数学北师大版七年级下册课后练习
完整)北师大版七年级数学下册第一章课后练习题集
完整)北师大版七年级数学下册第一章课后练习题集北师大版七年级数学下册第一章课后题集——幂的乘方一、基础题1.32x = 2^5x;3-a(-a) = 3 + a^2;a×a = a^2;2n)^(1/3) × [(1/3)/(3/2)] = 2;y^(4/2n) = (y^2)^(1/n) = a^7;3^(-2) × c^3 = c^3/9;2.若(a^3)^n = (a^n)^m(m。
n都是正整数),则m = 3n。
3.计算(-1/2x^2y)^(4/3)的结果正确的是(B)1/x^4y^2.4.判断题:(对的打“√”,错的打“×”)a^2 + a^3 = a^5(√);x^2 × x^3 = x^6(√);x^2)^3 = x^6(×);a^4 × a^2 = a^6(×);5.若m、n、p是正整数,则(am×an)^p等于(C)anmp。
6.计算题:1)-p(-p)^4 = -p^5;2)-(a^2)^3 = -a^6;3)(-a^2)^3 = -a^6;4)[-6^3]^4 = 6^12;5)[2/3 × p^3 × (-p^2)^3] + 2 = -2p^19/27;6)[(x^2)^3]^7 = x^42;7)(x^2)^n - (x^n)^2 = x^2n - x^2n = 0;8)(-a^2)^3 × a^3 + (-4a)^2 × a^2-5 × a^3^7 = -a^6 × a^3 + 16a^2 × a^2-5 × a^3^7 = -a^9 + 16a^-3 × a^3^7 = 16 - a^12.7.若x^m × x^(2m) = 2,求x^(9m)的值。
解:x^m × x^(2m) = x^(3m) = 2^(1/3);则x^(9m) = (x^(3m))^3 = 2.二、提高题:1.计算(-a^2)^3 × (-a^3)^2的结果是(A)-a^12.2.如果(9n)^2 = 3,则n的值是(D)无法确定。
北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课后练习
第一章整式的乘除第6节完全平方公式课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人得分一、单选题1.4张长为m ,宽为n (m >n )的长方形纸片,按如图的方式拼成一个边长为(m +n )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若3S 1=2S 2,则m ,n 满足的关系是( )A .m =4.5nB .m =4nC .m =3.5nD .m =3n2.下列运算正确的是( ) A .(m 2)3=m 6B .(mn )3=mn 3C .(m +n )2=m 2+n 2D .m 6÷m 2=m 33.如果229(3)x bx x -+=-,则b 的值为( ) A .-3B .3C .6D .-64.我国宋代数学家杨辉发现了()na b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( ) A .64 B .128C .256D .612评卷人 得分二、填空题 5.已知:2a b +=,34ab =,则22a b +=_________,a b -=______.6.如图,长方形ABCD的周长为24,以它的四条边为边长向外作正方形,如果这四个正方形的面积和为160,则长方形ABCD 的面积为________.7.已知(x ﹣2020)2+(x ﹣2022)2=18,则(x ﹣2021)2的值是___. 8.已知:x +y =12,则代数式3x 2+y 2的最小值为___. 评卷人 得分三、解答题 9.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S . (1)用含a ,b 的代数式分别表示1S 、2S ; (2)若15a b +=,20ab =,求12S S +的值;(3)当1240S S +=时,求出图3中阴影部分的面积3S .10.化简求值:()()()()22322x y x x y x y x y +-+++-,其中14x =,2y =.11.有甲、乙两个长方形纸片,边长如图所示(m>0),面积分别为S甲和S乙.(1)①计算:S甲=,S乙=;①用“<”,“=”或“>”填空:S甲S乙.(2)若一个正方形纸片的周长与乙长方形的周长相等,面积为S正.①该正方形的边长是(用含m的代数式表示);①小方同学发现:S正与S乙的差与m无关.请判断小方的发现是否正确,并通过计算说明你的理由.12.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值.13.如图,有长为m ,宽为n 的长方形卡片()A mn ,边长为m 的正方形卡片B ,边长为n 的正方形卡片C ,将卡片C 按如图1放置于卡片A 上,其未叠合部分(阴影)面积为1S ,将卡片A 按如图2放置于卡片B 上,其未叠合部分(阴影)面积为2S .(1)1S =________,2S =________;(用含m 、n 的代数式表示) (2)若1218S S +=,则图3中阴影部分的面积3S =________; (3)若6m n -=,10mn =,求图4中阴影部分的面积4S .14.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示) 方法1:______ 方法2:______(2)根据()1中结论,请你写出下列三个代数式之间的等量关系;代数式:2()m n +,2()m n -,mn _________________________(3)根据(2)题中的等量关系,解决如下问题:已知8a b +=,7ab =,求a b -和22a b -的值.15.观察与计算: 152=225=1×2×100+25; 252=625=2×3×100+25; 352=1225=3×4×100+25; …猜想与计算:852=_________,1052= ;发现:末位数字是5的数的平方的结果总是等于 ; 说理:请你用整式的乘法的有关知识说明你发现的结论的正确性. (提示:可以用10a +5表示末位数字是5的数)16.劳动是财富的源泉,也是幸福的源泉高新区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作。
北师大版七年级数学下册全册课时练习(一课一练)
北师大版七年级数学下册全册课时练习同底数幂的乘法题组同底数幂的乘法1.有下列式子:①34×34=316;②(-3)4×(-3)3=(-3)7;③-32×(-3)2=(-3)4;④24×22=28.其中计算正确的有( )A.1个B.2个C.3个D.4个【解析】选A.①34×34=38;③-32×(-3)2=-34;④24×22=26;故①③④错误,只有②正确.2.在等式a3·a2·( )=a11中,括号里面的代数式是 ( )A.a7B.a8C.a6D.a3【解析】选C.由a3·a2·( )=a11可得,a5·( )=a11,所以括号里的代数式为a6.3.计算a·a2的结果是( )A.aB.a2C.2a2D.a3【解析】选D.a·a2=a3.4.计算:(1)-a2·a5.(2)x3·x5·x+x6·x3.(3)(2x-1)2·(2x-1)3+(2x-1)4·(1-2x).【解析】(1)-a2·a5=-a2+5=-a7.(2)x3·x5·x+x6·x3=x3+5+1+x6+3=x9+x9=2x9.(3)(2x-1)2·(2x-1)3+(2x-1)4·(1-2x)=(2x-1)2+3+(2x-1)4·[-(2x-1)]=(2x-1)5+[-(2x-1)4+1]=(2x-1)5-(2x-1)5=0.【方法技巧】整式的混合运算顺序是先算乘方,再算乘除,最后算加减,在进行每一种运算时,要明确它们的运算性质.【变式训练】计算:(1)4×2n.(2)x·(-x)2·(-x)2n+1-x2n+2·x2.【解析】(1)原式=22×2n=22+n.(2)原式=-x·x2·x2n+1-x2n+2·x2=-x2n+1+2+1-x2n+2+2=-2x2n+4.题组同底数幂的乘法法则的应用1.如果3x=m,3y=n,那么3x+y等于 ( )A.m+nB.m-nC.mnD.【解析】选C.因为3x=m,3y=n,所以3x+y=3x×3y=mn.【方法指导】同底数幂的乘法法则的逆用法则a m·a n=a m+n(m,n都是正整数),从右向左为a m+n=a m·a n(m,n都是正整数),以此类推=a p·…·a q(p,…,q都是正整数).当幂的指数是和的形式时,可考虑变为同底数幂的乘法,结合已知条件灵活变形,使计算简便.2.x3m+2不等于( )A.x3m·x2B.x m·x2m+2C.x3m+2D.x m+2·x2m【解析】选C.A.x3m·x2=x3m+2;B.x m·x2m+2=x3m+2;C.x3m+2不能再进行运算;D.x m+2·x2m=x3m+2.3.已知2×2x=212,则x的值为( )A.5B.10C.11D.12【解析】选C.因为2×2x=212,所以x+1=12,解得x=11.4.计算22016-22015的结果是( )A.22015B.2C.1D.-22016【解题指南】把2016拆成2015+1,再逆用同底数幂的乘法法则计算.【解析】选A.原式=2×22015-22015=22015.5.已知2x+2=12,则2x=________.【解析】2x+2=2x·22=2x·4=12,因此2x=3.答案:36.(教材变形题·P3随堂练习T2)长方形的长是4.2×103cm,宽为2.5×102cm,求长方形的面积.【解析】4.2×103×2.5×102=10.5×105=1.05×106(cm2).答:长方形的面积为1.05×106cm2.7.计算:(1)(m-n)2(n-m)2(n-m)3.(2)x3·x n-1-x n-2·x4+x n+2.(3)(a+b)·(b+a)·(b+a)2+(a+b)2·(b+a)2.(4)-a2·(-a)2·(-a)2k·(-a)2k+1.【解析】(1)原式=(n-m)2(n-m)2(n-m)3=(n-m)2+2+3=(n-m)7.(2)原式=x3+n-1-x n-2+4+x n+2=x n+2-x n+2+x n+2=x n+2.(3)原式=(a+b)1+1+2+(a+b)2+2=(a+b)4+(a+b)4=2(a+b)4.(4)原式=-a2·(-a)2+2k+2k+1=-a2·(-a)4k+3=-a2·(-a4k+3)=a4k+5.1.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以1+2+22+23+…+2100=2101-1,仿照以上推理,求:1+5+52+53+…+52017的值.【解析】设S=1+5+52+53+ (52017)则5S=5+52+53+ (52018)所以5S-S=4S=5+52+53+…+52018-(1+5+52+53+…+52017)=52018-1,则S=.2.已知2m+3n能被19整除,求2m+3+3n+3能否被19整除.【解析】2m+3+3n+3=8×2m+27×3n=8×(2m+3n)+19×3n,由(2m+3n)能被19整除,19×3n能被19整除,所以2m+3+3n+3能被19整除.幂的乘方与积的乘方题组幂的乘方、积的乘方运算1.计算(-2a3)2的结果是( )A.-4a6B.4a5C.-4a5D.4a6【解析】选D.根据幂的乘方的运算性质,(-2a3)2=(-2)2a3×2=4a6.2.下列各式计算正确的是( )A.4a-a=3B.a4+a2=a3C.(-a3)2=a6D.a3·a2=6【解析】选 C.根据合并同类项法则“同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变”,可知4a-a=3a,故选项A错误;选项B中“a4”和“a2”不是同类项,故不能进行加减运算,所以选项B错误;根据“(ab)n=a n b n”和“(a m)n=a mn”可知(-a3)2=a6成立,故选项C正确;根据“a m·a n=a m+n”,可知a3·a2=a5,故选项D 错误.3.(-a)3(-a)2(-a5)= ( )A.a10B.-a10C.a30D.-a30【解析】选A.(-a)3(-a)2(-a5)=(-a3)·a2(-a5)=a3+2+5=a10.4.计算:(a2)2= .【解析】(a2)2=a4.答案:a45.计算:(a4)3+m= .【解析】(a4)3+m=a4(3+m)=a12+4m.答案:a12+4m6.如果a n=5,b n=3,则(ab)n= .【解析】(ab)n=a n·b n=5×3=15.答案:157.计算下列各式,结果用幂的形式表示.(1)-23×22.(2)(-2)3×(-2)6.(3)(-x)3·x2·(-x)5.(4)-(-a4)·(-a3)·(-a2).【解析】(1)原式=-25.(2)原式=(-2)9=-29.(3)原式=x3·x2·x5=x10.(4)原式=a4·a3·a2=a9.题组逆用幂的乘方、积的乘方法则1.丁丁认为下列括号内都可以填a4,你认为使等式成立的只能是( )A.a12=( )3B.a12=( )4C.a12=( )2D.a12=( )6【解析】选A.a12=a4×3=(a4)3.2.若3×9m×27m=321,则m的值为( )A.3B.4C.5D.6【解析】选 B.3×9m×27m=3×(32)m×(33)m=3×32m×33m=31+2m+3m=31+5m=321,所以1+5m=21,5m=20,m=4.3.若m=2125,n=375,则m,n的大小关系正确的是( )A.m>nB.m<nC.m=nD.大小关系无法确定【解析】选A.m=2125=25×25=(25)25=3225,n=375=33×25=(33)25=2725,因为32>27,所以m>n.4.逆用积的乘方,小明很轻松地计算出:·22018==1,受他的启发,请你计算一下:×32018= .【解析】×32018=×32017×3=×3=1×3=3.答案:3.5.(2017·深圳市观澜中学质检)若10m=5,10n=3,则102m+3n= .【解析】因为10m=5,10n=3,所以102m+3n=102m×103n=(10m)2×(10n)3=52×33=25×27=675.答案:6756.如果2x+1×3x+1=62x-1,则x的值为.【解析】2x+1×3x+1=2x×2×3x×3=(2×3)x×2×3=6x×6=6x+1=62x-1,所以2x-1=x+1,x=2.答案:27.已知3x-5y-2=0,则8x·32-y的值为.【解析】8x·32-y=(23)x·(25)-y=23x·2-5y=23x-5y.因为3x-5y-2=0,所以3x-5y=2,所以23x-5y=22=4.答案:48.已知2n=3,则4n+1的值是.【解析】因为4n+1=22(n+1)=22n+2=(2n)2×4,把2n=3代入得32×4=9×4=36.答案:369.比较:218×310与210×315的大小.【解析】因为218×310=28×210×310=28×(2×3)10=256×610, 210×315=210×310×35=(2×3)10×35=243×610,又256>243,所以218×310>210×315.10.计算:(1)已知44·83=2x,求x的值.(2)x a=2,y a=3,求(xy)2a的值(3)当a3b2=72时,求a6b4的值.【解析】(1)44·83=(22)4·(23)3=28·29=217,所以x=17.(2)(xy)2a=[(xy)a]2=(x a y a)2=62=36.(3)a6b4=(a3)2(b2)2=(a3b2)2=722=5184.若22·16n=(22)9,解关于x的方程nx+4=2.【解析】22·16n=(22)9变形为22·24n=218,所以2+4n=18,解得n=4.此时方程为4x+4=2,解得x=-.同底数幂的除法题组同底数幂的除法1.计算(a4)3÷(a2)5的结果是( )A.aB.a2C.a3D.a4【解析】选B.(a4)3÷(a2)5=a12÷a10=a2.2.下列运算正确的是( )A.2a5-3a5=a5B.a2·a3=a6C.a7÷a5=a2D.(a2b)3=a5b3【解析】选C.A.原式=-a5,故本选项错误;B.原式=a5,故本选项错误;C.原式=a2,故本选项正确;D.原式=a6b3,故本选项错误.3.计算x7÷x4的结果等于.【解析】x7÷x4=x3.答案:x34.a5÷a2÷a= .【解析】a5÷a2÷a=a5-2-1=a2.答案:a25.已知x a=4,x b=16,则x3a-2b= .【解析】x3a-2b=x3a÷x2b=(x a)3÷(x b)2=43÷162=.答案:【变式训练】若3n=2,3m=5,则32m+3n-1= .【解析】因为3n=2,3m=5,所以32m+3n-1=(3m)2×(3n)3÷3=25×8÷3=.答案:6.计算:(1)(a3)3÷(a4)2.(2)(-a)5÷a3.(3)x m÷x÷x.(4)(x-2y)4÷(2y-x)2÷(x-2y).