牛顿第二定律实验中系统误差的消除方法
谈谈系统误差的产生原因及其消除或减少的方法(精)
谈谈系统误差的产生原因及其消除或减少的方法在讨论随机误差时,总是有意忽略系统误差,认为它等于零。
若系统误差不存在,期望值就是真值。
但是,在实际工作中系统误差是不能忽略的。
所以要研究系统误差,发现和消除系统误差。
一、系统误差产生的原因在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。
1、在检定或测试中,标准仪器或设备的本身存在一定的误差。
在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。
又称为工具误差或仪器误差。
如:标称值为100g的砝码,经检定实际值为99.997g,即误差为 0.003g。
用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生 0.003g的恒定系统误差。
某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。
这种误差,一般称零位误差,或简称零差。
某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。
这种误差称为装置误差。
2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。
如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。
因这种误差是由客观环境因素引起的,一般把它称为环境误差。
3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。
这种误差称方法误差或称理论误差。
4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。
此项误差又称为人员误差。
验证牛顿第二定律的系统误差及修正
关于“验证牛顿第二定律实验”的两个系统误差及修正江苏省洪泽中学陈正海【摘要】通过改进实验装置,简化实验过程,消去原装置所内生的系统误差。
【关键词】系统误差误差分析“探究加速度与力、质量的关系”实验是高中物理的一个重要实验,有利于学生理解、掌握物理方法:控制变量法;抓住主要矛盾法(M车≫m);作图法(抽象问题形象化),有利于学生研究性学习和创新能力的培养。
本文就实验装置内生的系统误差作出理论分析,并通过装置的改进对实验进行适度研究。
苏教版“验证牛顿第二定律实验”采用如下实验装置:用上述实验装置实验时明确要示:1. 实验时首先要平衡摩擦力;2.小车包括砝码的质量要远大于砂和砂桶的总质量。
这都是为什么呢?有无改进的装置,无需平衡摩擦力和小车包括砝码的质量要远大于盘和重物的总质量呢?本文就上述两个问题作简单的论述。
要求1:在利用打点计时器和小车做“验证牛顿第二定律”的实验时,实验首先要平衡摩擦力。
分析1:牛顿第二定律表达式F ma中的F是物体所受的合外力,在本实验中如果不采用一定的办法平衡小车及纸带所受的摩擦力,小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受的摩擦力的合力.因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大,若计摩擦力,其大小的测量又很困难;在研究加速度a和质量m 的关系时,由于随着小车上的砝码增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力。
由于在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力.所以平衡摩擦力可采用下面的做法:将长木板的末端垫高一些,给小车一个沿斜面向下的初速度,使小车沿斜面向下运动.取下纸带后,如果在纸带上打出的点子的间隔基本上均匀,就表明小车受到的阻力跟它的重力沿斜面的分力平衡.为什么点子的间隔只能是基本上均匀呢?这是因为打点计时器工作时,振针对纸带的阻力是周期性变化的,所以难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动不是严格的匀速直线运动,纸带上的点子间隔也不可能完全均匀,所以上面提到要求基本均匀。
