推不出来,故选D .6.C ∵四边形ABCD 为平行四边形,∴∠ABC=∠ADC=60°,AD ∥BC ,∴∠ADA'+∠DA'B=180°.∵∠ADA'=50°,∴∠DA'B=130°.∵AE ⊥BE ,∴∠BAE=30°.由旋转可知∠BA'E'=∠BAE=30°,∴∠DA'E'=130°+30°=160°.7.A 根据题意,点A ,A'关于点C 对称,设点A'的坐标是(x ,y ),则a +x 2=0,b +y 2=-1,解得x=-a ,y=-b-2,∴点A'的坐标是(-a ,-b-2).8.C 设AB 与EF 交于点H.由题意知EF=CE=1,CF=12+12=2,∴BF=2-1.∵∠BFE=45°,∴BH=BF=2-1,S 阴影部分=S △EFC -S △HBF =12×1×1-12×(2-1)2=2-1.9.B 如图,连接AF.由题意得∠ABF=∠AEF=90°,AB=AE.在Rt △ABF 和Rt △AEF 中,AF =AF ,AB =AE ,∴Rt △ABF ≌Rt △AEF (HL),∴BF=EF ,∴CF-DF=BC+BF-DF=BC+EF-DF=BC+DE=2BC.∵△ABC 是等腰直角三角形,∴BC=AB=5,∴CF-DF=10.10.D 由题意可得OB=OA=2,∴AB=22.∵四边形ABEF是菱形,∴AF=AB=22,∴F(22,2).由题意可得,F1(2,-22),F2(-22,-2),F3(-2,22),F4(22,2)……每旋转4次为一个循环.∵2022÷4=505……2,∴点F2022的坐标为(-22,-2).11.0(或田,N等,答案不唯一) 12.(2,3) 由题意得f(-2,3)=(-2,-3),∴g[f(-2,3)]=g(-2,-3)=(2,3).13.(4,1)图解:如图,点A'的坐标是(4,1).14.6 ∵△A'B'C是由△ABC绕点C顺时针旋转得到的,∴CA'=CA,CB'=CB=2,∠A'CB'=∠ACB=90°,∠A'B'C=∠B=60°,∠A'=∠BAC=30°.∵A,B',A'三点在同一条直线上,CA'=CA,∴∠A'AC=∠A'=30°.又∠A'B'C=∠B'AC+∠B'CA=60°,∴∠B'CA=∠B'AC=30°,∴AB'=B'C=2.在Rt△A'B'C中,由∠A'=30°,得A'B'=2B'C=4,∴AA'=AB'+B'A'=2+4=6.15.11秒或29秒 (分类讨论思想)∵∠C=72°,∠COD=90°,∴∠CDO=18°.①如图(1),CD和AB在点O同侧时,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角∠AOD=∠AOB+∠DOE=90°+20°=110°.∵每秒旋转10°,∴此时旋转时间为11秒.②如图(2),CD和AB 在点O异侧时,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角为270°+20°=290°.∵每秒旋转10°,∴旋转时间为29秒.综上所述,当时间为11秒或29秒时,CD∥AB.16.【参考答案】(1)如图(1).(2分)(2)如图(2),答案不唯一.(4分)(3)如图(3).(6分)17.【参考答案】(1)△AB1C1如图所示.(2分)(2)直角坐标系如图所示,点A的坐标为(0,1),点C的坐标为(-3,1).(5分)(3)△A2B2C2如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).(8分) 18.【思路导图】(1)菱形ABCD的性质△ABE≌△ADF→AE=AF(2)连接AC△ABC,△ACD为等边三角形△BAE≌△CAF→AE=AF【参考答案】(1)AE=AF(4分)解法提示:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.在△ABE和△ADF中,AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF.(2)成立.(5分)证明:如图,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=AD=CD,∠D=∠B=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠ACD=∠B=∠BAC=60°.(7分)∵∠MAN=60°=∠BAC,∴∠BAE=∠CAF.在△BAE和△CAF中,∠BAE=∠CAF,AB=AC,∠B=∠ACF,∴△BAE≌△CAF(ASA),∴AE=AF.(9分)19.【参考答案】(1)AB⊥DE.(1分)理由:由旋转可得∠A=∠D,∠ACD=∠BCE=90°.∵∠DGB=∠CGA,∴∠DBG=∠ACG=90°,∴AB⊥DE.(4分) (2)由旋转可得∠ABC=∠E,∠ACB=∠DCE,BC=EC.∴∠BCG=∠ECF,∴△CBG≌△CEF,∴EF=BG,∴FB+BG=FB+EF=BE.∵EC=BC,∠BCE=90°,∴△BCE为等腰直角三角形,∴BE=2BC,即FB+BG=2BC.(9分) 20.【参考答案】(1)BE=AD.(1分)证明:∵△C'DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°.(2分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(3分)∴△BCE≌△ACD,∴BE=AD.(5分) (2)BE=AD.(6分)证明:∵△C'DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α.(7分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(8分)∴△BCE≌△ACD,∴BE=AD.(9分) (3)α=150°或330°.(11分)解法提示:如图,当D旋转到点D1或点D2位置时,△BCD的面积最大,此时旋转角是60°+90°=150°或360°-30°=330°.21.【参考答案】(1)60(2分)解法提示:如图(1),连接PQ.设QE与PC交于点M.∵PC=CQ,∠PCQ=60°,△ABC是等边三角形,∴∠PCQ=∠ACB,BC=AC,∴∠PCQ-∠PCB=∠ACB-∠PCB,即∠BCQ=∠ACP.在△CQB和△CPA中,CQ=CP,∠BCQ=∠ACP, BC=AC,∴△CQB≌△CPA,∴∠CQB=∠CPA.在△PEM和△CQM中,∵∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.(2)∠QEP=60°.以∠DAC为锐角为例进行证明.证明:如图(2),∵△ABC是等边三角形,∴AC=BC,∠ACB=60°.∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ.(4分)在△CQB和△CPA中,CQ=CP,∠BCQ=∠ACP, BC=AC,∴△CQB≌△CPA,∴∠Q=∠CPA.(6分)∵∠1=∠2,∴∠QEP=∠QCP=60°.(7分) (3)如图(3),过点C作CH⊥AD交DA的延长线于点H,易证得△CQB≌△CPA,∴BQ=AP.(9分)∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH 为等腰直角三角形,(10分)∴AH=CH=22AC=22×4=22.∵∠CPH=30°,∴CP=2CH=42.由勾股定理可得,PH=PC 2-CH 2=(42)2-(22)2=26,∴PA=PH-AH=26-22,∴BQ=26-22.(12分)图(1)图(2)图(3)。

九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)

九年级数学上册 第二十三章 旋转  单元测试卷及答案(2023年人教版)