【解析】(1)原式=a9÷a8=a.(2)原式=-a5÷a3=-a2.(3)原式=x m-1-1=x m-2.(4)原式=(x-2y)4÷(x-2y)2÷(x-2y)=(x-2y)1=x-2y.题组零指数幂和负整数指数幂1.计算3-1等于( )A.3B.-C.-3D.【解析】选D.3-1=.2.计算:20·2-3= ( )A.-B.C.0D.8【解析】选B.20·2-3=1×=.3.若(x-3)0+2(3x-6)-2有意义,则x的取值范围是 ( )A.x>3B.x<2C.x≠3且x≠2D.以上都不对【解析】选C.由题意得x-3≠0,且3x-6≠0,解得x≠3且x≠2.4.若a=,b=,c=0.8-1,则a,b,c三数的大小关系是( )A.a<b<cB.a>b>cC.a>c>bD.c>a>b【解题指南】解决本题的两个步骤(1)求出a,b,c的值.(2)比较a,b,c的大小.【解析】选C.因为a===,b==1,c=0.8-1==,所以a>c>b.5.计算+a2·a3-a2÷a-3的结果为( )A.2a5-aB.2a5-C.a5D.a6【解析】选D.(a2)3+a2·a3-a2÷a-3=a6+a5-a5=a6.6.计算:x0·x3÷x-4= .【解析】x0·x3÷x-4=x3÷x-4=x3+4=x7.答案:x77.计算:(1)(-1)2016+-(3.14-π)0(2)++.【解析】(1)原式=1+4-1=4.(2)原式=-2+4+1=3.1.已知10a=20,10b=,求3a÷3b的值.【解析】因为10a=20,10b=,所以10a÷10b=10a-b=20÷=100=102,所以a-b=2,所以3a÷3b=3a-b=32=9.2.小颖学习了“幂的运算”后做这样一道题:若(2x-3)x+3=1,求x的值,她解出来的结果为x=1,老师说小颖考虑问题不全面,聪明的你能帮助小颖解决这个问题吗?小颖解答过程如下:解:因为1的任何次幂都为1,所以2x-3=1,x=2.且2+3=5,故(2x-3)x+3=(2×2-3)2+3=15=1,所以x=2.你是如何解答的?【解析】①因为1的任何次幂为1,所以2x-3=1,x=2.且2+3=5,所以(2x-3)x+3=(2×2-3)2+3=15=1,所以x=2;②因为-1的任何偶次幂也都是1,所以2x-3=-1,且x+3为偶数,所以x=1,当x=1时,x+3=4是偶数,所以x=1;③因为任何不是0的数的0次幂也是1,所以x+3=0,2x-3≠0,解得x=-3,综上所述,x=2或-3或1.同底数幂的除法题组用科学记数法表示绝对值较小的数1.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( )A.9.5×10-7B.9.5×10-8C.0.95×10-7D.95×10-8【解析】选A.0.00000095=9.5×10-7.2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A.1.05×105B.0.105×10-4C.1.05×10-5D.105×10-7【解析】选C.0.0000105=1.05×10-5.3.2011年3月,英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜.下列将0.00000005米用科学记数法表示正确的是 ( )A.0.5×10-9米B.5×10-8米C.5×10-9米D.5×10-7米【解析】选B.0.00000005米=5×10-8米.4.我们身处在自然环境中,一年接受的宇宙射线及其他天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( )A.3.1×106西弗B.3.1×103西弗C.3.1×10-3西弗D.3.1×10-6西弗【解析】选C.3100微西弗=3.1毫西弗=3.1×10-3西弗.5.下列各数表示正确的是( )A.57000000=57×106B.0.0158(用四舍五入法精确到0.001)≈0.015C.1.804(用四舍五入法精确到十分位)≈1.8D.0.0000257=2.57×10-4【解析】选C.A.57000000=5.7×107,故A错误;B.0.0158(用四舍五入法精确到0.001)≈0.016,故B错误;C.1.804(用四舍五入法精确到十分位)≈1.8,故C正确;D.0.0000257=2.57×10-5,故D错误.6.(2017·常熟市期末)在人体血液中,红细胞的直径约为7.7×10-4cm,7.7×10-4用小数表示为( )A.0.000 077B.0.000 77C.-0.000 77D.0.0077【解析】选B.7.7×10-4用小数表示为0.00077.7.21世纪,纳米技术被广泛应用,纳米是长度计算单位,1纳米=10-9米.VCD光碟的两面有用激光刻成的小凹坑,已知小凹坑的宽度只有0.4微米(1微米=10-6米),试将小凹坑的宽度用纳米作为计算单位表示出来(结果用科学记数法表示). 【解析】0.4微米=(4×10-7米)÷10-9米=4×10-7-(-9)=4×102纳米.8.我们知道一粒大米大约是0.022g.现在请你计算:我国现在14亿人口,按每人三餐计算,若每人每餐节约一粒米,请问全国人民一年大约能节约多少t大米?如果用载重5 t的汽车来运输这些大米,需要多少辆车才能一次装完(一年按365天计算)?【解析】14亿=1.4×109,0.022g=2.2×10-8t.由题意可得2.2×10-8×1.4×109×3×365=3.3726×104(t).需要载重5t的汽车:≈6746(辆),即需要用6746辆汽车才能一次装完.1.观察下列计算过程:(1)因为33÷35===,33÷35=33-5=3-2,所以3-2=.(2)当a≠0时,因为a2÷a7===,a2÷a7=a2-7=a-5,所以a-5=,由此可归纳出规律是:a-p=(a≠0,p为正整数)请运用上述规律解决下列问题:(1)填空:3-10= ;x2×x5÷x9= .(2)3×10-4= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法a×10n的形式是: .【解析】(1)3-10=;x2×x5÷x9=x2+5-9=x-2=.(2)3×10-4=0.0003.(3)0.00000002=2×10-8.答案:(1)(2)0.0003 (3)2×10-82.一个水分子的质量约为3×10-26kg,一滴水中大约有1.67×1021个水分子,说明分子的质量和体积都很小.如果一只用坏的水龙头每秒钟漏2滴水,假设平均每20滴水为1mL.(1)试计算这只坏的水龙头一昼夜漏水的体积为多少升.(2)这只坏的水龙头一昼夜漏水的质量大约是多少千克?(保留两位小数)(3)你能从中得到什么启示,生活中该怎么做?【解析】(1)根据水龙头1s滴2滴水,一昼夜滴水量为2×60×60×24= 172800(滴).因为20滴为1mL,故一昼夜共漏水172800÷20=8640(mL)=8.64(L).(2)3×10-26×1.67×1021×2×60×60×24≈8.66(kg).所以一昼夜漏水的质量大约是8.66kg.(3)滴漏浪费巨大,应及时修理,定期检修;爱护和保护水资源,是每个公民应尽的责任和义务,从自身做起,像对待掌上明珠一样珍惜每一滴水等(答案不唯一).1.4 整式的乘法第一课时题组单项式乘单项式1.计算4x3·3x6的结果是( )A.7x6B.12x18C.12x9D.7x9【解析】选C.4x3·3x6=(4×3)×(x3·x6)=12x9.2.下列运算正确的是( )A.3x2+4x2=7x4B.2x3·3x3=6x3C.a÷a-2=a3D.=-a6b3【解析】选C.选项A是合并同类项,结果为7x2,故选项A错误;选项B,是同底数幂乘法,结果为6x6,故选项B错误;选项C是同底数幂除法,底数不变,指数相减,故选项C正确;选项D是积的乘方,结果为-a6b3,故选项D错误.3.-2a2bc×□=-6a6b2c,则□内应填的代数式是( )A.3a3bB.-3a3bC.3a4bD.-3a4b【解析】选C.-2×3=-6,a2·a4=a6,b·b=b2,所以□内应填的代数式是3a4b.4.a5·+a6·= .【解析】原式=a5·(-8a3)+a6·9a2=-8a8+9a8=a8.答案:a85.计算:(1)3a·a3-(2a2)2.(2)(-2a2x)3·bx.(3)-2(x-y)×3(x-y)2.【解析】(1)3a·a3-(2a2)2=3a4-4a4=-a4.(2)(-2a2x)3·bx=ax2[(-2)3a6x3]·bx=ax2[(-8)a6x3]·bx=-2a7bx6.(3)原式=(-2×3)(x-y)1+2=-6(x-y)3.6.先化简,再求值:-(-2a)3·(-b3)2+;其中a=-,b=2.【解析】原式=-(-8a3)·b6+=8a3b6-a3b6=a3b6.当a=-,b=2时,原式=××26=××64=-37.题组单项式乘单项式的应用1.一个长方体的底面积是4xy,高是3x,那么这个长方体的体积是 ( )A.7x2yB.7x2C.12x2D.12x2y【解析】选D.由题意,得4xy·3x=12x2y.2.计算(6×103)×(8×105)的结果是( )A.48×109B.4.8×109C.4.8×1016D.48×1015【解析】选B.(6×103)×(8×105)=48×108=4.8×109.3.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是( )A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2【解析】选C.(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).【变式训练】如图是一个长方形场地,则它的面积为.【解析】由图可知长方形的长=2a+a+a+2a=6a,宽为3b,所以长方形的面积=6a·3b=18ab.答案:18ab4.已知3x n-3y5-n·(-8x3m y2n)=-24x4y9,m= ,n=【解析】3x n-3y5-n·(-8x3m y2n)=-24x n-3+3m y5-n+2n=,所以5-n+2n=9得n=4;把n=4代入n-3+3m=4得m=1.答案:1 45.三角表示3abc,方框表示-4x y w z,则×的结果是.【解析】×=9mn·(-4n2m5)=-36m6n3.答案:-36m6n36.如图所示,计算变压器铁芯片(图中阴影部分)的面积.(单位:cm)【解析】方法一:用整个长方形面积减去空白部分面积.(1.5a+2.5a)(a+2a+2a+2a+a)-2a·2.5a-2a·2.5a=4a·8a-5a2-5a2=32a2-10a2=22 a2(cm2).方法二:分割求和,即分割成4块的和.1.5a·(a+2a+2a+2a+a)+2.5a·a+2.5a·2a+2.5a·a=1.5a·8a+2.5a2+5a2+2.5a2 =12a2+2.5a2+5a2+2.5a2=22a2(cm2).形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad-bc,比如:=2×3-1×5=1.请你按照上述法则,计算的结果.【解析】=-2ab×(-ab)2-a2b×(-3ab2)=5a3b3.1.4 整式的乘法第二课时题组单项式与多项式相乘1.下列计算不正确的是( )A.-x(3x-1)=-x2+1B.x(x-1)=x2-xC.m(n-m)=-m2+mnD.(x2-x-1)x=x3-1【解析】选A.A.-x(3x-1)=-x2+x,故此选项错误;B.x(x-1)=x2-x,正确;C.m(n-m)=-m2+mn,正确;D.(x2-x-1)x=x3-1,正确.2.化简x(y-x)-y(x-y)得( )A.x2-y2B.y2-x2C.2xyD.-2xy【解析】选B.x(y-x)-y(x-y)=xy-x2-xy+y2=y2-x2.3.下列计算正确的是( )A.a8÷a4=a2B.(2a2)3=6a6C.3a3-2a2=aD.3a(1-a)=3a-3a2【解析】选D.a8÷a4=a8-4=a4.可见A错误.(2a2)3=23(a2)3=8a6.可见B错误.多项式3a3-2a2不能化简,可见C错误.由单项式乘多项式的法则可知D正确.4.计算:2(x-y)+3y= .【解析】①去括号,得2(x-y)+3y=2x-2y+3y;②合并同类项,得2(x-y)+3y=2x+y. 答案:2x+y5.(1)计算(6a3-12a2+9a)= .【解析】(6a3-12a2+9a)=-4a7+8a6-6a5.答案:-4a7+8a6-6a56.计算:(1)3x2(-y-xy2+x2).(2)(-4xy)·(xy+3x2y-2).【解析】(1)3x2(-y-xy2+x2)=3x2·(-y)-3x2·(xy2)+3x2·x2=-3x2y-3x3y2+3x4.(2)(-4xy)·(xy+3x2y-2)=(-4xy)·xy+(-4xy)·3x2y+(-4xy)·(-2)=-4x2y2-12x3y2+8xy.【知识归纳】单项式与多项式相乘,其实质就是乘法分配律的应用,将单项式乘多项式转化为单项式乘单项式,再转化为同底数幂相乘.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,运算时可以用此来检验运算中是否漏乘.7.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.【解析】3a(a2-2a+1)-2a2(a-3)=3a3-6a2+3a-2a3+6a2=a3+3a.当a=2时原式=23+3×2=8+6=14.题组单项式与多项式相乘的应用1.如果长方体的长为3a-4,宽为2a,高为a,则它的体积是( )A.3a2-4aB.a2C.6a3-8a2D.6a2-8a【解析】选C.由题意可得:长方体的体积是:(3a-4)×2a×a=(3a-4)×2a2=6a3-8a2.2.若三角形的底边为2m+1,底边上的高为2m,则此三角形的面积为 ( )A.4m2+2mB.4m2+1C.2m2+mD.2m2+m【解析】选C.因为三角形的底边为2m+1,底边上的高为2m,所以此三角形的面积为:×2m×(2m+1)=2m2+m.3.如果(x2-a)x+x的展开式中只含有x3这一项,那么a的值为( )A.1B.-1C.0D.不能确定【解析】选A.(x2-a)x+x=x3-ax+x=x3+(1-a)x,因为只含x3这一项所以1-a=0,a=1.4.已知2m-3n=-4,则代数式m(n-4)-n(m-6)的值为.【解析】m(n-4)-n(m-6)=mn-4m-mn+6n=-4m+6n=-2(2m-3n)=-2×(-4)=8.答案:85.若-2x2y(-x m y+3xy3)=2x5y2-6x3y n,则m= ,n= .【解析】-2x2y(-x m y+3xy3)=2x2+m y2-6x3y4=2x5y2-6x3y n,所以2+m=5,m=3,n=4.答案:3 46.若要使x(x2+a+3)=x(x2+5)+2(b+2)成立,则a,b的值分别为.【解析】已知等式变形得:x3+(a+3)x=x3+5x+2(b+2),可得a+3=5,2(b+2)=0,解得:a=2,b=-2.答案:2,-27.如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.某同学在计算一个多项式乘以-2a时,因抄错运算符号,算成了加上-2a,得到的结果是a2+2a-1,那么正确的计算结果是多少?【解析】因为计算一个多项式乘以-2a时,因抄错运算符号,算成了加上-2a,得到的结果是a2+2a-1,所以这个多项式为:a2+2a-1+2a=a2+4a-1,所以正确的计算结果是:-2a(a2+4a-1)=-2a3-8a2+2a.1.4 整式的乘法第三课时题组多项式与多项式相乘1.下列算式的计算结果等于x2-5x-6的是( )A.(x-6)(x+1)B.(x+6)(x-1)C.(x-2)(x+3)D.(x+2)(x-3)【解析】选A.A.(x-6)(x+1)=x2+x-6x-6=x2-5x-6,符合题意;B.(x+6)(x-1)=x2-x+6x-6=x2+5x-6,不符合题意;C.(x-2)(x+3)=x2+3x-2x-6=x2+x-6,不符合题意;D.(x+2)(x-3)=x2-3x+2x-6=x2-x-6,不符合题意.【规律总结】(x+a)(x+b)型多项式的乘法因为(x+a)(x+b)=x2+ax+bx+ab= x2+(a+b)x+ab,所以(x+a)(x+b)=x2+(a+b)x+ab.【变式训练】计算:(x+5)(x-4)= .【解析】(x+5)(x-4)=x2+x-20.答案:x2+x-202.下列计算正确的是( )A.(x+2)(2-x)=x2-4B.(2x+y2)(2x2-y2)=2x2-y4C.(3x2+1)(3x2-1)=9x4-1D.(x-2)(x+3)=x2-6【解析】选C.A.(x+2)(2-x)=-x2+4,故A选项错误;B.(2x+y2)(2x2-y2)=4x3-2xy2+2x2y2-y4,故B选项错误;C.(3x2+1)(3x2-1)=9x4-1,故C选项正确;D.