验证牛顿第二定律的实验方法以及原理说明
验证牛顿第二定律的实验方法以及原理说明This model paper was revised by the Standardization Office on December 10, 2020验证牛顿第二定律的实验方法以及原理说明1、实验方法采用控制变量法,即当研究的某个物理量与两个以上的其他物理量的变化有关时,分别研究该物理量与其中一个物理量之间的变化关系,而设法控制其他物理量不发生变化的一种方法。
本实验中,小车加速度a的大小、方向由外力F、小车质量M共同确定。
研究加速度a与F及M的关系时:(1)控制小车的质量M不变,讨论a与F的关系。
(2)再控制砂和砂桶的质量不变即F不变,改变小车的质量M,讨论a与M的关系。
(3)综合起来,得出a与F、M之间的定量关系。
2、实验思想方法(等效法)小车在长木板上运动时由于要受到摩擦阻力作用,且在改变小车质量时摩擦阻力随之改变,这将给实验带来很多麻烦。
例如,要测知动摩擦因数,计算每改变小车质量后的摩擦阻力,或每改变小车质量后都用“牵引法”调试平衡。
本实验中,巧妙地采用了平衡摩擦阻力的方法:将长木板一端垫起,让小车重力沿斜面的分力把摩擦阻力平衡掉,即等效于小车不受擦擦阻力作用,绳对小车的拉力即为车所受的合外力。
同时小车质量改变后无需重新调试,从而简化了实验程序及计算过程。
3、实验的必要条件(1)小车质量M远大于砂及桶的总质量m,从而近似认为对小车的拉力T等于砂及桶的重力mg。
注意:严格地说,细绳对小车的拉力T并不等于砂和砂桶的重力mg,而是。
推导如下:对砂桶、小车整个系统有:①对小车:②由①②得:由于因此。
若允许实验误差在5%之内,则由由此,在实验中控制(一般说:)时,则可认为,由此造成的系统误差小于5%。
4、数据处理(图像法)在画和图像时,多取点、均分布,达到一种统计平均以减小误差的目的。
同时注意不分析图像,因为两者成不成反比关系不易直接观察。
5、实验的进一步改进本实验以小车为研究对象,以砂桶重力替代牵引力,产生了系统误差。
牛顿第二定律的验证误差分析及改进方案
牛顿第二定律的验证实验误差分析及改进方案三门峡市实验高中 孙芳红人教版牛顿第二定律的验证实验,用控制变量法验证了加速度a 与力F 和质量M 的关系。
研究加速度a 与F 的关系时,先控制质量M 不变,讨论加速度a 与力F 的关系;然后再控制力F 不变,讨论加速度a 与质量M 的关系。
其中要求小盘和砝码的质量要远小于小车的质量,原因是:令小车带上纸带在斜面上平衡阻力后挂上小盘,使小车和小盘一起加速运动时绳的拉力大小为F T ,小车总质量为M ,小盘及砝码总质量为m ,它们的加速度为a ,由牛顿第二定律,对M 有 F T =Ma对m 有 mg -F T =ma联立解得F T = 可见,拉力F T 是小于小盘及砝码的重力的,欲使F T ≈mg ,则必有 →0,故有m<<M 为条件。
实验操作中一般保持M >20m ,否则,系统误差较大。
在验证在实验M 不变加速度a 与盘的重力力F 的关系时,系统误差随着m 的增大而增大,故得到如下图(1)的图线,在实验中横坐标的F 取的是小盘及砝码的重力。
但实际测得是M +m 系统的加速度,图线的斜率mM mg a +=1的意义是系统质量的倒数,这样可以解释图线斜率为什么随着F 的增大而变小了。
在验证F 不变加速度a 与小车质量M 的关系时,同样存在着系统误差,下面这样设计可以消除系统误差:如下图所示的实验装置可以验证牛顿运动定律,小车上固定一个盒子,盒子内盛有沙子。
沙桶的总质量 (包括桶以及桶内沙子质量)记为m ,小车的总质量(包括车、盒子及盒内沙子质量)记为M 。
只要把研究对象确定为整体(包括小车、沙桶及所有沙子),合力为F沙桶(含沙子)的重力就可消除系统误差。
g M m m g m M Mm +=+1Mm(1)验证在质量不变的情况下,加速度与合外力成正比:从盒子中取出一些沙子,装入沙桶中,称量并记录沙桶的总重力mg ,将该力视为合外力F ,对应的加速度a 则从打下的纸带中计算得出。