九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。

2023-2024学年人教版九年级数学上册《第二十三章 旋转》同步练习题附答案

2023-2024学年人教版九年级数学上册《第二十三章 旋转》同步练习题附答案

2023-2024学年人教版九年级数学上册《第二十三章旋转》同步练习题附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是( )2.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°3.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.10°B.20°C.50°D.70°4.将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是 ( )A.120°B.60°C.45°D.30°5.如图,在方格纸中,△ABC经过变换得到△DEF,则正确的变换是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A.(2,23)B.(-2,4)C.(-2,22)D.(-2,23)7.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为( )A.4B.5C.6D.78.如图,在平面直角坐标系中,点A的坐标为(﹣1,3),以原点O为中心,将点A 顺时针旋转150°得到点A′,则点A′的坐标为( )A.(0,﹣2)B.(1,﹣3)C.(2,0)D.( 3,﹣1)9.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM 所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为( )A.3B.2 3C.13D.1510.一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B. (25+253) cm2C.(25+8133) cm2 D. (25+16233) cm211.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O 旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE.给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是( )A.1B.2C.3D.412.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.1二、填空题13.在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a-b的值为________.14.如图,在△ABC中,∠ACB=90°,AC=BC=1cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在点D处,连接BD,那么线段BD的长为cm.15.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为 .16.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是 .17.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形是图(填①、②、③、④)18.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD.有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为3a2;其中正确的是 .(把你认为正确结论的序号都填上).三、解答题19.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.20.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A与点D之间的距离.21.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.22.如图,△ABC是边长为4 cm的等边三角形,边AB在射线OM上,且OA=6 cm,点D从点O出发,沿OM的方向以1 cm/s的速度运动,当D不与A点重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形;(2)点D运动时间为t,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.23.已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时.求证:AE+EH=CH.24.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连接CP,将线段CD绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°(2)如图2、3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=120°,∠ACP=15°,且AC=6,求BQ的长.答案1.D2.C.3.B.4.B5.B6.D.7.B8.D9.C10.C11.C12.B13.答案为:1.14.答案为: 5.15.答案为:π.16.答案为:.17.答案为:②.18.答案为:①③④.19.证明:(1)∵将△ABC绕点C顺时针旋转180°得到△EFC ∴△ABC≌△EFC∴CA=CE,CB=CF∴四边形ABEF是平行四边形;(2)解:当∠ABC=60°时,四边形ABEF为矩形理由是:∵∠ABC=60°,AB=AC∴△ABC是等边三角形∴AB=AC=BC∵CA=CE,CB=CF∴AE=BF∵四边形ABEF是平行四边形∴四边形ABEF是矩形.20.解:如图∵在△ABC中,∠ACB=90°,AB=5,BC=4∴AC=3∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E ∴AC=CD=3,∠ACD=90°∴AD=3 2.21.解:(1)AE=DB,AE⊥DB证明:∵△ABC与△DEC是等腰直角三角形∴AC=BC,EC=DC在Rt△BCD和Rt△ACE中∴Rt△BCD≌Rt△ACE∴AE=BD,∠AEC=∠BDC∵∠BCD=90°∴∠DHE=90°∴AE⊥DB;(2)DE=AF,DE⊥AF证明:设DE与AF交于N,由题意得,BE=AD∵∠EBD=∠C+∠BDC=90°+∠BDC∠ADF=∠BDF+∠BDC=90°+∠BDC∴∠EBD=∠ADF在△EBD和△ADF中∴△EBD≌△ADF∴DE=AF,∠E=∠FAD∵∠E=45°,∠EDC=45°∴∠FAD=45°∴∠AND=90°,即DE⊥AF.22.解:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE ∴∠DCE=60°,DC=EC∴△CDE是等边三角形;(2)存在,当6<t<10时由旋转的性质得,BE=AD∴C=BE+DB+DE=AB+DE=4+DE△DBE由(1)知,△CDE是等边三角形∴DE=CD∴C=CD+4△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小此时,CD=2 3 cm∴△BDE的最小周长=CD+4=23+4(cm);(3)存在.①∵当点D与点B重合时,D,B,E不能构成三角形∴当点D与点B重合时,不符合题意;②当0≤t<6时由旋转可知,∠ABE=60°,∠BDE<60°∴∠BED=90°由(1)可知,△CDE是等边三角形∴∠DEC=60°∴∠CEB=30°.∵∠CEB=∠CDA∴∠CDA=30°.∵∠CAB=60°∴∠ACD=∠ADC=30°∴DA=CA=4∴OD=OA-DA=6-4=2∴t=2÷1=2 s;③当6<t<10时,由∠DBE=120°>90°∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°又由(1)知∠CDE=60°∴∠BDE=∠CDE+∠BDC=60°+∠BDC而∠BDC>0°∴∠BDE>60°∴∠BDE=90°,∠BCD=30°∴BD=BC=4∴OD=14 cm∴t=14÷1=14 s综上所述:当t=2或14 s时,以D,E,B为顶点的三角形是直角三角形.23.解:(1)EH2+CH2=AE2如图1,过E作EM⊥AD于M∵四边形ABCD是菱形∴AD=CD,∠ADE=∠CDE∵EH⊥CD∴∠DME=∠DHE=90°在△DME与△DHE中∴△DME≌△DHE∴EM=EH,DM=DH∴AM=CH在Rt△AME中,AE2=AM2+EM2∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°∴∠BDC=∠BDA=30°,DA=DC∵EH⊥CD∴∠DEH=60°在CH上截取HG,使HG=EH∵DH⊥EG,∴ED=DG又∵∠DEG=60°∴△DEG是等边三角形∴∠EDG=60°∵∠EDG=∠ADC=60°∴∠EDG﹣∠ADG=∠ADC﹣∠ADG∴∠ADE=∠CDG在△DAE与△DCG中∴△DAE≌△DCG∴AE=GC∵CH=CG+GH∴CH=AE+EH.24.解:(1)∠QEP=60°;证明:如图1,QE与CP的交点记为M∵PC=CQ,且∠PCQ=60°则△CQB和△CPA中∴△CQB≌△CPA(SAS)∴∠CQB=∠CPA在△PEM和△CQM中,∠EMP=∠CMQ∴∠QEP=∠QCP=60°.故答案为:60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2∵△ABC是等边三角形∴AC=BC,∠ACB=60°∵线段CP绕点C顺时针旋转60°得到线段CQ ∴CP=CQ,∠PCQ=6O°∴∠ACB+∠BCP=∠BCP+∠PCQ即∠ACP=∠BCQ在△ACP和△BCQ中∴△ACP≌△BCQ(SAS)∴∠APC=∠Q∵∠BOP=∠COQ∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3与(2)一样可证明△ACP≌△BCQ∴AP=BQ∵∠DAC=135°,∠ACP=15°∴∠APC=30°,∠PCB=45°∴△ACH为等腰直角三角形∴AH=CH=22AC=3 2在Rt△PHC中,PH=3CH=3 6 ∴PA=PH﹣AH=36﹣3 2∴BQ=36﹣3 2.。