(x-2)(x+3)=x2+x-6,故D选项错误.3.计算(2x2-4)= ( )A.-x2+2B.x3+4C.x3-4x+4D.x3-2x2-2x+4【解析】选D.(2x2-4)=(2x2-4)=x3-2x2-2x+4.4.若3x(2x-3)-(4-2x)x=8x2-3x+4,则x的值等于 ( )A. B.- C. D.-【解析】选B.3x(2x-3)-(4-2x)x=8x2-3x+4,6x2-9x-4x+2x2=8x2-3x+4,-13x+3x=4,-10x=4,x=-.5.计算:(1)(2x-1)(-1-2x)= .(2)(-a+2b)(a2+2ab+4b2)= .【解析】(1)(2x-1)(-1-2x)=-2x-4x2+1+2x=1-4x2.(2)(-a+2b)(a2+2ab+4b2)=-a3-2a2b-4ab2+2a2b+4ab2+8b3=-a3+8b3答案:(1)1-4x2(2)-a3+8b3【方法指导】多项式与多项式相乘1.第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘.2.多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.6.化简:x(x+1)-(x+1)(x-2).【解析】原式=x2+x-(x2-x-2)= x2+x-x2+x+2=2x+2.题组多项式与多项式相乘的应用1.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有( )①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④【解析】选D.①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;①(2a+b)(m+n),故①正确;②长方形的面积等于左边、右边及中间的长方形面积之和,表示即可;②2a(m+n)+b(m+n),故②正确;③长方形的面积等于上下两个长方形面积之和,表示即可;③m(2a+b)+n(2a+b),故③正确;④长方形的面积等于6个长方形的面积之和,表示即可.④2am+2an+bm+bn,故④正确,则正确的有①②③④.2.若=x2+mx+n,则m,n分别为( )A.m=4,n=12B.m=-4,n=12C.m=-4,n=-12D.m=4,n=-12【解析】选D.原式 =x2+4x-12=x2+mx+n,所以m=4,n=-12.3.若(x+m)(x-8)中不含x的一次项,则m的值为 ( )A.8B.-8C.0D.8或-8【解析】选A.(x+m)(x-8)=x2-8x+mx-8m=x2+(m-8)x-8m.因为不含x的一次项,所以m-8=0,m=8.【变式训练】若多项式乘法(x+2y)(2x-ky-1)的结果中不含xy项,则k的值为( )A.4B.-4C.2D.-2【解析】选A.(x+2y)(2x-ky-1)=2x2-kxy-x+4xy-2ky2-2y=2x2+(4-k)xy-x-2ky2-2y,因为结果中不含xy项,所以4-k=0,解得k=4.4.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M,N的大小关系是( )A.M>NB.M<NC.M=ND.无法确定【解析】选B.因为M-N=(a+3)(a-4)-(a+2)(2a-5)=a2-a-12-2a2+a+10=-a2-2≤-2<0,所以M<N.5.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是.【解析】(a-2)(b-2)=ab-2a-2b+4=ab-2(a+b)+4=1-2×+4=1-3+4=2.答案:26.解方程:(x+1)(x-1)=(x+2)(x-3).【解析】因为(x+1)(x-1)=(x+2)(x-3),所以x2-1=x2-x-6.解得:x=-5.7.如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为xcm的小正方形后,按折痕做成一个有底无盖的长方体盒子,试求盒子的体积.【解析】根据题意可得:长方体盒子的长为(10-2x)cm,宽为(6-2x)cm,高为xcm. 所以长方体盒子的体积V=(10-2x)·(6-2x)·x=(4x2-32x+60)x=(4x3-32x2+60x)cm3.答:盒子的体积为(4x3-32x2+60x)cm3.1.(1)计算:(x+1)(x+2)= ,(x-1)(x-2)= ,(x-1)(x+2)= ,(x+1)(x-2)= .(2)你发现(1)小题有何特征,会用公式表示出来吗?(3)已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+12,则m的可能取值有多少个? 【解析】(1)(x+1)(x+2)=x2+3x+2,(x-1)(x-2)=x2-3x+2,(x-1)(x+2)=x2+x-2,(x+1)(x-2)=x2-x-2.(2)可以发现题(1)中,左右两边式子符合(x+p)(x+q)=x2+(p+q)x+pq结构.(3)因为12可以分解以下6组数,12=1×12,2×6,3×4,(-1)×(-12),(-2)×(-6),(-3)×(-4),所以m=a+b应有6个值.2.你能化简(x-1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x-1)(x+1)= ;(x-1)(x2+x+1)= ;(x-1)(x3+x2+x+1)= ;…(x-1)(x99+x98+…+x+1)= .(2)请你利用上面的结论计算:299+298+…+2+1.【解析】(1)(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(x-1)(x99+x98+…+x+1)=x100-1.答案:x2-1 x3-1 x4-1 x100-1(2)299+298+…+2+1=(2-1)×(299+298+…+2+1)=2100-1.平方差公式第一课时题组平方差公式1.下列式子不能用平方差公式计算的是( )A.(-x+y)(-x-y)B.(a-b)(b-a)C.(a-b)(a+b)D.(-x-1)(x-1)【解析】选B.A.(-x+y)(-x-y)中-x与-x相同,y与-y互为相反数,能用平方差公式;B.(a-b)(b-a)中a与-a互为相反数,-b与b互为相反数,不能用平方差公式;C.(a-b)(a+b)中a与a相同,-b与b互为相反数,能用平方差公式;D.(-x-1)(x-1)中-x与x互为相反数,-1与-1相同,能用平方差公式.2.化简(a+b+c)2-(a-b+c)2的结果为( )A.4ab+4bcB.4acC.2acD.4ab-4bc【解析】选A.(a+b+c)2-(a-b+c)2=(a+b+c+a-b+c)(a+b+c-a+b-c)=(2a+2c)(2b)=4ab+4bc.3.已知a+b=3,a-b=5,则a2-b2= ( )A.3B.8C.15D.-2【解析】选C.因为(a+b)(a-b)=a2-b2,而a+b=3,a-b=5,所以3×5=a2-b2=15.【变式训练】若a2-b2=,a-b=,则a+b的值为.【解析】(a+b)(a-b)=a2-b2=,a-b=,所以a+b=.4.等式(-a-b)( )(b2+a2)=a4-b4中,括号内应填( )A.a-bB.-a+bC.-a-bD.a+b【解析】选B.因为a4-b4=(a2+b2)(a2-b2),所以a2-b2=(-a-b)( ).( )应填(-a+b).5.计算(4x+3b)(4x-3b)= __.【解析】(4x+3b)(4x-3b)=(4x)2-(3b)2=16x2-9b2.答案:16x2-9b26.计算:(x+y+z)(x+y-z)=(A+B)(A-B),则A= ,B= .【解析】在x+y+z和x+y-z中完全相同的是x+y,z与-z互为相反数,所以A=x+y,B=z.答案:x+y z7.如果x+y=2,x2-y2=10,则x-y= _.【解析】x2-y2=(x+y)(x-y)=2(x-y)=10,所以x-y=5.答案:58.若(x+3a)(x-3a)=x2-36,则a的值为_. 【解析】(x+3a)(x-3a)=x2-9a2=x2-36,所以-9a2=-36,a2=4,因为(±2)2=4,所以a=±2.答案:±29.计算:(1).(2)(a+b-c)(-a+b+c).【解析】(1)===-x4.(2)(a+b-c)(-a+b+c)=[b+(a-c)][b-(a-c)]=b2-(a-c)2=b2-(a2-2ac+c2)=b2-a2+2ac-c2.1.计算:(2x+3y)(2x-3y)-(-3x+5y)(-3x-5y). 【解析】(2x+3y)(2x-3y)-(-3x+5y)(-3x-5y)=(2x)2-(3y)2-[(-3x)2-(5y)2]=4x2-9y2-9x2+25y2=16y2-5x2.2.计算:(1+x)(1-x)(1+x2)(1+x4).【解析】(1+x)(1-x)(1+x2)(1+x4)=(1-x2)(1+x2)(1+x4)=(1-x4)(1+x4)=1-x8.平方差公式第二课时题组利用平方差公式进行数的运算1.运用平方差公式计算40×39,可以变形为( )A.×B.×C.×D.×【解题指南】运用平方差公式进行数的简便运算应满足两点:一是把算式变形为相同两数的和与差;二是变成平方差公式的形式后两个因数的大小不变.【解析】选D.由÷2=40得,40×39=×.2.下列代数式的值是1的是( )A.20092-2008×2010B.20092-2009×2010C.20092-2009×2008D.20092-20082【解析】选A.A.20092-2008×2010=20092-(2009-1)(2009+1)=20092-20092+1=1,此选项正确;B.20092-2009×2010=20092-(2009.5-0.5)(2009.5+0.5)=20092-2009.52+0.25,计算结果不是1,此选项错误;C.20092-2009×2008=20092-(2008.5+0.5)(2008.5-0.5)=20092-2008.52+0.25,计算结果不是1,此选项错误; D.20092-20082=(2009+2008)(2009-2008)=4017,计算结果不是1,此选项错误.3.计算的结果是 ( )A.62500B.1000C.500D.250【解析】选C.原式=====500.4.计算142-13×15的结果是__.【解析】142-13×15=142-(14-1)(14+1)=142-142+1=1. 答案:15.计算:9×11×101×10001.【解析】9×11×101×10001=99×101×10001=(100-1)(100+1)×10001=(1002-1)×10001=9999×10001=(10000-1)(10000+1)=100002-1=99999999.6.利用整式乘法公式进行计算:992-1.【解析】原式=(99+1)×(99-1)=100×98=9800.题组利用平方差公式进行整式的运算1.计算(1+3x)(3x-1)+9的结果是( )A.18x2-2B.2-18x2C.0D.8x2【解析】选C.(1+3x)(3x-1)+9=(3x)2-1+9=9x2-1+1-9x2=0.2.代数式(y-1)(y+1)(y2+1)-(y4+1)的值是( )A.0B.2C.-2D.不能确定【解析】选C.(y-1)(y+1)(y2+1)-(y4+1)=(y2-1)(y2+1)-(y4+1)=y4-1-y4-1=-23.(2017·温州中考)化简:(1+a)(1-a)+a(a-2).【解析】原式=1-a2+a2-2a=1-2a.4.计算:-(3a-2b)(3a+2b).【解析】原式=a2-b2-(9a2-4b2)=a2-b2-9a2+4b2=-8a2+b2.5.解方程:(3-x)(3+x)-x(5-x)=4.【解析】(3-x)(3+x)-x(5-x)=4.9-x2-5x+x2=4.9-5x=4.-5x=-5.x=1.6.先化简,再求值:(x+2)(x-2)-x(x-1),其中x=-2.【解析】原式=x2-4-x2+x=x-4.把x=-2代入,得原式=-2-4=-6.1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是__. 【解析】A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=216.21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2,26的末位数字是4,16÷4=4,所以216的末位数字是6.答案:62.乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分面积是__.(写成两数平方差的形式)(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是__.(写成多项式乘法的形式)(3)根据两图的阴影部分面积得到的乘法公式计算下列算式:(1-)(1-)(1-)(1-)…(1-)(1-).【解析】(1)a2-b2.(2)(a+b)(a-b).(3)原式=…=××××…××××=×=.完全平方公式题组完全平方公式1.下列各式,计算正确的是( )A.(2x-y)2=4x2-2xy+y2B.(a2+2b)2=a2+4a2b+4b2C.=x2+1+xD.(x-2y)2=x2-4xy+y2【解析】选C.A.(2x-y)2=4x2-4xy+y2,此选项错误;B.(a2+2b)2=a4+4a2b+4b2,此选项错误;C.=x2+1+x,此选项正确;D.(x-2y)2=x2-4xy+4y2,此选项错误.2.小虎在利用完全平方公式计算时,不小心用墨水将式子中的两项染黑:(2x+)2=4x2+12xy+,则被染黑的最后一项应该是 ( )A.3yB.9yC.9y2D.36y2【解析】选C.(2x)2=4x2,2·2x( )=12xy,所以括号里应填3y,(3y)2=9y2.3.计算(-2y-x)2的结果是( )A.x2-4xy+4y2B.-x2-4xy-4y2C.x2+4xy+4y2D.-x2+4xy-4y2【解析】选C.(-2y-x)2=x2+4xy+4y2.4.计算(2a-3)2的结果为__.【解析】(2a-3)2=4a2-2·2a·3+9=4a2-12a+9.答案:4a2-12a+95.(x- )2=x2-6xy+ .【解析】2·x( )=6xy,括号里应填3y,(3y)2=9y2.答案:3y 9y26.计算:(1)(-x+2y)2.(2)(m+n-2)(m+n+2).(3).(4)(a+b)2(a-b)2.【解析】(1)(-x+2y)2=x2+2·(-x)·2y+4y2=x2-4xy+4y2.(2)(m+n-2)(m+n+2)=(m+n)2-22=m2+2mn+n2-4.(3)===a4-2·a2·+=a4-a2+.(4)(a+b)2(a-b)2=[(a+b)(a-b)]2=(a2-b2)2=a4-2a2b2+b4.【方法技巧】完全平方公式应用的三个技巧1.公式右边共有3项.2.两个平方项符号永远为正.3.中间项的符号由等号左边两项的符号是否相同决定.题组完全平方公式的应用1.若a+b=3,a2+b2=7,则ab等于 ( )A.2B.1C.-2D.-1【解析】选B.因为(a+b)2=a2+2ab+b2,所以ab===1. 【变式训练】已知x+y=-6,x-y=5,则下列计算正确的是( )A.(x+y)2=36B.(y-x)2=-10C.xy=-2.75D.x2-y2=25【解析】选A.A.(x+y)2=(-6)2=36,正确;B.(y-x)2=(x-y)2=52=25,故本选项错误;C.因为(x+y)2-(y-x)2=4xy,(x+y)2-(y-x)2=36-25=11,所以4xy=11,xy=2.75,故本选项错误;D.x2-y2=(x+y)(x-y)=(-6)×5=-30,故本选项错误.2.若等式(x-4)2=x2-8x+m2成立,则m的值是( )A.16B.4C.-4D.4或-4【解析】选D.因为(x-4)2=x2-8x+16,所以m2=16,解得m=±4.3.一个正方形的边长增加了2cm,面积相应增加了32cm2,则原来这个正方形的边长为( )A.6cmB.5cmC.8cmD. 7cm【解析】选D.设原来正方形的边长为xcm.则(x+2)2-x2=32.x2+4x+4-x2=32.4x=28.x=7.4.设(5a+3b)2=(5a-3b)2+A,则A= ( )A.30abB.60abC.15abD.12ab【解析】选B.因为(5a+3b)2=25a2+30ab+9b2,所以25a2+9b2=(5a+3b)2-30ab.因为(5a-3b)2=25a2-30ab+9b2,所以25a2+9b2=(5a-3b)2+30ab.所以(5a+3b)2-30ab=(5a-3b)2+30ab.所以(5a+3b)2=(5a-3b)2+60ab.5.已知x2+y2+4x-6y+13=0,那么x y= __.【解析】因为x2+y2+4x-6y+13=0,所以x2+4x+4+y2-6y+9=0,即(x+2)2+(y-3)2=0,所以x+2=0,y-3=0,解得x=-2,y=3,所以x y=(-2)3=-8.