谈谈系统误差的产生原因及其消除或减少的方法
谈谈系统误差的产生原因及其消除或减少的方法在讨论随机误差时,总是有意忽略系统误差,认为它等于零。
若系统误差不存在,期望值就是真值。
但是,在实际工作中系统误差是不能忽略的。
所以要研究系统误差,发现和消除系统误差。
一、系统误差产生的原因在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。
1、在检定或测试中,标准仪器或设备的本身存在一定的误差。
在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。
又称为工具误差或仪器误差。
如:标称值为100g的砝码,经检定实际值为99.997g,即误差为+0.003g。
用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生+0.003g的恒定系统误差。
某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。
这种误差,一般称零位误差,或简称零差。
某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。
这种误差称为装置误差。
2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。
如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。
因这种误差是由客观环境因素引起的,一般把它称为环境误差。
3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。
这种误差称方法误差或称理论误差。
4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。
此项误差又称为人员误差。
用斜面小车验证牛顿第二定律的误差分析
155神州教育用斜面小车验证牛顿第二定律的误差分析郭少鹏衡水第一中学摘要:众所周知高中物理的学习离不开实验,几乎全部的定理或者公理都需要实验来进行验证,既然有实验就必然会产生误差。
误差是任何实验都无法避免的影响因素,我们能做的便是要通过种种手段来减少实验的误差。
本文通过斜面小车实验来验证牛顿第二定律,发现了可以运用牵引法、倾斜斜面法和综合法来减少实验的误差。
关键词:牛顿第二定律;动能定理;斜面小车实验;误差处理一、牛顿第二定律定律概念牛顿第二定律是指物体的加速度与物体所受的合外力成正比关系,而与物体自身的质量成反比关系。
虽然它的公式F=ma 非常简单,但是验证起来却并不简单。
牛顿第二定律对我们日常的生活有非常重要的作用,就比如汽车的牵引等,同时它对我们物理的学习起到奠基作用很多物理公式的推导都是以牛顿第二定律为基础进行的,所以正确理解牛顿第二定律是非常重要的。
二、斜面小车验证牛顿第二定律的原理1、物体质量不变所受合力与加速度成正比如下图所示,这是验证牛顿第二定律的实验简图。
在尝试验证牛顿第二定律的实验中,我们已知物体的加速度与物体的自身的质量是成反比的,而与物体所受的合外力成正比关系的。
在这个实验中共有两个变量——物体的质量和物体所受的合外力。
首先我们要控制其中的一个变量――物体质量来验证另一个变量――物体所受合外力对物体加速度的影响。
因为物体在用运动过程中不仅受到牵引力,其中还有一些额外的阻力,如地面的摩擦阻力,空气阻力等。
在实验中我们可以通过均匀不断地增加砝码的重量来改变所受到的合力,然后通过打点计时器打出的点来计算出加速度的大小,将数据绘制成图,我们就会发现:在物体质量不变的情况下,物体的加速度大小与它所受到的合力是成正比关系的。
2、所受合外力不变物体质量与加速度成正比不同的物体在它所受合外力相同的情况下,它自身的加速度也是有差别的。
在斜面小车的实验中,我们通过给小车上均匀增加砝码的方法来不断增加小车的质量。
探究“加速度与力的关系”实验改进方案
探究“加速度与力的关系”实验改进方案一、问题提出牛顿第二定律是牛顿运动定律的核心内容,是经典物理学中最重要的定律之一。