第二十三章 旋转数学九年级上册-单元测试卷-人教版(含答案)

第二十三章 旋转数学九年级上册-单元测试卷-人教版(含答案)

第二十三章旋转数学九年级上册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°2、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.④B.③C.②D.①3、如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A. B. C. D.4、如图所示的直角三角形ABC向右翻滚,下列说法:(1)①到②是旋转;(2)①到③是平移;(3)①到④是平移;(4)②到③是旋转,其中正确的有()A.1个B.2个C.3个D.4个5、3月20日三星堆遗址的最新考古发现又一次让世界为之瞩目,下列三星堆文物图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6、下列图形中不是中心对称图形的是()A.等边三角形B.矩形C.菱形D.圆7、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.8、正五边形绕其中心旋转下列各角度,所得正五边形与原正五边形不重合的是()A.216°B.144°C.120°D.72°9、如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60°B.72°C.108°D.120°10、一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B. C. D.11、如图,正方形ABCD的边长为2,将正方形ABCD绕着点A旋转到某一位置时,点E恰好分别为DC和B1C1的中点,连结BB1,则BB1的长为()A. B. C. D.无法计算12、观察下列图形,是中心对称图形的是()A. B. C. D.13、下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个14、如图,用19颗心组成的“大”字图案中不包含的变换是()A.位似B.旋转C.平移D.轴对称15、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是________.17、已知点P的坐标为(1,1),若将点P绕原点顺时针旋转45°,得到点P1,则点P1的坐标为________.18、如图,将绕点按顺时针方向旋转某个角度得到,使,,的线相交于点,如果,那么________.19、如图,将绕点逆时针旋转70°到的位置,若,则________.20、如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转50°得到△ADE,AE与BC交于F,则∠AFB=________°.21、在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有________ 种.22、若点关于原点对称的点是,则的值为________.23、如图,AB⊥BC,AB=BC=2cm,与关于点O中心对称,则AB、BC、、所围成的图形的面积是________cm2.24、如图,将字母“V”向右平移________格会得到字母W,并在图中画出平移后的图形.25、如图所示,将一个含角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是________度.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,求点B′的坐标.28、如图,一栅栏顶部是由全等的三角形组成,下部分是由全等的矩形组成.请你运用平移、旋转、轴对称分析说明这个图形的形成过程.29、如图,△ABC≌△DFE,AC∥DE,则△ABC经过怎样的变化与△DFE重合?30、如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、C5、B6、A7、D9、A10、B11、C12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。

人教版九年级数学上册 第二十三章 旋转 单元测试卷(2024年秋)

人教版九年级数学上册 第二十三章 旋转 单元测试卷(2024年秋)