答案:-81.已知x=m时,多项式x2+2x+n2的值为-1,则x=-m时,该多项式的值为. 【解析】当x=m时,m2+2m+n2=-1,则(m+1)2+n2=0,∴m+1=0,n=0,∴m=-1,n=0,∴x2+2x+n2=3.答案:32.乘法公式的探究及应用.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法一: _______________________________________.方法二: _______________________________________.(2)观察图②请你写出下列三个代数式:(a+b)2,(a-b)2,ab之间的等量关系.______________________________________________________.(3)根据(2)题中的等量关系,解决如下问题:已知:a-b=5,ab=-6,求:①a2+b2= ___.②(a+b)2= _.【解析】(1)方法一:阴影部分是正方形,正方形的边长是m-n,即阴影部分的面积是(m-n)2,方法二:阴影部分的面积S=(m+n)2-4mn,答案:(m-n)2(m+n)2-4mn(2)(a-b)2=(a+b)2-4ab.答案:(a-b)2=(a+b)2-4ab(3)①因为a-b=5,ab=-6,所以(a-b)2=52,所以a2-2ab+b2=25,a2+b2=25+2ab=25-12=13.答案:13②(a+b)2=(a-b)2+4ab=52+4×(-6)=1.答案:1完全平方公式第二课时题组利用完全平方公式进行数的运算1.运用完全平方公式计算89.82的最佳选择是( )A.(89+0.8)2B.(80+9.8)2C.(90-0.2)2D.(100-10.2)2【解析】选 C.A.(89+0.8)2=892+2×89×0.8+0.82,B.(80+9.8)2=802+2×80×9.8+9.82,C.89.82=(90-0.2)2=902-2×90×0.2+0.22,D.(100-10.2)2=1002-2×100×10.2+10.22,选项A,B,D都不如选项C计算简便.2.用乘法公式计算:3992= __.【解析】3992=(400-1)2=4002-2×400×1+12=160000-800+1=159201答案:1592013.计算3.76542+0.4692×3.7654+0.23462= __.【解析】3.76542+0.4692×3.7654+0.23462=3.76542+2×0.2346×3.7654+0.23462=(3.7654+0.2346)2=42=16.答案:164.利用整式乘法公式计算:(1)962. (2)2032.【解析】(1)962=(100-4)2=1002-2×100×4+42=10000-800+16=9216.(2)2032=(200+3)2=2002+2×200×3+32=40000+1200+9=41209.5.已知m=2016×2017-1,n=20162-2016×2017+20172,请尝试用一种简便方法比较m,n的大小.【解析】方法一:m=2016×2017-1,n=20162-2016×2017+20172=20162-2×2016×2017+20172+2016×2017=(2016-2017)2+2016×2017=2016×2017+1,因为2016×2017-1<2016×2017+1,所以m<n.方法二:n-m=20162-2016×2017+20172-(2016×2017-1)=20162-2016×2017+20172-2016×2017+1=20162-2×2016×2017+20172+1=(2016-2017)2+1=1+1=2>0,所以n-m>0,即n>m.题组与完全平方公式有关的整式运算1.(a+3b)2-(3a+b)2的计算结果是( )A.8(a-b)2B.8(a+b)2C.8b2-8a2D.8a2-8b2【解析】选C.(a+3b)2-(3a+b)2=a2+6ab+9b2-(9a2+6ab+b2)=a2+6ab+9b2-9a2-6ab-b2=-8a2+8b2.2.将正方形的边长由acm增加6cm,则正方形的面积增加了 ( )A.36cm2B.12acm2C.(36+12a)cm2D.以上都不对【解析】选C.(a+6)2-a2=a2+12a+36-a2=12a+36cm2.3.用乘法公式计算:(1)(a+2b-3c)(a-2b+3c).(2)(a+2b-3c)2.【解析】(1)(a+2b-3c)(a-2b+3c)=[a+(2b-3c)][a-(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2+12bc-9c2.(2)(a+2b-3c)2=[(a+2b)-3c]2=(a+2b)2-2(a+2b)·3c+(3c)2=a2+4ab+4b2-6ac-12bc+9c2.4.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)-(x+1)2+2x=x2+2xy-x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误.(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.5.小明和小颖同时解答下面的习题,所用的方法不相同,但所得的结果相同,先阅读他们的解法,然后回答问题.计算:.小明的解答:=。
2022-2023学年北师大版七年级数学下册2
2.3平行线的性质课后同步练习班级:________ 姓名:________一、单选题(共 10 小题)1、如图,已知AB //DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .42°B .43°C .44°D .45°2、如图,AB CD ∥,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =52°,则∠EGF 等于( )A .26°B .64°C .52°D .128°3、如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4、如图,AB ∥CE ,∠B =60°,DM 平分∠BDC ,DM ⊥DN ,则∠NDE ( )A .30°B .40°C .50°D .60°5、如图,AB CD ∥,AE 平分∠CAB 交CD 于点E ,若∠C =50°,则∠AED =( )A .65°B .115°C .125°D .130°6、如图,直线l 1 ∥ l 2 ,CD ⊥AB 于点D ,∠1=50°,则∠BCD 的度数为( )A .40°B .45°C .50°D .30°7、如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④8、已知直线a ∥b ,将一块含30°角的直角三角板(∠BAC =30°)按如图所示方式放置,并且顶点A ,C 分别落在直线a ,b 上,若∠1=22°,则∠2的度数是( )A.38°B.45°C.58°D.60°AB CD EF CG AF,那么图中与∠AFE相等的角的个数是()9、如图,////,//A.4 B.5 C.6 D.710、如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°二、填空题(共 8 小题)1、如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为____时,CD与AB平行.2、如图,AB ∥CD,AD 平分∠BAC,且∠C=80°,则∠D 的度数为____.3、如图,已知AD ∥BC ,∠C=38°,∠EAC=88°,则∠B=________4、如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3=_____°.5、如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.6、如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,138E ∠=︒,BFD ∠=___________°.7、如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =62°,射线GP ⊥EG 于点G ,则∠PGF 的度数为__度.8、如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.三、解答题(共 6 小题)1、如图,已知//AB CD ,∠B=∠D ,AE 交BC 的延长线于点E .(1)求证://AD BE ;(2)若∠1=∠2=60°,∠BAC=2∠EAC ,求∠DCE 的度数.2、三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,①求∠BEC的度数;②如图2,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.3、如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,请说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.4、问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC 的度数.由分析得,请你直接写出:∠CAF的度数为______,∠EMC的度数为______.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.5、如图,已知AB∥CD,问∠BED、∠D、∠ABE的关系.6、如图,已知AC∥FE,∠1+∠2=180°(1)求证:∠FAB=∠BDC;(2)若AC平分∠FAD,EF⊥BE于点E,∠FAD=80°,求∠BCD的度数.第11页/ 共11页。
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
北师大版数学七年级下册第一章整式的乘除第4节整式的乘法课后练习
第一章整式的乘除第4节整式的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.(8)(23)mx x +-展开后不含x 的一次项,则m 为( )A .3B .0C .12D .242.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”计算(a +b )20的展开式中第三项的系数为( )A .2020B .2019C .191D .1903.已知8个长为a ,宽为b 的小长方形(如图1),不重叠无空隙地摆放(如图2),在长方形ABCD 中,3AB b a =+,当BC 的长度变化时,左上角阴影面积1S 与右下角阴影面积2S 的差没有变化,在a ,b 之间的关系应满足( )A .52b a =B .2b a =C .3b a =D .53b a = 4.下列运算正确的是( )A .224347x x x +=B .333236x x x ⋅= 311⎛⎫5.下列计算正确的是()A.326a a a⋅=B.()()2133a a a++=-C.624a a a÷=D.()22ab ab=6.观察下列等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…根据以上规律得出920192020⨯+的结果是()A.20181B.20191C.20201D.202117.若()()23515x x x mx+-=+-,则m的值为()A.2B.2-C.5D.5-8.如图,长为(cm)y,宽为(cm)x的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm,下列说法中正确的是()①小长方形的较长边为15y-;①阴影A的较短边和阴影B的较短边之和为5x y-+;①若x为定值,则阴影A和阴影B的周长和为定值;①当15x=时,阴影A和阴影B的面积和为定值.A.①①B.①①C.①①①D.①①9.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)na b n+=的展开式的系数规律(按n的次数由大到小的顺序)111()a b a b+=+121222()2a b a ab b+=++1331+=+++33223()33a b a a b ab b146414322344()464a b a a b a b ab b+=++++请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 10.由多项式乘法可得:()()2232222333a b a ab b a a b ab a b ab b a b +-+=-++-+=+,即得等式:①()()2233a b a ab b a b +-+=+,我们把等式①叫做多项式乘法的立方和公式,下列应用这个立方和公式进行的变形正确的是( )A .()()2233248x y x y x y ++=+B .()()3227339x x x x +=+-+C .()()22332242x y x xy y x y +-+=+D .()()32111a a a a +=+++评卷人得分二、填空题 11.(__224)4x y =;2223()()a b a b =__. 12.已知()()2144x x x px +-=+-,则p 的值是_______.13.如果22(1)m n ++与22(1)m n +-的乘积为15,那么22m n +的值为__.14.若2(3)()15x x a x bx -+=+-,则a b +=__________.15.将7张如图①所示的小长方形纸片按图①的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).评卷人得分三、解答题 16.计算:322223()(2)a b b ab -+-.17.因为()()2326x x x x +-=+-,所以()()2623x x x x +--=+÷,这说明26x x +-能被2x -整除,同时也说明26x x +-有一个因式是2x -时,因式2x -为0,那么多项式26x x +-的值也为0,利用上面的结果求解:(1)多项式A 能被x +4整除,商为2x -1,求多项式A ;(2)已知x -2能整除214x kx +-,求k 的值.18.小轩计算一道整式乘法的题:(x +m )(5x ﹣4),由于小轩将第一个多项式中的“+m ”抄成“﹣m ”,得到的结果为5x 2﹣34x +24.(1)求m 的值;(2)请计算出这道题的正确结果.19.观察下列图形与等式的关系:按照以上图形与等式的规律,解答下列问题:(1)写出第5个等式: .(2)写出你猜想的第n 个等式: .(用含n 的等式表示),并证明(已知:1+2+3+……+n =(1)2n n +).20.先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-21.若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项 (1)求p 、q 的值;(2)求代数式20192020p q 的值22.观察下列各式:9﹣1=4×2=8;16﹣4=6×2=12;25﹣9=8×2=16;36﹣16=10×2=20;……(1)这些等式反映了自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律是.(2)用含n的等式证明这个规律.23.(1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是b元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是a元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)24.在长方形ABCD内,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ,当42AD AB -=时求21S S -的值(用含a 、b 的代数式表示).25.我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.如图2,某同学发现杨辉三角给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着()3322333a b a a b ab b +=+++展开式中各项的系数等等.(1)填出()4a b +展开式中共有________项,第三项是________.(2)直接写出()512y -的展开式.