在教学过程中,都是从演示实验出发推导定律,对定律的理解和应用实验起着关键作用。
学生在探究“加速度与力、质量关系”实验时,按图表1进行实验。
利用实验装置(连接体的方法)进行实验,实验 装置 简单 ,实验操 作也 简单 。
但在原理上较复杂,先平衡摩擦力再采用近似方法,以托盘与砝码受到的重 力 当作 小 车所受 拉 力来 处 理,如果不满足M>>m 的条件,会产生较大的系统误差。
同时也间接强化了学生的常见错误:小车受到了所挂重物的重力,淡化了实验中的F 是指小车所受合力这个重要前提,从而产生错误概念。
二、解决方案实验教学不仅对于学生知识的理解至关重要,而且对于培养学生的学习兴趣以及学生的探究学习能力同样起着重要的作用。
针对学生在本实验中的问题和困惑,组织对物理有兴趣的学生成立实验创新小组,和他们一起翻阅资料,设计实验。
实验目的改为探究物体加速度与合力的关系,实验设计时求加速度的方法用打点计时器和光电门学生都能接受,难点和重点是 探求运动过程中获得不同合力的简洁合理方法。
实验的核心是合力的测定。
三、实验创新为突破合力这一难点,设计了四个创新实验,与学生进行实验操作和分析后感觉效果不错,求合力的原理从易到难如下: 创新实验1:实验装置如图表2,在改进后的实验装置中,增加了如下器材:动滑轮、测力计、铁架台(带有横梁和试管夹),气垫导轨、并把砝码盘换为小沙桶.该实验装置的优点在于对小车的受力进行了直接测量,从而增强了实验的直观性,便于学生在实验中控制实验条件.探究小车质量一定,加速度与合力的关系时,只要通过改变小沙桶里细沙的重力就能改变小车的拉力,而小车的拉力可以在测力计上直接读出;实验注意事项:1)拉绳要处在铁制试管夹口处的平整部分,并离铁制试管夹上的固定板尽可能近些(铁制试管夹张口大小,是靠夹上另一块带轴的活动板来控制的),但彼此不能相互接触,防止铁制试管夹在夹拉绳时,使拉绳变弯,对弹簧秤示数产生影响;2)为了防止被夹住的拉绳松动,在铁制试管夹的夹口处贴一层橡皮胶;3)当小车开始作匀变速直线运动时,要及时用手捏紧铁制试管夹的张开口,让铁制试管夹把拉绳夹住,并旋紧铁制试管夹上的紧固螺母,从而保证测力计上显示的读数是小车在运动过程中受到拉力的大小.此实验原理简单直接,但所用器材较多,操作相对比较麻烦,容易产生偶然误差。
浅析“验证牛顿第二定律”实验的系统误差及对策
浅析“验证牛顿第二定律”实验的系统误差及对策作者:陈明辽来源:《中学教学参考·理科版》2009年第12期中学实验“验证牛顿第二定律”看起来很简单,其实非常容易造成较大的误差.因为要验证牛顿第二定律,就必须测出力的大小.然而,我们不能用弹簧秤来测力的大小,这样一来弹簧就要串接在两个相互作用的物体之间,其质量必将影响系统的加速度,使实验变得更加复杂.可见,实验的难点之一就是如何提供可测量的恒定外力.在本实验中,此恒定外力是通过装沙的小桶牵拉斜面上的小车来实现的.实验中把沙桶的总重力大小近似等于牵拉小车的合外力,然而这样也势必会造成系统误差.一、误差的来源下面,我们先导出小车的加速度再进行误差分析.设小车的总质量为M,砂桶的总质量为m,斜面的倾角为θ,车受的总阻力为f,细绳的拉力为F,据牛顿第二定律有:F+Mgsinθ-f=Ma ①mg-F=ma②由①②两式得:F=mMg-m(Mgsinθ-f)m+M③a=F+Mgsinθ-fM=mg+Mgsinθ-fm+M④为了能使问题简单化,我们需要把车受到的合外力调整到与细绳拉车的力F相等,这就必须调整斜面的倾角θ,使得Mgsinθ=f,这就是平衡摩擦力,也是本实验提出的第一个条件.于是便有:F=mMgm+M⑤a=FM=mgm+M⑥由⑤式可以看出,细绳拉车的力F并不等于沙桶的总重力mg,大胆地取F=mg后,则由⑥式有:a=Fm+M⑦车的加速度a也并非与车的总质量M成反比,这就要求我们作进一步的近似处理.显然,当时,由⑤⑥两式得:F≈mga=FM ⑧亦即小车所受的合外力等于细绳的拉力F,而这个拉力的大小近似等于沙桶的总重力;小车的加速度a与小车所受的拉力F成正比,与小车的总质量M成反比.可见是本实验提出的第二个条件.以上两个条件的不满足,就导致了本实验的系统误差!