人教版九年级数学上册第二十三章旋转单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.将如图所示的圆形图案以圆心为中心,旋转180°后得到的图案是()2.[2023青岛]生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()3.已知点A(a,-2),B(3,b)关于原点对称,则a-b的值为() A.3B.-1C.-5D.-34.[2024菏泽三模]如图,将△ABC绕点A按逆时针方向旋转α,得到△AB′C′.若点B′恰好在线段BC的延长线上,且∠AB′C′=40°,则旋转角α的度数为() A.60°B.70°C.100°D.110°(第4题)(第5题)(第6题)(第7题) 5.如图,在平面直角坐标系中,△ABC与△A1B1C1关于点M(0,-1)成中心对称.已知点B的坐标为(-2,2),则点B1的坐标是()A.(2,-2)B.(1,-3)C.(4,-2)D.(2,-4)6.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂灰,使它与图中阴影部分组成的新图形为中心对称图形,则该小正方形的序号是() A.①B.②C.③D.④7.如图,在正方形网格中,△ABC绕某点旋转一定角度后得到△A′B′C′,则旋转中心是()A.点O B.点Q C.点P D.点M8.[2023日照期中]函数y=-2x+4的图象分别与x轴,y轴交于A,B两点,线段AB绕点B旋转90°得到线段BC,则点C的坐标为()A.(6,2)或(-2,-2)B.(4,-2)C.(4,2)D.(-4,2)或(4,6)9.[2023泰州]菱形ABCD的边长为2,∠A=60°,将该菱形绕顶点A在平面内旋转30°,则旋转后的图形与原图形重叠部分的面积为()A.3-3B.2-3C.3-1D.23-210.如图,在平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心A2n B2n(n是正整数)的顶点A2n的坐标是()对称,如此作下去,则△B2n-1A.(4n-1,-3)B.(4n-1,3)C.(4n+1,-3)D.(4n+1,3)(第10题)(第12题)(第13题)二、填空题(每题3分,共18分)11.[2023温州期中]点(1,-2)关于原点的对称点的坐标为________.12.如图可以看作“”绕中心旋转________次,每次旋转________度得到的.13.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=________.14.如图,在平面直角坐标系中,A(4,0),B(0,2),将线段AB绕原点O顺时针旋转90°得到线段CD,线段CD的中点M恰好落在抛物线y=ax2上,则a=________.(第14题)(第15题)(第16题) 15.如图,在平面直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O 逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为________.16.[2023绥化]如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF 周长的最小值是________.三、解答题(共72分)17.(6分)如图,四边形ABCD是正方形,△ADF绕旋转中心顺时针旋转一定角度后得到△ABE,点E落在AD上,AF=2,AB=5.(1)旋转中心是点________,旋转角度是________.(2)求DE的长度.18.(8分)如图,已知方格纸中有A,B,C三个格点,求作一个以A,B,C为顶点的格点四边形.(1)在图①中作出的四边形是中心对称图形但不是轴对称图形;(2)在图②中作出的四边形是轴对称图形但不是中心对称图形.19.(10分)[2023宜昌]如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是点C;(3)填空:∠OCB的度数为________.20.(10分)[2023开封期末]如图,△ABC经过某种变换后得到△DEF,点A,B,C的对应点分别是点D,E,F,请观察它们之间的关系,完成以下问题:(1)请分别写出点A,D的坐标:A________,D________;(2)若△ABC内任意一点M的坐标是(x,y),点M经过这种变换后得到点N,则点N的坐标是________;(3)在上述变换情况下,点P(a+3,-b+6)与点Q(2b-3,-2a)为对应点,求a+b的值.21.(12分)如图,已知▱ABCD的对称中心在原点O,且A(-2,1),B(-3,-2).(1)求点C,D的坐标;(2)求▱ABCD的面积.22.(12分)[2023甘孜州]如图,在Rt△ABC中,AC=BC=32,点D在AB边上,连接CD,将CD绕点C逆时针旋转90°得到CE,连接BE,DE.(1)求证:△CAD≌△CBE;(2)若AD=2,求CE的长;(3)点D在AB上运动时,试探究AD2+BD2的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.23.(14分)[2023贵州]如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B 作射线BD⊥AB,垂足为B.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为________度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD 交于点E,探究线段BA,BP,BE之间的数量关系.答案一、1.D2.D3.C4.C5.D6.B7.C8.D【点拨】当y=0时,-2x+4=0,解得x=2,∴点A的坐标为(2,0).∴OA=2.当x=0时,y=-2×0+4=4,∴点B的坐标为(0,4).∴OB=4.如图,将△OAB绕点B顺时针旋转90°得到△O″CB.由旋转知O″B=OB=4,O″C=OA=2,∴易得点C的坐标为(-4,2).将△OAB绕点B逆时针旋转90°得到△O′C′B,由旋转知O′B=OB=4,O′C′=OA=2,∴易得点C′的坐标为(4,6).综上所述,点C的坐标为(-4,2)或(4,6).9.A【点拨】如图,将菱形ABCD绕顶点A在平面内顺时针旋转30°得到菱形AB′C′D′,连接A C,BD,AC与BD相交于点O,BC与C′D′交于点E,∵四边形ABCD是菱形,∠DAB=60°,∴∠CAB=∠CAD=∠ACB=30°,∠ADC=120°,AC⊥BD,AO=CO.∵AB=2,∴OB=1.∴AO=3.∴AC=23.由旋转得∠D′AD=30°,∠AD′C′=∠ADC=120°,AD′=AD=2,∴A,D′,C三点共线.∴CD′=CA-AD′=23-2.∵∠ACB=30°,∠AD′C′=120°,∴∠D′EC=90°.∴D′E=3-1.∴C E=3-3.=S△ABC-S△D′E C=12×23×1-12×(3-1)×(3-3)=3-3.∴S重叠将该菱形绕顶点A在平面内逆时针旋转30°,同理可得重叠部分的面积为3-3.∴重叠部分的面积为3-3.10.A【点拨】∵△OA1B1是边长为2的等边三角形,∴易得点A1的坐标为(1,3),点B1的坐标为(2,0).∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称.∴易得点A2的横坐标为3,纵坐标为-3.同理可得点A3的横坐标是5,纵坐标是3.点A4的横坐标是7,纵坐标是-3,….∴A2n的横坐标是2×2n-1=4n-1,A2n的纵坐标是-3.∴顶点A2n的坐标是(4n-1,-3)二、11.(-1,2)12.3;9013.214.-2【点拨】∵A(4,0),B(0,2),将线段AB绕原点O顺时针旋转90°得到线段CD,∴易得C(0,-4),D(2,0).∵M是线段CD的中点,∴M(1,-2).∵M恰好落在抛物线y=ax2上,∴a=-2.15.(-2,6+1)【点拨】如图,连接OB,OB′,过点B′作B′M⊥y轴.∵四边形ABCO是正方形,OA=2,∴∠COB=45°,OB=22.∵绕原点O逆时针旋转75°,∴∠BOB ′=75°.∴∠COB′=30°.∵OB′=OB =22,∴MB′=2.∴MO =6.∴点B′的坐标为(-2,6).∵沿y 轴方向向上平移1个单位长度,∴B″(-2,6+1).16.3+33【点拨】∵△ABC 是等边三角形,∴AC =BC =6,∠BCA =60°.由旋转得∠ECF =60°,CE =CF ,∴∠BCE =60°-∠ECA =∠ACF .∴△BCE ≌△ACF (SAS).∴∠CAF =∠CBE .∵△ABC 是等边三角形,BD 是高,∴∠CAF =∠CBE =12∠ABC =30°,CD =12AC =3.如图,过C 点作CG ⊥AF ,交AF 的延长线于点G ,延长CG 到H ,使得GH =CG ,连接AH ,DH ,DH 与AG 交于点I ,连接CI ,FH ,则∠ACG =60°,GH =CG =12AC =3.∴CH =6=AC .∴△ACH 为等边三角形.易得DH =33,AG 垂直平分CH .∴CI =HI ,CF =FH .∴CI +DI =HI +DI =DH =33,CF +DF =HF +DF ≥DH .∴当F 与I 重合时,即D ,F ,H 三点共线时,CF +DF 的值最小,为33,∴△CDF 的周长的最小值为3+33.三、17.【解】(1)A ;90°(2)∵△ADF 旋转一定角度后得到△ABE ,AF =2,AB =5,∴AE =AF =2,AB =AD =5.∴DE =AD -AE =5-2=3.18.【解】(1)如图①,四边形ABCD 即为所求(答案不唯一).(2)如图②,四边形ABCD 即为所求(答案不唯一).19.【解】(1)如图.(2)如图.(3)45°20.【解】(1)(5,4);(-5,-4)(2)(-x ,-y )(3)+3+2b -3=0,b +6-2a =0,a =4,=-2.∴a +b =4-2=2.21.【解】(1)∵▱ABCD 的对称中心在原点O ,A (-2,1),B (-3,-2),∴C (2,-1),D (3,2).(2)设直线AB 的解析式为y =kx +b ,把点A (-2,1),B (-3,-2)的坐标分别代入y =kx +b ,-2k +b =1,3k +b =-2,=3,=7.∴直线AB的解析式为y=3x+7.∴当y=0时,x=-7 3.又∵A到x轴的距离为1,B到x轴的距离为2,∴S▱ABCD=4×12×73×(1+2)=14.22.(1)【证明】由题意知∠ACB=∠DCE=90°,CA=CB,CD=CE,∴∠ACB -∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.∴△CAD≌△CBE(SAS).(2)【解】在Rt△ABC中,AC=BC=32,∴∠A=∠CBA=45°,AB=6.∴BD=AB-AD=6-2=4.∵△CAD≌△CBE,∴BE=AD=2,∠CBE=∠A=45°.∴∠ABE=∠ABC+∠CBE=90°.∴DE=BD2+BE2=25.又∵在Rt△CDE中,∠DCE=90°,CD=CE,∴2CE2=DE2,∴CE=10(负值已舍去).(3)【解】AD2+BD2的值存在最小值.由(2)可知AD2+BD2=BE2+BD2=DE2=2CD2.∴当CD最小时,AD2+BD2的值存在最小值,此时CD⊥AB.∵△ABC为等腰直角三角形,∴CD=12AB=12×6=3.∴AD2+BD2=2CD2=18.即AD2+BD2的最小值为18.23.【解】(1)如图①.135(2)PA=PE.理由如下:∵CA=CB,∠C=90°,∴∠ABC=∠BAC=45°.如图②,过P作PM∥AB交AC于M,∴∠MPC=∠ABC,∠BAC=∠PMC=45°.∴CP=CM,∠AMP=135°=∠PBE.∴CA-CM=CB-CP,即AM=BP.∵将射线PA绕点P逆时针旋转90°与BD交于点E,∴∠APE=90°.∴∠EPB=90°-∠APC=∠PAC.∴△APM≌△PEB(ASA).∴PA=PE.(3)当P在线段BC上时,如图②,由(2)可知,BE=PM,BP=AM.易知AB=2(AM+CM),∴AB=2BP+2CM.易知PM=2CM,∴AB=2BP+BE.当P在线段CB的延长线上时,过P作PN⊥BC交BE于N,如图③.易知∠ABD=90°,∠ABC=45°,∴∠PBN=180°-∠ABC-∠ABD=45°.∴△BPN是等腰直角三角形,∠ABP=135°.∴BP=NP,∠PNB=45°.∴∠PNE=135°=∠ABP,BN=2BP.易知∠APE=90°,∴∠EPN=90°-∠APN=∠APB.∴△EPN≌△APB(ASA).∴EN=BA.∵BE=EN+BN,∴BE=BA+2BP.综上所述,当P在线段BC上时,AB=2BP+BE;当P在线段CB的延长线上时,BE=BA+2BP.。