(4)利用上面的规律计算:26541126215222⎫⎫⎛⎛+⨯⨯-+⨯⨯- ⎪ ⎪⎝⎝⎭⎭33212021522⎫⎛+⨯⨯-+⨯ ⎪⎝⎭456111621222⎫⎫⎫⎛⎛⎛⨯-+⨯⨯-+-- ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭.参考答案:1.C【解析】【分析】先根据多项式乘以多项式法则进行计算,合并同类项,根据已知得出方程2m -24=0,求出即可.【详解】解:(8)(23)mx x +-2231624mx mx x =-+-23(224)16mx m x =-+-+,(8)(23)mx x +-展开后不含x 的一次项,2240m ∴-=,12m =∴.故选:C .【点睛】本题考查了多项式乘以多项式的应用,能熟练地运用法则进行计算是解此题的关键. 2.D【解析】【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数;【详解】解:找规律发现(a +b )3的第三项系数为3=1+2;(a +b )4的第三项系数为6=1+2+3;(a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n -2)+(n -1),①(a +b )20第三项系数为1+2+3+…+19=190,故选:D .【点睛】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 3.C【解析】【分析】用含a、b、AD的式子表示出S1−S2,根据S1−S2的值总保持不变,即与AD的值无关,整理后,让AD的系数为0即可.【详解】解:①S1−S2=3b(AD−a)−a(AD−5b),整理,得:S1−S2=(3b−a)AD+2ab,①若AB长度不变,BC(即AD)的长度变化,而S1−S2的值总保持不变,①3b−a=0,解得:3b=a.故选:C.【点睛】此题考查了整式的加减,用含a、b、AD的式子表示出S1−S2是解本题的关键.4.C【解析】【分析】分别根据合并同类项法则,单项式乘单项式的运算法则,单项式除单项式的运算法则以及积的乘方运算法则逐一判断即可.【详解】解:A.3x2+4x2=7x2,故本选项不合题意;B.2x3•3x3=6x6,故本选项不合题意;C.2a÷2a﹣2=a3,故本选项符合题意;D.32631128a b a b⎛⎫-=-⎪⎝⎭,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,单项式乘单项式,同底数幂的除法、负整数指数幂以及积的乘方,熟记相关运算法则是解答本题的关键.5.C【解析】【分析】分别根据同底数幂的乘法、多项式乘多项式、同底数幂的除法、积的乘方对各选项进行逐一判断即可.【详解】A. 325a a a ⋅=,故本选项错误;B. ()()213+43a a a a ++=+,故本选项错误;C. 624a a a ÷=,故本选项正确.D. ()222ab a b =,故本选项错误;故选:C .【点睛】本题考查的是同底数幂的乘法与除法、积的乘方及多项式乘多项式,熟知以上知识是解答此题的关键.6.B【解析】【分析】 根据题目提供的算式找到规律:第n 个数为:9×(n ﹣1)+n =10×(n ﹣1)+1,进而即可求解.【详解】解:由上述等式可得,当其为第n 个数时,即9×(n ﹣1)+n =10×(n ﹣1)+1,①9×2019+2020=10×2019+1=20191.故选:B .【点睛】本题主要考查了规律性问题的一般知识,能够从中找出其内在之间的联系,进而熟练求解.7.B【解析】【分析】先根据多项式乘以多项式法则展开,合并后即可得出答案.【详解】解:()()22+-=-+-=--,355315215x x x x x x x①()()2+-=+-,x x x mx3515①m=-2,故选:B.【点睛】本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.8.A【解析】【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm,说法①正确;①由大长方形的宽及小长方形的长、宽,可得出阴影A,B的较短边长,将其相加可得出阴影A的较短边和阴影B的较短边之和为(2x+5-y)cm,说法①错误;①由阴影A,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+5),结合x为定值可得出说法①正确;①由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法①错误.【详解】解:①①大长方形的长为y cm,小长方形的宽为5cm,①小长方形的长为y-3×5=(y-15)cm,说法①正确;①①大长方形的宽为x cm,小长方形的长为(y-15)cm,小长方形的宽为5cm,①阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,①阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法①错误;①①阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,①阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),①阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),①若x为定值,则阴影A和阴影B的周长之和为定值,说法①正确;①①阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,①阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,①阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法①错误.综上所述,正确的说法有①①.故选:A.【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.9.D【解析】【分析】先观察规律,再按照规律写出第一项、第二项,其中第二项2019x,写出系数即可【详解】解:根据规律可以发现:20212xx⎛⎫-⎪⎝⎭第一项的系数为1,第二项的系数为2021,①第一项为:x2021,第二项为:20202020201922202120214042x x xx x⎛⎫-=-=-⎪⎝⎭故选:D【点睛】本题考查杨辉三角多项式乘法找规律的问题,观察发现式子中的规律是关键10.B【解析】【分析】根据多项式乘法的立方和公式判断即可.【详解】解:A 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意; B 、x 3+27=(x +3)(x 2﹣3x +9),原变形正确,故此选项符合题意;C 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意;D 、a 3+1=(a +1)(a 2﹣a +1),原变形错误,故此选项不符合题意,故选:B .【点睛】本题主要考查学生的阅读理解能力及多项式乘法的立方和公式.透彻理解公式是解题的关键.11. 22xy ± 105a b【解析】【分析】根据积的乘方、幂的乘方和同底数幂的乘法计算即可;【详解】2224(2)4xy x y ±=;22234263105()()a b a b a b a b a b ==; 故答案为:22xy ±;105a b .【点睛】本题主要考查了幂的运算性质,准确分析计算是解题的关键.12.-3【解析】【分析】先利用多项式乘以多项式计算,后根据恒等式的对应项相同,计算即可【详解】①()()21444+-=-+-x x x x x=234--x x ,且()()2144x x x px +-=+-,①22434+-=--x px x x ,①p = -3,故答案为:-3.【点睛】本题考查了多项式乘以多项式,恒等式成立的条件,熟练进行多项式乘以多项式的计算是解题的关键.13.4【解析】【分析】根据题意列出等式,再根据平方差公式进行计算,最后求出答案即可. 【详解】解;22(1)m n ++与22(1)m n +-的乘积为15,2222(1)(1)15m n m n ∴+++-=,222()115m n ∴+-=,即222()16m n +=,解得:224m n +=(负数舍去),故答案为:4.【点睛】 本题考查了平方差公式,能求出(m 2+n 2)2=16是解此题的关键.14.7【解析】【分析】利用多项式乘以多项式化简等式的左边,根据恒等式的意义,构造方程,逐一解答计算即可.【详解】①(x -3)(x +a )=233x ax x a +--=2(3)3x a x a +--,2(3)()15x x a x bx -+=+-①215x bx +-=2(3)3x a x a +--,①b =a -3,-3a =-15,①a =5,b =2,①a +b =5+2=7,故答案为:7.【点睛】本题考查了多项式乘以多项式,恒等式的意义,方程的解法,代数式的值计算,熟练运用多项式的乘法化简和恒等式的意义是解题的关键.15.24a【解析】【分析】可设长方形ABCD 的长为m ,分别求出S 1,S 2,再代入S 2-S 1计算即可求解.【详解】解:设长方形ABCD 的长为m ,则S 2-S 1=(m-3a )×4a-(m-4a )×4a=4ma-12a 2-4am+16a 2×=4a 2.故答案为:4a 2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.16.367a b -【解析】【分析】原式先计算积的乘方和幂的乘方,再计算单项式乘以单项式,最后合并即可.【详解】解:322223()(2)a b b ab -+-324368a b b a b =- 36368a b a b =-367a b =-.【点睛】此题主要考查了积的乘方和幂的乘方,单项式乘以单项式以及合并同类项,熟练掌握运算法则是解答此题的关键.17.(1)2274x x +-;(2)5【解析】【分析】(1)根据被除数=除数×商,得A =(x +4)(2x -1),化简即可;(2)根据因式2x -为0,那么多项式26x x +-的值也为0,得到x -2=0,即x =2是方程214x kx +-=0的根,利用根的定义求解即可.【详解】(1)①多项式A 能被x +4整除,商为2x -1,①根据被除数=除数×商,得A =(x +4)(2x -1)=2284-+-x x x=2274x x +-;(2)根据因式2x -为0,那么多项式26x x +-的值也为0,①x =2是方程214x kx +-=0的根,利用根的定义求解即可. ①222140+-=k ,解得k =5.【点睛】本题考查了阅读学习问题,多项式的乘法与除法的互逆应用,方程根的意义,准确理解阅读内容,熟练掌握方程根的意义是解题的关键.18.(1)m =6;(2)5x 2+26x ﹣24【解析】【分析】(1)根据多项式乘多项式的运算法则相乘,然后合并同类项后与结果相对应即可得; (2)将m 的值代入,根据多项式乘多项式的运算法则即可得.【详解】(1)()()54x m x --25(45)4x m x m =-++253424x x =-+则有4534m +=,解得:6m =;(2)当6m =时,()()654x x +-2543024x x x =-+-252624x x =+-.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解题关键.19.(1)2+3+4+5+6+5+4+3+2=62-2;(2)2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2,证明见解析.【解析】【分析】(1)先根据图形和所给的等式,写出第五个等式即可;(2)先总结所给等式的规律,然后猜想出第n 个等式,然后对1+2+3+……+n =(1)2n n +变形进行证明即可.【详解】解:(1)由题意可得,第五个等式为:2+3+4+5+6+5+4+3+2=62-2故填2+3+4+5+6+5+4+3+2=62-2;(2)由所给等式猜想第n 个等式为2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2证明如下:①1+2+3+……+n =(1)2n n + ①2(1+2+3+……+n )= n 2+n①1+2+3+…+(n -1)+n +n +(n -1)+…+3+2+n +1= n 2+n①1+2+3+…+(n -1)+n +n +(n -1)+…+3+2+n +1-n-2= n 2+n -n-2①2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2.【点睛】本题主要考查了数字的变化规律,通过观察、分析、归纳到规律并证明规律是解答本题的关键.20.292y y ---;12.【解析】【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值.【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+-22122810y y y y =----+292y y =---,当2y =-时,原式()()22922=---⨯--12=. 【点睛】 此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键. 21.(1)13p =,3q =;(2)3 【解析】【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值.(2)把p 、q 的值代入求解即可.【详解】解:(1)21(3)()3x p x x q +-+ =2321333x x qx px px pq -++-+ =23131)(3+3()x p x q p x pq -+-+ 又①式子展开式中不含x 2项和x 项,①310p -=,13=03q p - 解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.22.(1)(n +2)2﹣n 2=4(n +1);(2)见解析【解析】【分析】(1)根据题目中的等式,可以写出发现的规律;(2)先将等号左边化简,然后再变形,即可得到结论成立.【详解】解:(1)①9﹣1=4×2=8,即(1+2)2-12=2(2×1+2);16﹣4=6×2=12,即(2+2)2-22=2(2×2+2);25﹣9=8×2=16,即(3+2)2-32=2(2×3+2);36﹣16=10×2=20,即(4+2)2-42=2(2×4+2);…,①第n 个式子是(n +2)2﹣n 2=2(2n +2)=4(n +1),故答案为:(n +2)2﹣n 2=4(n +1);(2)证明:①(n +2)2﹣n 2=n 2+4n +4﹣n 2=4n +4=4(n +1),①(n +2)2﹣n 2=4(n +1)成立.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.23.(1)至少需要11xy 平方米的地砖,购买地砖至少需要11bxy 元;(2)至少需要(12hx +8hy )平方米的壁纸,贴完壁纸的总费用是(12ahx +8ahy +60hx +40hy )元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm ,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy +y ×2x +2y ×4x=xy +2xy +8xy=11xy (m 2).11xy •b =11bxy (元).答:至少需要11xy 平方米的地砖,购买地砖至少需要11bxy 元;(2)由题意得:2y •h ×2+4x •h ×2+2x •h ×2+2y •h ×2=4hy +8hx +4hx +4hy=(12hx +8hy ) m 2.(12hx +8hy )×a +(12hx +8hy )×5=(12ahx +8ahy +60hx +40hy )元;答:至少需要(12hx +8hy )平方米的壁纸,贴完壁纸的总费用是(12ahx +8ahy +60hx +40hy )元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.24.42b【解析】【分析】设AB x =,则42AD x =+,根据图形得出21S S -,再根据整式的运算法则即可求出答案.【详解】解:设AB x =,则42AD x =+,21S S -[][]()(42)(42)(42)()(42)()x a x b x a a x x a x a a b =-+-++--+-++--2222(424242)(42424242)x x bx ax a ab ax a a x ax x a ax bx a b a ab =+---+++---+-+-+--+222242424242424242x x bx ax a ab ax a a x ax x a ax bx a b a ab =+---+++--+-+-+-++-42b =【点睛】本题考查了列代数式和整式的混合运算,解题的关键是:能灵活运用整式的运算法则进行计算.25.(1)5;226a b ;(2)234511*********y y y y y -+-+-;(3)2n S =;(4)66564【解析】【分析】(1)展开的项数等于字母a 的不同指数的个数即4,3,2,1,0,根据杨辉三角形的规律确定各项的系数即可;(2)先计算()5a b +的展开式,后将a,b 的值特殊化计算即可;(3)猜想指数为0,为1,为2,为3的系数之和,透过枚举法猜想其中的规律;(4)逆向使用公式求解即可.【详解】(1)由杨辉三角的系数规律可得, ()4432234464a b a a b a b ab b +=++++,∴展开式共有5项,第三项是226a b .(2)()543225345510105a a b a b a a a b b b b =++++++,当1a =,2b y =-时,原式()()2152102y y =+⨯-+⨯-()()()345102522y y y +⨯+⨯--+-234511*********y y y y y =-+-+-, ()523451211040808032y y y y y y ∴-=-+-+-.(3)第一行各项系数和为012=,即()0a b +的各项系数和为02,第二行各项系数和为122=,即()1a b +的各项系数和为12,第三行各项系数和为242=,即()2a b +的各项系数和为22,第三行各项系数和为382=,即()3a b +的各项系数和为32,…由此可得()n a b +的各项系数和为2n ,2n S ∴=. (4)由杨辉三角可知,原式61212⎫⎛=-- ⎪⎝⎭ 6312⎫⎛=- ⎪⎝⎭729164=- 66564=. 【点睛】 本题考查了杨辉三角形,二项式的展开,熟练掌握杨辉三角形的特点,灵活运用公式,活用一般与特殊的思想是解题的关键.。