二、误差分析及对策若本实验能同时满足上述的两个条件,则由⑧式可知,其a-F图像和a-1M图像均为一条过原点的直线(如图1,2所示).图1图21.条件Mgsinθ=f不满足造成的误差及对策若本实验满足第二个条件而不满足第一个条件Mgsinθ=f,则由④式可知,其a-F图像是一条不过原点的直线.图3若实验所得的a-F图像如图3所示,则说明尽管满足了第二个条件但Mgsinθ>f,斜面的倾斜角θ过大,需调小.若实验所得的a-F图像如图4所示,则说明尽管满足了第二图4个条件但Mgsinθ2.条件不满足造成的误差及对策若本实验满足第一个条件Mgsinθ=f而不满足第二个条件则由⑦式可知,其a-1M图像是一条过原点的曲线(如图5所示).图5下面着重分析满足第一个条件Mgsinθ=f而不满足第二个条件时细绳拉力的测量值F与真实值的百分误差.设m=kM,由⑤式有真实值而测量值F=mg,故百分误差为η=F--mMgm+MmMgm+M=mM=k,可见,k越大,则细绳拉力测量值F的误差越大.当k>100%时,误差就会大得令人不可容忍.考虑到一般都取在测量加速度a时计时器也都取两位有效数字,如果再考虑绳子的质量以及绳子与滑轮之间的摩擦,对中学物理实验来说,取k=10%左右应该就可以满足要求了.(责任编辑:黄春香)。
物理实验技术中的误差来源和减小方法介绍
物理实验技术中的误差来源和减小方法介绍引言:在物理实验中,精确的测量和准确的数据是非常重要的,因为任何实验的结果都依赖于测量的准确性。
然而,由于各种原因,物理实验中常常会出现误差。
本文将介绍物理实验中的常见误差来源和一些减小误差的方法。
一、随机误差随机误差是由于实验中存在的种种偶然因素导致的,其大小和方向是无法预测的。
这些因素可能包括仪器的精度、环境的影响、人的操作等。
随机误差的特点是多次重复实验结果的离散程度较大,它不会固定在一个值上。
减小随机误差的方法有:1.增加重复次数:通过重复实验,可以减少个别数据的影响,提高结果的准确性。
2.平均法:对于多次测量得到的数据,取它们的平均值可以减小随机误差的影响。
3.使用统计方法:通过统计学方法对数据进行处理,例如计算标准差、方差等,可以更好地评估测量中的随机误差。
二、系统误差系统误差是指在实验中由于某些固定因素导致的误差,其大小和方向是固定的。
这些因素可能包括仪器的固有误差、测量装置的不准确性、环境的影响等。
系统误差的特点是多次重复实验结果在一个固定值的附近波动。
减小系统误差的方法有:1.在实验设计中考虑实验条件:例如,选择适当的测量装置和环境条件,使实验结果尽可能准确。
2.校正仪器误差:通过对仪器进行校正,可以减小仪器固有误差的影响。
3.使用合适的校正曲线:在实验中,有时需要对数据进行纠正。
通过建立合适的校正曲线,可以对实验结果进行修正。
4.使用备选测量方法:在实验中,应该考虑使用多种不同的测量方法,以克服单一测量方法的局限性。
三、人为误差人为误差是由于实验者的操作不准确或主观因素的影响导致的误差。
例如,读数不准确、操作不规范等。
人为误差具有主观性和难以控制性的特点。
减小人为误差的方法有:1.操作规范:在实验中,应该严格按照实验步骤进行操作,避免不必要的误差。
2.培养技巧:通过长时间的实践和经验积累,实验者可以提高实验操作的准确性。
3.使用自动化测量装置:自动化测量装置可以减小人为误差的影响,提高测量的准确性。
“验证牛顿第二定律”实验的问题及处理方案
“验证牛顿第二定律”实验的问题及处理方案作者:曾凡元来源:《新课程·下旬》2017年第08期摘要:通过改进实验原理、实验装置,减小或消除实验产生的系统误差。
关键词:牛顿第二定律;系统误差;误差分析;实验原理;实验装置“探究加速度与力、质量的关系”实验是高中物理的一个重要分组实验,教材中列举的实验方案有利于学生理解,有利于学生研究性学习和创新能力的培养。
本文就实验装置内生的系统误差作出理论分析,并通过实验原理、实验装置的改进对实验进行适度优化。
人教版“验证牛顿第二定律”实验采用以下实验装置:用上述实验装置实验时会涉及以下几个问题:1.实验时首先要平衡摩擦力如何平衡摩擦力?怎样检查平衡的效果?重力沿斜面方向的分力与阻力是否始终完全平衡?2.小车包括砝码的质量M要远大于砂和砂桶的总质量m实验时能一直满足m问题1:在利用打点计时器和小车做“验证牛顿第二定律”的实验时,首先要平衡摩擦力。