九年级上册数学单元测试卷-第二十三章 旋转-人教版(含答案)

九年级上册数学单元测试卷-第二十三章 旋转-人教版(含答案)

九年级上册数学单元测试卷-第二十三章旋转-人教版(含答案)一、单选题(共15题,共计45分)1、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B. C. D.62、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3、在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移4、下列几何体所对应的主视图中,不是中心对称图形的是()A.圆锥B.正方体C.球D.圆柱5、在平面直角坐标系中,点(3,﹣4)关于原点对称的点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)6、如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A与点A′的距离是()A. B. C.27 D.257、如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是()A. B. C. D.8、下列各图中,是中心对称图形的是图()A. B. C. D.9、已知点P的坐标是(﹣6,5),则P点关于原点的对称点的坐标是()A.(﹣6,﹣5)B.(6,5)C.(6,﹣5)D.(5,﹣6)10、下列四个图形中,不是中心对称图形的是()A. B. C. D.11、下列图形是中心对称图形的是( )A. B. C. D.12、在中,.在同一平面内,将绕点旋转到,若恰好落在线段上,连接.则下列结论中错误的是()A. B. C. D.13、下面四个英文大写字母中,既是中心对称图形,又是轴对称图形的是()A.SB.YC.XD.R14、如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC 于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对15、下列四个图形是中心对称图形的是()A. B.C. D.二、填空题(共10题,共计30分)16、把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,= = =n,我们将这种变换记为[θ,n].△ABC 中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=________,n=________.17、如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为________.18、如图,已知与成中心对称,的面积是32,AB=16,则中,CD边上的高为________.19、如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是________.20、设点M(1,2)关于原点的对称点为M′,则M′的坐标为________.21、如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=________ .22、如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,则点A从开始到结束所经过的路径长为(结果保留π)________.23、如图,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,将△ABC绕着点A 旋转后,点B、C的对应点分别记为B1、C1,如果点B1落在射线BD上,那么CC1的长度为________.24、在下列图案中可以用平移得到的是________(填代号).25、如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A’B’D,此时A’D’与CD交于点E,则DE的长度为________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).①请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;②将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.28、如图,四边形ABCD是正方形,E是CD上的一点,△ABF是△ADE的旋转图形.(1)写成由△ADE顺时针旋转到△ABF的旋转中心、旋转角的度数.(2)连接EF,判断并说明△AEF的形状.29、如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C (1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.30、如图,如何作出该图案绕O点按逆时针旋转90°的图形.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、A5、C6、B7、B8、D9、C10、C11、C12、B13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第二十三章+旋转+检测卷单元测试2024-2025学年人教版数学九年级上册