北师大版数学七年级下册第四章 三角形练习习题(含答案)
第四章三角形一、单选题1.下列长度的三条线段能组成三角形的是()A.4,4,10B.6,8,9C.5,6,11D.3,4,82.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等5.如果△ABC≌△DEF△△DEF的周长为13△DE=3△EF=4,则AC的长为()A.13B.3C.4D.66.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A .∠BCA=∠F;B .∠B=∠E;C .BC∥EF ;D .∠A=∠EDF7.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:△△C=△B ;△△D=△E ;△△EAD=△BAC ;△△B=△E ;其中错误的是( )A .△△B .△△C .△△D .只有△8.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS9.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D 、E ,若5AD =,2BE =,则DE 的长是( )A .7B .4C .3D .110.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题 11.已知三角形的两边长分别为2和7,则第三边x 的范围是_______.12.如图,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =18,则S △ADF -S △BEF =____.13.如图,ABD CDB ∆∆≌,若456AB AD BD =,=,= ,则BC =______,CD =______.14.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF V 和DCE V 全等.三、解答题15.阅读材料:若22228160m mn n n -+-+=,求m ,n 的值.解:因为22228160m mn n n -+-+=所以222(2)(816)0m mn n n n -++-+=所以22()(4)0m n n +--= 所以2()0m n -=,2(4)0n -=所以4m =,4n =根据你的观察,研究下列问题:(1)已知22610210a ab b b ++++=,求-a b 的值; (2)已知ABC ∆的三边长a 、b 、c 都是整数,且满足22246110a b a b +--+=,求ABC ∆的周长.16.△△△A△D△E△△△△△△△△△△△BAD△△ACE△△△△△(1)BD=DE+CE△(2)△ABD△△△△△△△,BD△CE△17.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE∥CF18.等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:AD BE;(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由.答案1.B2.A3.C4.B5.D6.B7.D8.D9.C10.B11.59x <<12.313.5 414.2或1115.解:(1)∵22610210a ab b b ++++=,∴22269210a ab b b b +++++=,∴22(3)(1)0a b b +++=,∴30a b +=,10b +=,计算得出b=-1,a=3,则-a b =4;(2)∵22246110a b a b +--+=,22242690a a b b -++-+=,∴222(1)(3)0a b -+-=,∴10a -=,30b -=,计算得出b=3,a=1,由三角形三边关系(三角形两边之和大于第三边,两边之差小于第三边)得到:c=3, ∴三角形ABC 的周长=a+b+c=1+3+3=7.16.解:(1)∵△BAD ≌△ACE△∴BD=AE△AD=CE△∴BD=AE=AD+DE=CE+DE△即BD=DE+CE△(2)△ABD 满足∠ADB=90°时,BD ∥CE△理由是:∵△BAD ≌△ACE△∴∠E=∠ADB=90°△∴∠BDE=180°−90°=90°=∠E△∴BD ∥CE△17.(1)证明://Q AD CB , ADB CBD ∴∠=∠,在ADB △和CBD V 中,BAD BCD ADB CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴≅V V ADB CBD (AAS ), ∴AD BC =;(2)证明:∵ADB CBD ∠=∠,∴ADE CBF ∠=∠,在ADE V 和CBF V 中,DE BF ADE CBF AD BC =⎧⎪∠=∠⎨⎪=⎩,∴ADE CBF ≅V V (SAS ), ∴E F ∠=∠,∴//AE CF .18.解:(1)等边△ABC 中,∠BAC=∠BCA=60° ∵ED=EC ,E 为AB 中点∴∠ECD=∠D=30°∴∠DEA=∠D=30°∴AD=AE=EB .故答案为:AD=BE ;(2)过点E 作EF ∥AC 交BC 于点F ,∴∠EFB=∠ACB ,∠BEF=∠BAC ,∠FEC=∠ECA , ∵△ABC 是等边三角形,∴∠ACB=∠BAC=∠B=60°,∴∠EFB=∠BEF=∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∵ED=EC ,∴∠D=∠ECA ,∴∠D=∠FEC ,∵∠BFE=∠BAC=60°,∴∠EAD=∠CFE=120°,在△AED 和△FCE 中,D FEC EAD CFE ED EC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△FCE (AAS ),∴AD=FE ,∴AD=BE。
北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)
《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。
北师大版数学七年级下册第四章 三角形练习习题(包含答案)
第四章三角形一、单选题1.下列长度的三条线段能组成三角形的是()A.4,4,10B.6,8,9C.5,6,11D.3,4,82.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等5.如果△ABC≌△DEF△△DEF的周长为13△DE=3△EF=4,则AC的长为()A.13B.3C.4D.66.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A .∠BCA=∠F;B .∠B=∠E;C .BC∥EF ;D .∠A=∠EDF7.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:△△C=△B ;△△D=△E ;△△EAD=△BAC ;△△B=△E ;其中错误的是( )A .△△B .△△C .△△D .只有△8.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS9.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D 、E ,若5AD =,2BE =,则DE 的长是( )A .7B .4C .3D .110.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题 11.已知三角形的两边长分别为2和7,则第三边x 的范围是_______.12.如图,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =18,则S △ADF -S △BEF =____.13.如图,ABD CDB ∆∆≌,若456AB AD BD =,=,= ,则BC =______,CD =______.14.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF V 和DCE V 全等.三、解答题15.阅读材料:若22228160m mn n n -+-+=,求m ,n 的值.解:因为22228160m mn n n -+-+=所以222(2)(816)0m mn n n n -++-+=所以22()(4)0m n n +--= 所以2()0m n -=,2(4)0n -=所以4m =,4n =根据你的观察,研究下列问题:(1)已知22610210a ab b b ++++=,求-a b 的值; (2)已知ABC ∆的三边长a 、b 、c 都是整数,且满足22246110a b a b +--+=,求ABC ∆的周长.16.△△△A△D△E△△△△△△△△△△△BAD△△ACE△△△△△(1)BD=DE+CE△(2)△ABD△△△△△△△,BD△CE△17.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE∥CF18.等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:AD BE;(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由.答案1.B2.A3.C4.B5.D6.B7.D8.D9.C10.B11.59x <<12.313.5 414.2或1115.解:(1)∵22610210a ab b b ++++=,∴22269210a ab b b b +++++=,∴22(3)(1)0a b b +++=,∴30a b +=,10b +=,计算得出b=-1,a=3,则-a b =4;(2)∵22246110a b a b +--+=,22242690a a b b -++-+=,∴222(1)(3)0a b -+-=,∴10a -=,30b -=,计算得出b=3,a=1,由三角形三边关系(三角形两边之和大于第三边,两边之差小于第三边)得到:c=3, ∴三角形ABC 的周长=a+b+c=1+3+3=7.16.解:(1)∵△BAD ≌△ACE△∴BD=AE△AD=CE△∴BD=AE=AD+DE=CE+DE△即BD=DE+CE△(2)△ABD 满足∠ADB=90°时,BD ∥CE△理由是:∵△BAD ≌△ACE△∴∠E=∠ADB=90°△∴∠BDE=180°−90°=90°=∠E△∴BD ∥CE△17.(1)证明://Q AD CB , ADB CBD ∴∠=∠,在ADB △和CBD V 中,BAD BCD ADB CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴≅V V ADB CBD (AAS ), ∴AD BC =;(2)证明:∵ADB CBD ∠=∠,∴ADE CBF ∠=∠,在ADE V 和CBF V 中,DE BF ADE CBF AD BC =⎧⎪∠=∠⎨⎪=⎩,∴ADE CBF ≅V V (SAS ), ∴E F ∠=∠,∴//AE CF .18.解:(1)等边△ABC 中,∠BAC=∠BCA=60° ∵ED=EC ,E 为AB 中点∴∠ECD=∠D=30°∴∠DEA=∠D=30°∴AD=AE=EB .故答案为:AD=BE ;(2)过点E 作EF ∥AC 交BC 于点F ,∴∠EFB=∠ACB ,∠BEF=∠BAC ,∠FEC=∠ECA , ∵△ABC 是等边三角形,∴∠ACB=∠BAC=∠B=60°,∴∠EFB=∠BEF=∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∵ED=EC ,∴∠D=∠ECA ,∴∠D=∠FEC ,∵∠BFE=∠BAC=60°,∴∠EAD=∠CFE=120°,在△AED 和△FCE 中,D FEC EAD CFE ED EC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△FCE (AAS ),∴AD=FE ,∴AD=BE。
北师大版数学七年级下册第一章整式的乘除第1节同底数幂的乘法课后练习
第一章整式的乘除第1节同底数幂的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =13 2.(﹣a )2•a 3=( )A .﹣a 5B .a 5C .﹣a 6D .a 63.如果xm =2,xn =14,那么xm +n 的值为( ) A .2 B .8 C .12 D .2144.我们知道:若am =an (a >0且a ≠1),则m =n .设5m =3,5n =15,5p =75.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ;①m +n =2p ﹣1;①n 2﹣mp =1.其中正确的是( )A .①①B .①①C .①①D .①①①5.计算28+(-2)8所得的结果是( )A .0B .216C .48D .296.下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A .1B .2C .3D .47.下列运算中,正确的是( )A .4312=a a aB .()32639a a =C .23•a a a =D .()224ab ab = 8.下列计算正确的是( )A .()()43224a a a a -⋅-⋅-=-B .()()43224a a a a -⋅-⋅-=C .()()4329a a a a -⋅-⋅-=-D .()()4329a a a a -⋅-⋅-= 9.201120102009222--其结果是( )A .20092B .20102C .20092-D .数太大,无法计算评卷人得分二、填空题10.已知92781m n⨯=,则646m n--的值为______.11.计算23()()a a-⋅-的结果等于_____________.12.已知2x+3y﹣1=0,则9x•27y的值为______.13.计算(x﹣y)2(y﹣x)3(x﹣y)=__(写成幂的形式).14.计算:235m m⋅=______.15.已知53x=,54y=,则25x y+的结果为______ .16.如图,正方形的边长为()1a a>,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l,……如此继续下去,第n次操作后得到的长方形的周长为________.17.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a=,则用含a的代数式表示下列这组数50515299100222 (22)++++的和_________.评卷人得分三、解答题18.如果ac=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.19.计算:(1)﹣b 2×(﹣b )2×(﹣b 3)(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)520.