分析1:牛顿第二定律表达式F=ma中的F是物体所受的合外力,实际上本实验中小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受摩擦力的合力。
因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大,若计摩擦力,其大小的测量又很困难;在研究加速度a和质量m的关系时,随着小车上砝码的增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力。
由于在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力。
另外,打点计时器工作时,振针对纸带的阻力是周期性变化的,所以难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动不是严格的匀速直线运动,纸带上的点子间隔也不可能完全均匀,所以要求基本均匀。
改进1(实验装置):如图2所示,可以通过气垫导轨减小摩擦;用位移传感器削去振针对纸带的周期性阻力,保证物体在运动时受到的是恒力作用。
验证牛顿第二定律—实验数据的处理
- 1 -验证牛顿第二定律〖实验目的〗:验证牛顿第二定律。
即①质量一定时,加速度与作用力成正比;②作用力一定时,加速度与质量成反比。
〖实验原理〗:1.保持研究对象的质量不变,改变小桶里砂的质量,即改变牵引力,用打点计时器打出测算小车运动的加速度,用图象法验证加速度是否与作用力成正比。
2.保持小桶及其中砂的质量不变,即保持牵引力不变,改变研究对象的质量,即在小车上加放砝码,用打点计时器打出纸带测算小车运动的加速度,用图象法验证加速是否与质量成反比。
〖注意事项〗:1.平衡摩擦力时不要挂小桶,应连着纸带,且接通电源,判断小车是否作匀速直线运动。
可用直接观察法,也可用打点计时器打出纸带判定(各点间距相等) 2.小车应打点计时器,且接通电源后待打点计时器稳定后才能放手。
3.本实验存在系统误差,为了减小系统误差必须:小车与钩码的总质量远远大于砂与砂桶的总质量,即:(M+m )>>()m M '+'分析:对于砂和砂桶整体分析:a m M F g m M )()('+'=-'+' 对于小车与钩码整体分析:a m M F )(+=联立上面两式求解得:)()()(m M m M gm M a '+'++'+'=拉小车的力F :)()(1)()(m M m M gm M a m M F +'+'+'+'=+=当(M+m )>>()m M '+'时:g m M F )(+=4.画F a --和mM a +--1图象时应使所描的点尽量多地位于直线上,不在直线上的点尽量均匀分布在直线的两侧。
5.在验证a 与(M+m )成反比时,横坐标选用mM +1,而不是(M+m ),原因是a——(M+m )图线是曲线,不便直接观察a 与(M+m )是否存在反比关系。
〖习题选编〗1.在验证牛顿第二定律的实验中,平衡摩擦力是: A 、不能将装砂的小桶通过滑轮系在小车上;B 、小车后的纸带必须连好,但打点计时器可以不打点;C、应使打点计时器打在小车所带纸带上的点迹间的距离相等;D每次改变小车的质量时,必须两再次平衡摩擦力。
验证牛顿第二定律实验的误差分析和优化设计(精)
验证牛顿第二定律实验的误差分析和优化设计“探究加速度与力、质量的关系”实验是中学物理中最重要的学生实验之一,更是历年高考的热点实验。
从近几年各地高考卷和模拟卷看,对其的考查大多为改进型实验,需要学生对本实验的系统误差有较清晰的认识,同时也考查学生在新情景下的实验探究能力。
针对这一情况,本文拟从消除系统误差角度入手,探讨三类改良方案,赏析消除系统误差的方法和思想,探索题型规律,为今后这一实验的学习提供参考。
一、系统误差分析图1所示的器材是现行教材和各类教辅资料中“探究加速度与力、质量的关系”实验的主流装置,其实验原理是:以小车为研究对象,利用控制变量法探究小车的加速度a与其所受的合力F以及质量M之间的关系。