第二十三章+旋转+检测卷单元测试2024-2025学年人教版数学九年级上册

第二十三章旋转检测卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 选材新风向中华优秀传统文化古典园林中的花窗通常利用对称构图,体现对称之美.下面四个花窗图案中,既是轴对称图形又是中心对称图形的是 ( )2.在平面直角坐标系中,有A(2,-1),B(0,2),C(2,0),D(-2,1)四点,其中关于原点对称的两点为( )A.点A和点BB.点B和点CC.点C和点DD.点D和点A3.在某游戏中,已拼好的图案如图所示,现出现一组小方格正向下运动,你必须进行以下哪种操作,才能拼成一个完整图案,使所有图案消失 ( )A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向左平移D.逆时针旋转90°,向左平移4.如图,△ABC中,∠ACB =90°,∠ABC =40°.将△ABC绕点B按逆时针方向旋转得到△A'BC',使点C的对应点C'恰好落在边AB上,连接AA',则∠CAA'的度数是 ( )A.50°B.70°C.110°D.120°5.如图,在正方形网格中,线段AB绕点O旋转一定的角度后与线段CD重合(C,D均为格点,A的对应点是点C),若点A的坐标为(-1,5),点B的坐标为(3,3),则旋转中心O的坐标为( )A.(1,1)B.(4,4)C.(2,1)D.(1,1)或(4,4)6.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于点E,F,则图中相等的线段有 ( )A.3对B.4对C.5对D.6对7.如图,将线段AB 绕点O 顺时针旋转! 90°得到线段 A ′B ′,,那么点 A (−2,5)的对应点 A ′的坐标是( )A.(2,5)B.(5,2)C.(4,52)D.(52,4)8.如图,正方形ABCD 的边长为2,对角线AC ,BD 相交于点O.将直角三角尺的直角顶点放在点O 处,两直角边分别与OD ,OC 重叠,当三角尺绕点O 顺时针旋转( α(0°<α<90°)时,两直角边分别与正方形的边BC ,CD 交于点E ,F ,则四边形OECF 的周长 ( )A.先变小再变大B.先变大再变小C.始终不变D.无法确定9.在矩形ABCD 中,AB=4,BC=3,将矩形ABCD 绕点A 逆时针旋转得到矩形AB'C'D',当C,B',C'三点共线时(如图),AB'交DC 于点E ,则DE 的长度是 ( )A 78 B.258 C.74 D.25410.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB∥x 轴,交y 轴于点P.将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A.(√3,−1)B.(−1,−√3)C.(−√3,−1)D.(1,√3)二、填空题(每小题3分,共15分)11. 真实任务情境风力发电机可以在风力作用下发电,如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n 的最小值是 .12.如图 4×4的正方形网格中,△PMN 绕某点旋转一定的角度,得到 △P₁M₁N₁,,其旋转中心是 .13.已知点P到x轴的距离是5,到y轴的距离是6,且与第四象限内的点Q关于原点对称,则点Q的坐标为 .14.如图,将△ABC绕点A顺时针旋转55°得到△ADE,,点B的对应点是D,直线BC与直线DE所夹的锐角的度数是 .15.如图,直线a,b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是A′,AB⊥a于点B,A′D⊥b于点D.若(OB=3,OD=2,,则阴影部分的面积之和为 .三、解答题(本大题共8个小题,共75分)16.(8分)在平面直角坐标系中,点A(a+2b,3))关于原点对称的点B的坐标为((−4,b−1),求点C(a,−b))关于y轴对称的点D的坐标.17.(9分)如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,,得到线段BD,连接AD,CD,求∠ADC的度数.18.(9分)如图,网格中每个小正方形的边长为1,请你认真观察图1,2,3中阴影部分构成的图案,解答下面的问题:(1)这三个图案都具有以下共同特征:①都是对称图形,都不是对称图形;②每个图案的面积均为 .(2)请在图4中设计出一个具备上述特征的图案,要求所画图案不能与图1,2,3中所给出的图案相同.19.(9分)如图,将△ABC绕着点B逆时针旋转α(0°<α<180°)得到△A′BC′,若点C′恰好落在边AC上,A′B‖AC.(1)求证:△ABC是等腰三角形;(2)连接.AA′,已知AC=4cm,当α=30°时,求四边形.AA′BC的面积.20.(9分)如图,已知点A(−2,−1),点B(−5,−5),,点C(−2,−3),点P(−6,0).(1)将△ABC绕点P逆时针旋转90°得△A₁B₁C₁,画出△A₁B₁C₁,点C的对应点(C₁的坐标为;(2)画出△ABC关于原点成中心对称的图形△A₂B₂C₂,点A的对应点.A₂的坐标为;(3)把△A₂B₂C₂向下平移6个单位长度得△A₃B₃C₃,画出△A₃B₃C₃,△A₃B₃C₃可由△A₁B₁C₁绕点Q逆时针旋转90°得到,画出点Q,点Q的坐标为 .21.(10分)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°,把△ADN按顺时针方向旋转一定角度后得到△ABE.(1)△ADN绕旋转中心点,按顺时针方向旋转°得到/△ABE;(2)求证:△AEM≅△ANM;(3)若BM=3,DN=2,,求正方形ABCD的边长.22.(10分)在△AED中,AE=DE,∠AED=α,,F为直线AD上一动点,连接EF,将线段EF绕点E按逆时针方向旋转α,得到线段EG,连接DG.(1)如图1,探究线段AF,DG之间的数量关系;(2)如图2,当(α=90°时,其他条件不变,连接GF.试判断线段DF,AF,GF的数量关系,并证明.23.(11分)如图,等边三角形ABC的边长为a,D为直线AB上除点A,B外的任意一点,AD=m,,连接CD,将线段CD绕点C逆时针旋转(60°,得到线段CD′,连接DD',BD'.(1)观察猜想如图1,当D为AB的中点时,∠CBD′=¯,BD′BD=¯;(2)类比探究如图2,当D为线段AB上的任意一点时,(1)中的结论是否依然成立? 并说明理由;(3)解决问题当以B,D,D'为顶点的三角形是直角三角形时,请直接写出BD ′BD的值.。

2022-2023学年人教版(2012)九年级上册第二十三章旋转单元测试卷(word版含答案)

2022-2023学年人教版(2012)九年级上册第二十三章旋转单元测试卷(word版含答案)

第二十三章 旋转� 单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每小题4分,共10各小题,共计40分)1.已知点()2,3A -经变换后到点B ,下面的说法正确的是( ) A .点A 与点B 关于x 轴对称,则点B 的坐标为()2,3BB .点A 绕原点按顺时针方向旋转90°后到点B ,则点B 的坐标为()2,3BC .点A 与点B 关于原点中心对称,则点B 的坐标为()3,2B -D .点A 先向上平移3个单位,再向右平移4个单位到点B ,则点B 的坐标为()2,6B 2.如图,正方形OABC ,将正方形OABC 绕原点O 顺时针旋转45°,则点B 的对应点1B 的坐标为( )A .(B .(C .D .(0,2) 3.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 关于原点对称的M '的坐标是( )A .(2,-5)B .(-2,5)C .(5,-2)D .(-5,2) 4.如图,将△ABC 绕点B 顺时针旋转一定的角度得到A BC ''△,此时点C 在边A B '上,若AB =5,BC '=2,则A C '的长是( )A .2B .3C .4D .5 5.如图,正方形ABCD 的边长为4,30BCM ∠=︒,点E 是直线CM 上一个动点,连接BE ,线段BE 绕点B 顺时针旋转45°得到BF ,连接DF ,则线段DF 长度的最小值等于( )A .4B .2C .D . 6.如图,在ABC 中,90ACB ∠=︒,BAC α∠=,将ABC 绕点C 顺时针旋转90°得到A B C ''',点B 的对应点B '在边AC 上(不与点A ,C 重合),则AA B '∠的度数为( )A .αB .45α-︒C .45α︒-D .90α︒- 7.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB 的度数为( )A .55°B .60°C .65°D .70° 8.如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ∥x 轴且4=AD ,60A ∠=︒,将菱形ABCD 绕点O 旋转,使点D 落在y 轴上,旋转后点C 的对应点的坐标是( )A .()B .()4,2-或()4,2--C .(D .()或()- 9.如图,在平面直角坐标系中,有一只蜗牛从点()2,3A 的位置沿着射线AO 的方向爬行到另一象限的点M ,恰好OM OA =,则点M 的坐标为( )A .()2,3-B .()2,3--C .()3,1D .()2,3- 10.如图,ABC 与A B C '''关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A '是对称点B .BO B O '=C .AOB A OB ''∠=∠D .ACB C A B '''∠=∠二、填空题(每小题5分,共5各小题,共计25分)11.如图,已知四边形ABCD 是平行四边形,将边AD 绕点D 逆时针旋转60°得到DE ,线段DE 交边BC 于点F ,连接BE .若165C E ∠+∠=︒,2BE =,CD =则线段BC 的长为_______.。

人教版九年级数学上册《第二十三章旋转》单元测试卷(带答案)

人教版九年级数学上册《第二十三章旋转》单元测试卷(带答案)