(1)先化简,再求值:2(x 2﹣xy )﹣(3x 2﹣6xy ),其中x =12,y =﹣1.(2)已知am =2,an =3,求①am +n 的值;①a 3m ﹣2n 的值.21.把下列式子化成()na b -的形式:()()()()()3452 a b b a a b b a a b -⋅----+-22.如果c a b =,那么规定(),a b c =. 例如:如果328=,那么()2,83=()1根据规定,()5,1= ______, 14,16⎛⎫= ⎪⎝⎭()2记()3,6a =,() 3,7b =, () 3,x c =,若a b c +=,求x 值.23.根据同底数幂的乘法法则,我们发现:m n m n a a a +=⋅(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算解决以下问题:(1)若()11h =-,则()2h =______;()2019h =______;(2)若()7128h =,求()2h ,()8h 的值;(3)若()()442h h =,求()2h 的值; (4)若()()442h h =,直接写出()()()()()()()()2462123h h h h n h h h h n ++++的值.24.(1)已知:210,a a +-=则43222000a a a +++的值是_____(2)如果记162a =,那么1231512222+++++=_____(3)若232122192,x x ++-=则x=_____(4)若5543254321021),x a x a x a x a x a x a -=+++++(则24a a +=_____25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).参考答案:1.C【解析】【分析】根据科学记数法表示的数的计算方法,乘号前面的数相乘,乘号后面的数相乘,再根据同底数幂相乘,底数不变指数相加进行计算,最后再化成科学记数法即可得解.【详解】解:(7×106)(5×105)(2×10)=(7×5×2)×(106×105×10)=7×1013所以,a=7,n=13.故选:C.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则与科学记数法表示的数的计算方法是解题的关键.2.B【解析】【分析】根据同底数幂相乘,底数不变,指数相加解答,即am•an=am+n.【详解】解:(﹣a)2•a3=a2•a3=a2+3=a5,故选:B.【点睛】此题考查同底数幂的乘法计算,正确掌握同底数幂的乘法公式是解题的关键.3.C【解析】【分析】根据同底数幂的乘法进行运算即可.【详解】解:如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式.4.B【解析】【分析】根据同底数幂的乘法公式即可求出m、n、p的关系.【详解】解:①5m=3,①5n=15=5×3=5×5m=51+m,①n=1+m,①5p=75=52×3=52+m,①p=2+m,①p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;①m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;①n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①①.故选:B.【点睛】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法公式.5.D【解析】【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.6.A【解析】【分析】利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答.【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误;2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.7.C【解析】【分析】根据单项式乘单项式,可判断A ,根据同底数幂的乘法,可判断C ,根据积的乘方,可判【详解】A 、单项式与单项式相乘,把系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,故A 错误;B 、3得立方是27,故B 错误;C 、同底数幂的乘法底数不变指数相加,故C 正确;D 、积的乘方等于乘方的积,故D 错误;故选:C .【点睛】此题考查幂的运算,单项式与单项式的乘法,解题关键在于掌握幂的运算和单项式的运算.8.D【解析】【分析】根据积的乘方的运算法则,分别将各项的结果计算出来再进行判断即可.【详解】A . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项A 错误;B . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项B 错误; C . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项C 错误; D . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项D 正确. 故选:D .【点睛】此题主要考查了积的乘方与同底数幂的乘法运算,熟练掌握运算法则是解题的关键. 9.A【解析】【分析】先提取公因式20092,再进行计算,即可求解.【详解】201120102009222--=220091(221)2--⨯=200912⨯=20092故选A .【点睛】本题主要考查同底数幂的乘法法则的逆运用,掌握分配律以及同底数幂的运算法则,是解题的关键.10.2-【解析】【分析】将92781m n ⨯=进行整理,得到232349273333m n m n m n +⨯=⨯==,即234m n +=,代入即可求解.【详解】解:①232349273333m n m n m n +⨯=⨯==,①234m n +=,①()64662236242m n m n --=-+=-⨯=-,故答案为:2-.【点睛】本题考查同底数幂相乘的应用,将92781m n ⨯=变形得到234m n +=是解题的关键. 11.5a -【解析】【分析】根据同底数幂的乘法运算法则进行计算即可.【详解】225533=()(())()a a a a a +-⋅--=--=故答案为:5a -.【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.3【解析】【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:①2x +3y ﹣1=0,①2x +3y =1.①9x •27y =32x ×33y =32x+3y =31=3.故答案为:3.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键. 13.﹣(x ﹣y )6##-(y-x )6【解析】【分析】将原式第二个因式提取-1变形后,利用同底数幂的乘法法则计算,即可得到结果.【详解】解:(x ﹣y )2(y ﹣x )3(x ﹣y )=﹣(x ﹣y )2(x ﹣y )3(x ﹣y )=﹣(x ﹣y )6.故答案为:﹣(x ﹣y )6.【点睛】此题考查了同底数幂的乘法运算,熟练掌握法则是解本题的关键.14.55m【解析】【分析】按照同底数幂相乘运算法则进行计算即可.【详解】23(23)5555m m m m +⋅== 故答案为:55m【点睛】本题考查了同底数幂相乘,掌握同底数幂相乘底数不变,指数相加是解题的关键 15.144【解析】【分析】先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解即可.【详解】解:53x =,54y =,25x y +∴2255x y =⨯22(5)(5)x y =⨯2234=⨯916=⨯144=.故答案为:144.【点睛】本题考查了同底数幂的乘法,解答本题的关键在于先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解.16. 52a - 21112222nn n a +-+-+ 【解析】【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得.【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-, 则第一次得到的长方形的周长为12(21)522a a a +-=-, 第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-, 第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+,第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+,第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦, 故答案为:52a -,21112222nn n a +-+-+. 【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键.17.22a a -【解析】【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ①5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.18.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【解析】【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)①33=27,①(3,27)=3,①40=1,①(4,1)=0,①2﹣2=14,①(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:①(3,5)=a,(3,6)=b,(3,30)=c,①3a=5,3b=6,3c=30,①3a×3b=5×6=3c=30,①3a×3b=3c,①a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.19.(1)b7;(2)(x﹣y)3(y﹣2)7.【解析】【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.20.(1)﹣x 2+4xy ,﹣94;(2)①6;①89. 【解析】【分析】(1)先利用整式的加减运算法则进行化简,再将x 、y 的值代入求解即可;(2)根据同底数幂的逆运算计算即可.【详解】(1)22()(23)6x xy x xy ---223262x xy x xy --+=24x xy =-+当1,12x y ==-时,原式2211194)4(1)222(44x xy =-=-⨯++⨯-=--=-; (2)2,3m n a a ==①236m n m n a a a +=⋅=⨯=;①323232328()()239m n m n m n a a a a a -=÷=÷=÷=. 【点睛】本题考查了整式的加减、同底数幂的运算,熟记整式的运算法则是解题关键.21.()53a b -【解析】【分析】将原式中的每项变成同度数幂,运用同底数幂的乘法法则进行计算即可得解.【详解】()()()()()3452 a b b a a b b a a b -⋅----+-, =()()()()()3245+a b a b a b a b a b -⋅---+-=()()()555 +a b a b a b --+-=()53a b -【点睛】此题主要考查了同底数幂的乘法,掌握并熟练运用同底数幂的忒覅覅买基金解题的关键. 22.(1)0,-2;(2)42【解析】【分析】(1)根据已知幂的定义得出即可;(2)根据已知得出3a =6,3b =7,3c =x ,同底数幂的乘法法则即可得出答案.【详解】(1)根据规定,(5,1)=0,(4,116)=-2, 故答案为:0;-2;(2)①(3,6)=a ,(3,7)=b ,(3,x )=c ,①3a =6,3b =7,3c =x ,又①a+b=c ,①3a ×3b =3c ,即x=6×7=42.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.23.(1)1;-1;(2)4;256;(3)4;(4)122n +-【解析】【分析】(1)将()2h 变形为()11h +,根据新定义计算即可;(2)将()7h 变形为()71h ⎡⎤⎣⎦,得出()1h ,即可得出()2h ,()8h 的值; (3)将等式变形()()()()42222h h h h +=,即可得解; (4)根据变形发现规律,即求()()()()123h h h h n ++++的值,求解即可.【详解】(1)()()()()()()21111111h h h h =+=⋅=--=;()()()()()()()()100920191201812018122016121h h h h h h =+=⋅=-+=-=-(2)()()771128h h ==①()12h =①()()()2114h h h =⋅=,()()()()817172128256h h h h =+=⋅=⨯= (3)()()()()()()()()4222224222h h h h h h h h +==== (4)由(3)得出()24h =,①()12h =①()()()()()()()()2462123h h h h n h h h h n ++++=()()()()123h h h h n ++++=124816222n n ++++++=-【点睛】 此题主要考查同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题关键. 24.(1)2001(2)1a -(3)52(4)﹣120【解析】【分析】(1)根据题意,得到21a a +=;再将原式进行变形即可得出答案(2)先设原式等于m ,利用2m -m 求出原式的值,最后将a 代入即可(3)根据幂的乘方运算公式对原式进行变形,然后进而的出答案(4)采用赋值法进行计算【详解】(1)由题意得:21a a +=;①43222000a a a +++=43322000a a a a ++++=()22322000a a a a a ++++=3222000a a a +++=()222000a a a a +++=12000+=2001 (2)设1231512222m =++++⋯+,则23416222222m =++++⋯+;①16221m m -=-,即1621m =-①原式=1a -(3)232122x x ++-=212x +∙22122x +-=2132x +⋅=192①21264x +=①216x +=①52x = (4)当x=1时,1=012345a a a a a a +++++ ……①当x=﹣1时,53-=012345a a a a a a -+--+ ……①当x=0时,-1=0a①+①=()0242a a a ++=513-即024a a a ++=5132- ①24a a +=5132-+1=﹣120 【点睛】本题主要考查了代数式的变形求值,掌握各类代数式求值的特点是解题关键25.(1)211﹣1(2)1+3+32+33+34+ (3)=1312n +-. 【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.。
北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习