为消除摩擦力对实验的影响,可在不挂砝码和盘时,在长木板不带定滑轮的一端下面垫一块木板,反复移动木板的位置,直至小车能在斜面上匀速运动(可从打出的纸带上点迹是否均匀来判断)。
这时,小车拖着纸带运动时受到的摩擦阻力恰好与小车重力在沿斜面方向上的分力平衡,即。
平衡摩擦后,绳的拉力就是小车所受的合力,为使实验简单而将盘和砝码的重力mg近似当作小车的拉力,这是引起系统误差的主要原因。
现将误差分析如下:设小车、砝码和盘的质量分别为M、m,对小车:,对砝码和盘有:。
由此可得,,即绳上拉力T实际上是小于mg的,要使误差小,必需满足m?M,才可把mg近似当成对M的拉力。
这样的处理,会使得加速度的理论值大于实际值,且当m越大时,两者差异也越大。
二、优化设计1.巧换装置,改“近似”为“准确测量”从上文分析可知,误差的原因是没有测出真实的绳上拉力T,而是用mg近似替代T。
由此,最常规的改进思路呼之欲出,即利用有关测力装置准确测量出绳上拉力T,从而达到消除误差的目的。
例1.为了探究加速度与力的关系,利用气垫导轨和DIS(力传感器、数据采集器、计算机)系统等装置进行实验,如图2。
其中G1、G2为两个光电门,它们与数字计时器相连,当滑行器通过G1、G2光电门时,光束被遮挡的时间Δt1、Δt2都可以被测量并记录,滑行器连同上面固定的一条形挡光片的总质量为M,挡光片宽度为D,光电门间距离为x,牵引砝码的质量为m,DIS系统未画出。
关于气垫导轨测量重力加速度实验的系统误差分析及数据处理技巧
关于气垫导轨测量重力加速度实验的系统误差分析及数据处理技巧验证牛顿第二定律实验的设计探究本节课主要讲解三个方面。
第一、验证牛顿第二定律实验的原理:利用“整体法”分析小车和砂桶一起加速运动受合外力为砂桶的重力,再利用隔离法计算出小车受的合外力(即拉力),最后得到拉力等于小车重力的近似条件。
第二、利用极限法分析实验图像产生截距的物理解释和误差原因。
第三、简单了解使用气垫导轨光电门等进行实验改进、创新实验的方法。
实验:研究元显恭甩物体的运动研究平抛运动实验是利用描迹法探究问题的一个重要实验。
学生在实验中容易出现的问题是:1.实验的原理理解不到位。
2.实验的控制条件把握不好。
3.实验的数据处理有障碍。
通过本课学习可突破解决以上几个困惑,实现高效学习,并且加深对平抛运动的理解。
实验:探究动能定理探究动能定理实验,是新课标增设的一个实验,了解实验思想、实验方法是完成实验的基础,在学习该实验时往往会出现对实验的原理、控制条件、数据处理、误差分析理解不够深刻现象。
对实验的延伸、拓变不够灵活,因此造成实验题的失分。
通过本节课教学可以解决存在的问题,提升实验能力和探究能力。
实验:检验机械能守恒定律验证机械能守恒实验,是一个典型的纸带类实验,该实验借助自由落体运动,验证机械能守恒。
学生在做该实验会出现四个问题:1.实验要点理解不深刻;2.数据处理读数及有效数字驾驭不理想;3.误差来源及减少方法分析不透彻;4.实验的拓变不够灵活。
通过本节课学习,把握实验要点。
掌握试验方法,弄通实验误差的产生与减少办法。
独立完成实验要求的学习目标。
1、力的概念:力就是物体对物体的促进作用。
2力的性质:物体间力的作用是相互的(相互作用力在任何情况下都是大小相等,方向相反,作用在不同物体上)。
两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。
3、力的促进作用效果:力可以发生改变物体的运动状态。
力可以发生改变物体的形状。
谈谈系统误差的产生原因及其消除或减少的方法(精)
谈谈系统误差的产生原因及其消除或减少的方法在讨论随机误差时,总是有意忽略系统误差,认为它等于零。
若系统误差不存在,期望值就是真值。
但是,在实际工作中系统误差是不能忽略的。
所以要研究系统误差,发现和消除系统误差。
一、系统误差产生的原因在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。
1、在检定或测试中,标准仪器或设备的本身存在一定的误差。
在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。
又称为工具误差或仪器误差。