人教版九年级数学上册《第二十三章旋转》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列图形是中心对称图形的是()A.B.C.D.2.下面的图形是用数学家的名字命名的,其中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是()A.(3,﹣1)B.(0,0)C.(2,﹣1)D.(﹣1,3)△,其中ABC绕点A逆时针旋转60°的是()4.如图,ABC经过旋转或轴对称得到AB C''A.B.C .D . 5.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B .C .D .6.将一个含45︒角的三角板绕它直角顶点C 逆时针旋转一定角度9(0)0αα︒<<︒后得到DEC ,设CD 与AB 交于点F ,连接AD ,若AF AD =,则旋转角α为( )A .45︒B .36︒C .30︒D .60︒7.如图,正方形OABC 绕着点O 逆时针旋转30°得到正方形ODEF ,连接AF ,则∠OF A 的度数是( )A .20°B .25°C .30°D .35°8.如图在平面直角坐标系中,正方形ABCD 的顶点A 的坐标是(0,4),顶点B 的坐标是(2,0),对角线AC 、BD 的交点为M 将正方形ABCD 绕着原点O 逆时针旋转,每次旋转45︒,则第2023次旋转结束时,点M 的坐标为 ( )A .()33,B .()33-,C .(03,2)D .(320),9.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么AD′为( ).A .10B .8C .7D .1210.如图将∠ABC 绕点C 逆时针旋转得到∠A ’B ’C ,点B 恰好落在A ’B ’上,若∠A =25°,∠BCA ’=45°,则∠A ’CA= ( )A .30°B .35°C .40°D .45°二、填空题(共8小题,满分32分)11.如图所示,ABC 绕着点O 逆时针旋转60︒后与LMN 重合,那么,线段OB 与线段 相等.12.在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有 个.13.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,若AC ⊥A 'B ',则∠BAC 的度数是 .14.如图,在直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按照逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1;又将线段OP 1按照逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2;如此下去,得到线段OP 3,OP 4,…,OPn (n 为正整数),则点P 8的坐标为 .15.如图,正五边形ABCDE 绕点A 顺时针旋转α,当18α=︒时,则1∠= .16.如图所示,将ABC 绕其顶点A 顺时针旋转20后得ADE ,则ABC 与ADE 是 关系,且BAD ∠的度数为 度.17.若点(23,2)A a b +-与点(8,32)B a b -+关于原点对称,则a b += .18.如图,将边长为4的正方形ABCD 绕点A 按逆时针方向旋转,得到正方形AB C D ''',连接BB BC '',,在旋转角从0°到180°的整个旋转过程中,当BB BC ''=时,BB C ''△的面积为 .三、解答题(共6小题,每题8分,满分48分)19.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)在网格的格点中,以AB为边画一个∠ABC,使三角形另外两边长为10和13;(2)若点P在图中所给网格中的格点上,∠APB是等腰三角形,满足条件的点P共有个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.20.在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.21.如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:AB DE;(1)当∠α=_____度时,能使图2中的//(2)当旋转到AB与AE重叠时(如图3),则∠α=_____度;(3)当∠ADE的一边与∠ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.22.(1)用配方法解一元二次方程:2-+=;x x2410(2)如图是4×4正方形网格.请在其中选取一个白色的单位小正方形并涂黑,使图中整个黑色部分是一个中心对称图形.23.如图所示的正方形网格中,ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)分别写出点A 、B 两点的坐标;(2)作出ABC 关于坐标原点O 成中心对称的111A B C ;(3)以A 点为旋转中心,将ABC 绕点A 顺时针旋转90得22AB C ,画出22AB C .24.已知二次函数的图象以A (-1,4)为顶点,且过点B(2,0) (1)求该函数的关系式;(2)若将该函数图象以顶点为中心旋转0180,求旋转后抛物线的关系式.参考答案:1.B2.A3.A4.D5.D6.C7.C)111A B C 为所求作的图形;)22AB C 为所求。

九年级上册数学单元测试卷-第二十三章 旋转-人教版(含答案)

九年级上册数学单元测试卷-第二十三章 旋转-人教版(含答案)

九年级上册数学单元测试卷-第二十三章旋转-人教版(含答案)一、单选题(共15题,共计45分)1、在下列这些汽车标识中,是中心对称图形的是()A. B. C. D.2、下列图形中,是中心对称图形的是()A. B. C. D.3、如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是()A. B. C. D.4、甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.5、把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A. B.5 C.4 D.6、如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点EB.点FC.点GD.点H7、如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个8、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B. C. D.69、下列图案中,是中心对称图形的是()A. B. C. D.10、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. &nbsp; C. D.12、上面图案中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.13、边长为的菱形OACB在平面直角坐标系中的位置如图所示,将该菱形绕其对角线的交点顺时针旋转90°后,再向右平移3个单位,则两次变换后点C对应点C′的坐标为()A.(2,4)B.(2,5)C.(5,2)D.(6,2)14、如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°15、如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A.25°B.25°+n°C.50°D.50°+n°二、填空题(共10题,共计30分)16、如图,如果△ABC和△DEF关于点G成中心对称,那么△ABC绕点G旋转________°后能与△DEF重合.17、如图,在△ABC中,∠A=70°,AC=BC ,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′B′C ,点A′恰好落在AC上,连接CC′,则∠ACC′=________.18、一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)19、如图,在△BDE中,∠BDE=90°,BD=4,点D的坐标是(6,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为________.20、如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是________形.21、如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE= 时,则BC=________.22、我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.图形的变化示例图形与对应线段有关的结论与对应点有关的结论平移________AA′=BB′AA′∥BB′轴对称________ ________旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.________23、如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为________ .24、如图,在平面直角坐标系中,已知点A(-1.5,0),B(0,2),将△ABO顺着x轴的正半轴无滑动的滚动,第一次滚动到①的位置,点B的对应点记作B1;第二次滚动到②的位置,点B1的对应点记作B2;第三次滚动到③的位置,点B2的对应点记作B3;;依次进行下去,则点B2020的坐标为________.25、如图,在平面直角坐标系xOy中,△COD可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△COD的过程:________.三、解答题(共5题,共计25分)26、已知点P(2x,y2+4)与Q(x2+1,-4y)关于原点对称,求x+y的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023-2024学年九年级数学上册《第二十三章旋转》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知点A(−2,3)经变换后到点B,下面的说法正确的是()A.点A与点B关于x轴对称,则点B的坐标为B(2,3)B.点A绕原点按顺时针方向旋转90°后到点B,则点B的坐标为B(2,3)C.点A与点B关于原点中心对称,则点B的坐标为B(3,−2)D.点A先向上平移3个单位,再向右平移4个单位到点B,则点B的坐标为B(2,6)3.如图,将一个含30°角的直角三角尺AOB放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知∠OAB=30°,AB=16,点D为斜边AB的中点,现将三角尺AOB绕点O顺时针旋转90°,则点D的对应点D′的坐标为()A.(4√3,4)B.(8√3,−8)C.(4,−4√3)D.(4√3,−4)4.如图,直角三角板ABC的斜边AB=12㎝,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点落在原三角板ABC的斜边AB上,则三角板平移的距离为()A.6㎝B.4㎝C.(6-2√3)㎝D.(4√3−6)㎝5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB´C´,且C´在边BC上,则∠B´C´B的度数为()A.30°B.40°C.46°D.60°6.已知A(4,1),B(5,4),将线段AB绕点A逆时针旋转90°得线段AC,则点C的坐标为()A.(1,2)B.(2,1)C.(7,0)D.(1,3)7.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,点A,B,C的对应点分别为A1,B1,C1,则对称中心E点的坐标是()A.(3,-1)B.(0,0)C.(2,-1)D.(-1,3)8.如图,在△ABC中,AB=AC,∠BAC=50°,将△ABC绕着点A顺时针方向旋转得△ADE,AB,CE相交于点F,若AD∥CE时,则∠BAE的大小是()A.20°B.25°C.30°D.35°二、填空题9.如图,矩形ABCD中,AB=5,BD=13,Rt△EFG的直角边GE在CB的延长线上,E点与矩的B点重,∠FGE=90°,FG=3.将矩形ABCD固定,把Rt△EFG沿着射线BC方向运动,当点F恰好经过BD时,将△EFG绕点F逆时针旋转α°(0°<α°<90°),记旋转中的△EFG为△E′F′G′,在旋转过程中,设直线E′G′与直线BC交于N,与直线BD交于M点,当△BMN为以MN为底边的等腰三角形时,FM的长为.10.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.11.有一种电脑软件叫做“画图”,它有个功能,可以复制已经出现在窗口的所有图形或部分图形,粘贴的图形又可以进行任意的平移.如图,在画图窗口中已有一个正方形.从窗口中已有图形开始,复制、粘贴已有图形或部分图形一次,且通过平移后与原图形拼接,叫做一次操作.则要出现一个4×6的网格,至少需要操作次.12.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.13.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连结EF.则∠EAF=三、解答题14.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)将△AOB向左平移3个单位长度,再向上平移1个单位长度得到△A1O1B1,请画出△A1O1B1,并写出点A1的坐标;(2)将△AOB绕点O沿顺时针方向旋转90°得到△A2OB2,请画出△A2OB2,并写出点A2的坐标.x+4与x轴、y轴分别交于A,B两点,将线段AB绕点A顺时针旋转90°15.如图,直线y=−43后得到线段AB1.求点B1的坐标.16.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90º,∠B=∠E=30º.(1)操作发现如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是;设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是,证明你的结论;猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AE中BC,CE边上的高,请你证明小明的猜想.17.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.18.如图,将△ABC绕点A按顺时针方向旋转90°,得到△ADE,点B的对应点为点D,点C的对应点E落在BC边上,连接BD.(1)求证:DE⊥BC;(2)若AC=3√2,BC=7,求线段BD的长.19.如图1,在△ ABC中,CA=CB,∠ACB=90°,D是△ ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°,得到线段CE,连接DE.(1)求∠CDE的度数,并说明A、D、E三点是否共线;(2)在(1)的条件下,连接BE,如图2,过点C作CM⊥DE于点M,请判断线段AE,CM和BE之间的数量关系,并说明理由.参考答案1.B2.D3.D4.C5.B6.A7.A8.C9.3 √2610.311.512.313.45°14.(1)解:如图所示,由平移之后的图形可知A1(−2,4)(2)解:如图所示,由旋转之后的图形可知A2(3,−1)15.解:如图,当y=0时x=3;当x=0时∴A(3,0),B(0,4)∴OA=3,OB=4过点B1作B1C⊥x轴于C∴∠ACB1=AOB=90°由题AB=AB1,∠BAB1=90°∴∠OAB+∠CAB1=90°又∵∠OAB+∠ABO=90°∴∠ABO=∠CAB1∴ΔAOB≌ΔB1CA∴OB=AC=4,OA=B1C=3∴OC=OA+AC=7∴B 1(7,3)16.解:(1)①线段DE 与AC 的位置关系是平行.②S 1与S 2的数量关系是相等.证明:如图2,过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知△ADC 是等边三角形,DE ∥AC∴DN=CF ,DN=EM .∴CF=EM .∵∠ACB=90º,∠B=30º∴AB=2AC .又∵AD=AC∴BD=AC .∵S 1=12CF ·BD ,S 2=12AC ·EM∴S 1=S 2.证明:如图3,作DG ⊥BC 于点G ,AH ⊥CE 交EC 延长线于点H.∵∠DCE=∠ACB=90º∴∠DCG+∠ACE=180º.又∵∠ACH+∠ACE=180º,∴∠ACH=∠DCG .又∵∠CHA=∠CGD=90º,AC=CD∴△AHC ≌△DGC .∴AH=DG .又∵CE=CB17.(1)解:∵长方形OABC 绕顶点C (0,5)逆时针方向旋转得到矩形CO ′A ′B ′∴BC=AO=O ′A ′,AB=CO=CO'=5,∠B=∠O'=90°∵AD=4,AB=5∴BD=5﹣4=1设BC=x,则DO'=O'A'﹣A'D=x﹣2连接CD,则BC2+BD2=CD2=CO'2+DO'2即x2+12=52+(x﹣2)2解得:x=7∴BC=7;(2)解:∵BC=7,BD=1,CO'=5,DO'=7﹣2=5,∠B=∠O'=90°∴阴影部分的面积=△BCD面积+△O'CD面积= 12×7×1+ 12×5×5=16.18.(1)证明:∵将△ABC绕点A按顺时针方向旋转90°∴AC=AE,∠CAE=90°,∠AED=∠ACE∴∠ACE=∠AEC=45°=∠AED∴∠DEC=90°∴DE⊥BC;(2)解:∵AE=AC=3√2,∠EAC=90°∴EC=6∴BE=BC﹣EC=1.∵将△ABC绕点A按顺时针方向旋转90°∴DE=BC=7∴DB=√BE2+DE2=√49+1=5√2.19.(1)解:∵将线段CD绕点C逆时针旋转90°∴CD=CE,∠DCE=90°∴∠CDE=45°∵∠ADC=135°∴∠ADC+∠CDE=180°∴A、D、E三点共线;(2)解:AE=BE+2CM,理由如下:∵∠ACB=∠DCE=90°∴∠ACD=∠BCE在△ACD和△BCE中{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)∴BE=AD∵CD=CE,∠DCE=90°,CM⊥DE ∴DE=2CM∴AE=AD+DE=BE+2CM。

相关文档
最新文档