如:标称值为100g的砝码,经检定实际值为99.997g,即误差为 0.003g。
用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生 0.003g的恒定系统误差。
某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。
这种误差,一般称零位误差,或简称零差。
某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。
这种误差称为装置误差。
2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。
如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。
因这种误差是由客观环境因素引起的,一般把它称为环境误差。
3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。
这种误差称方法误差或称理论误差。
4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。
此项误差又称为人员误差。
消除系统误差的方法
减少系统误差的方法消除或减少系统误差有两个基本方法。
一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。
1.采用修正值方法对于定值系统误差可以采取修正措施。
一般采用加修正值的方法。
对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。
修正值可以逐一求出,也可以根据拟合曲线求出。
应该指出的是,修正值本身也有误差。
所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。
它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。
2.从产生根源消除用排除误差源的办法来消除系统误差是比较好的办法。
这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。
采用专门的方法(1)交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。
如用电桥测电阻,电桥平衡时,R X=R0(R1/R2),保持R1、R2不变,把Rx、R0的位置互换,电桥再次平衡时,R0变成R’,此时Rx=R0’(R2/R1)。
于是有Rx=R0`(R2/R1),由此算出的Rx就可以消除由R1、R2带来的系统误差。
(2)替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。
如果不能达到平衡,修整使之平衡。
替代法是指直截了当地测定物理量的方法。
如:利用精密天平的称重。
设待测重量为x ,当天平达到平衡时所加砝码重量为Q ,天平的两臂长度各为l1 和l2 ,平衡时有x = Q ·l2/ ll 。
再用已知标准砝码P 代替x , 平衡时有P = Q ·l2/ l1 ,得到x = P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律是指质点受到外力作用时,其加速度与外力的大小成正比,与质量成反比,即:F=ma。
这个定律是物理学中非常重要的定律之一,在实验中常用来测量质点的质量和加速度。
在进行牛顿第二定律实验时,系统误差是指实验中出现的各种不确定因素导致的误差。
为了消除系统误差,我们可以采取以下方法:
1.使用精确的仪器。
应使用精确的仪器,包括精密的力计、加速度计等,以减少测量
误差。
2.增加测量次数。
应尽量增加测量次数,并对测量结果进行平均,以减少随机误差。
3.控制实验条件。
应尽量控制实验条件,包括温度、湿度、气压等因素,以减少环境
误差。
4.减小操作误差。
应经过训练,使操作人员具备良好的操作技巧,以减小操作误差。
5.合理设计实验方案。
应合理设计实验方案,确保实验流程的顺畅和高效,以减少实
验中的误差。