第三章变量之间的关系第3节用图像表示的变量间关系课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.3.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米4.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s 与t的函数图象大致是()A.B.C.D.5.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路6.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.7.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A.5元B.15元C.12.5元D.10元评卷人得分二、填空题8.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)9.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.10.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务,收割亩数与天数之间的关系如图所示,那么乙参与收割________天.11.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.13.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;①甲的平均速度为15千米/小时;①乙走了8km后遇到甲;①乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).14.某城市用电收费实行阶梯电价,收费标准如下表所示,用户5月份交电费45元,则所用电量为_____度.月用电量不超过12度的部分超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.00 2.503.00评卷人得分三、解答题15.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆16.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?17.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个)2467付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.18.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.19.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?20.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;①当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案:1.C【解析】【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.2.B【解析】【详解】①y轴表示当天爷爷离家的距离,X轴表示时间又①爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,①刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多①选项B中的图形满足条件.故选B.3.A【解析】【详解】解:由图象可以看出菜地离小徐家1.1千米.故选A.点睛:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题的关键.4.B【解析】【分析】根据小刚取车的整个过程共分三个阶段:慢匀速步行,图像是坡直线,然后休息反应时间变化路程不变,再快匀速骑自行车,图像是陡直线即可.【详解】解:小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;①在同学家逗留期间,s不变;①骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合,故选B.【点睛】本题考查图像识别,掌握图形的特征和表示的意义是解题关键.5.B【解析】【分析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、观察函数图象,求出小王在朋友家停留的时间,故B正确;;C、先求出小王回家所用时间,比较后可得出C不正确;D、题干中未给出路况如何,故D不正确.综上即可得出结论.【详解】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),①100<200,①小王去时的速度小于回家的速度,A不正确;B、①30−20=10(分),①小王在朋友家停留了10分,B正确;C、40−30=10(分),①20>10,①小王去时所花时间多于回家所花时间,C不正确;D、①题干中未给出小王去朋友家的路有坡度,①D不正确.故选B.【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.6.A【解析】【详解】由于圆柱形水杯是均匀的物体,随着水的深度变高,需要的注水量也是均匀升高的.可知,只有选项A适合均匀升高这个条件.故选A.7.D【解析】【详解】(1000-600)÷(80-40)=10(元)8.①①【解析】【详解】①小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,①表示母亲离家的时间与距离之间的关系的图象是①;①父亲看了10分报纸后,用了15分返回家,①表示父亲离家的时间与距离之间的关系的图象是①9.图象法水平横轴竖直纵轴【解析】【详解】用图象来表示两个变量之间的关系的方法叫做图象法,在利用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,故答案为图象法,水平,横轴,竖直,纵轴.10.4【解析】【详解】解:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为4.【点睛】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.11.13【解析】【详解】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,①直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.12.900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.①①①【解析】【详解】①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;①根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15千米/时;故①正确;①设乙出发x分钟后追上甲,则有:102818-×x=1040×(18+x),解得x=6,故①正确;①由①知:乙第一次遇到甲时,所走的距离为:6×102818-=6km,故①错误;所以正确的结论有三个:①①①,故答案为①①①.14.20【解析】【详解】设所用电量为x度,由题意得:12×2+6×2.5+3(x﹣18)=45,解得:x=20,故答案为20.【点睛】本题考查了一元一次方程的应用,解题的关键是读懂表格,根据表格列出相应的方程进行求解.15.(1) 5元(2) 0.5元/千克;y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.【解析】【分析】(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【详解】(1)根据图示可得:农民自带的零钱是5元.x+5(0≤x≤30)(2)(20-5)÷30=0.5(元/千克)①y=12答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.16.(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27①,这一天的最高温度是37①.(2)这一天的温差是37-23=14(①),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.17.(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,∴付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.18.(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.19.(1)t,s;(2)2,6;(3)小明距起点的距离为300米【解析】【分析】(1)观察函数图象即可找出谁是自变量谁是因变;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答.【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师,根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题的关键在于看懂图中数据,通过数形结合来求解.20.(1) ①甲,甲,3小时;①3和193;(2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3小时;①由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t2,得:10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ①当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,①(40-10)÷(7-5)=15,①他在这段时间内每小时生产零件15个.故答案为(1) ①甲,甲,3小时;①3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。
北师大版七年级数学下册用尺规作三角形测试题
北师大版数学七年级下册第四章4.3尺规作图课后练习一、选择题(共15题)1.已知△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,则这个点是()。
A.三条角平分线的交点 B.三边高线的交点 C.三边中线的交点 D.三边中垂线的交点答案: D解析:解答:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选D.故选:D .分析:本题主要考查了作图—基本作图,而且是三条线段的垂直平分线的交点,在三角形中,经常最到这个问题,简单易答.2.已知:线段AB作法:(1)分别以点A和B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.(2)作直线CD.直线CD就是线段AB的().A.中线 B.高线 C.中垂线 D.不确定答案: C解析:解答:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选C.故选:C .分析:本题主要考查了作图—基本作图,简单易答,分析此问题的关键考虑到同样长的半径.3.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画( )个.A .1B . 2C .3D .4答案: C解析:解答:作图有以下几种情况: N L AN LAN L A故选:C .分析:本题主要考查了作图—基本作图,且考察了对等腰直角三角形的理解,问题中容易忽视的是射线AN ,而不是直线AN .4.已知:∠AOB作法:(1)作射线O 'A '.(2)以点O 为圆心,以任意长为半径作弧,交OA 于C ,交OB 于D .(3)以点O '为圆心,以OC 长为半径作弧,交O ’A '于C '.(4)以点C '为圆心,以CD 长为半径作弧,交前弧于D '.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线答案:B解析:解答:这个作图题属于基本作图中的作一个角等于已知角.故选:B .分析:本题主要考查了作图—基本作图中的作一个角等于已知角,问题简单易解.5.已知:∠AOB(图3-43).作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求的射线.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线答案:A解析:解答:这个作图题属于基本作图中的平分已知角.故选:A.分析:本题主要考查了作图—基本作图中的平分已知角,问题简单易解.6.已知:直线AB和AB上一点C(图3-44).作法:作平角ACB的平分线CF.CF就是所求的垂线.这个作图是()A.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线答案:C解析:解答:这个作图题属于基本作图中的过直线上一点作此直线的垂线.故选:C.分析:本题主要考查了作图—基本作图中的过直线上一点作此直线的垂线,问题简单易解.7.已知△ABC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由⑴、⑵可得:线段EF与线段BD的关系为( )A.相等B.垂直C.垂直且相等D. 互相垂直平分答案:D解析:解答:∵E F是BD的垂直平分线∴EB=ED,FB=FD易证BE=BF∴EB=ED=FB=FD∴四边形EBFD是菱形∴EF与BD互相垂直平分故选:D.分析:本题主要考查了作图知识,而且考察了菱形的判定和性质,是一道立意较好的作图综合性题目8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,符合要求的作图是()答案:D解析:解答: D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.分析:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.9. 已知点A(4,2),B(-2,2),则直线AB ( )A.平行于x轴B.平行于y轴C.经过原点D.以上都有可能答案:A解析:解答:A(4,2),B(-2,2)∴点A到x轴的距离为2,点B到x轴的距离为2且A、B都在x轴上方∴AB平行于x轴分析:此题是研究平面直角坐标系中,两个点所连线段与坐标轴的位置关系,需要对点到直线的距离有着明确地理解,而且此题属于较简单的判断线与坐标轴位置关系的一类问题。
北师大版七年级数学下册第一章课后练习题集
北师大版七年级数学下册第一章课后练习题集北师大版七年级数学下册第一章课后习题集幂的乘方一. 基础题 1.()23x = ;4231⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛ = ;ny24⎪⎭⎫ ⎝⎛=()3a a -⋅-= ; ()a na ⋅2 = ; 3()214()a a a ⋅= ;()332⎥⎦⎤⎢⎣⎡-c = ;2. 若(a 3)n =(a n )m (m ,n 都是正整数),则m =____________.3.计算3221⎪⎭⎫ ⎝⎛-y x 的结果正确的是( ) A. y x2441 B. y x 3681 C. y x 3581- D. y x 3681-4.判断题:(对的打“√”,错的打“×”)532a a a =+( ) 632x x x =⋅( ) (x x 532)=( )a a a 824=•( )5. 若m 、n 、p 是正整数,则p n ma a )(⋅等于().A .npmaa ⋅B .npmp a+ C .nmpaD .anmp a⋅6.计算题(1)4)(p p -⋅- (2) -(a 2)3(3) (-a 2)3(4)()[]436- (5)4332⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛(6)[(x 2)3]7 ;(7)(x 2)n-(x n)2(8)(-a 2)3·a 3+(-4a )2·a 7-5(a 3)37.若22=⋅mmx x ,求mx 9的值。
二.提高题:(每小题2分,共16分)1. 计算(-a 2)3·(-a 3)2的结果是( )A .a12B.-a 12C.-a10D.-a368.(1)已知x n =5,y n =3,求(xy )2n 的值.(2) 已知4·8m ·16m =29,求m 的值。
二.提高题1.221()()n n x y xy -⋅ =_______ ;23()4n n n n a b =;5237()()p q p q ⎡⎤⎡⎤+⋅+⎣⎦⎣⎦= 。
北师大版数学七年级下册第二章相交线与平行线第4节用尺规做角课后练习
第二章相交线与平行线第4节用尺规做角课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.如图,点C 在∠AOB 的边OB 上,用尺规作出了∠BCN =∠AOC ,作图痕迹中,弧FG 是( )A.以点C 为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧2.如图,在ABC ∆中,90ACB ∠=,按如下步骤操作:∠以点A 为圆心,任意长为半径作弧,分别交AC ,AB 于D ,E 两点;∠以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;∠以点F 为圆心,DE 长为半径作弧,两弧交于点G ;∠作射线CG ,若50FCG ∠=,则B 为( )A .40B .50C .60D .703.如图,不是B ∠的同旁内角是( )A .1∠;B .2∠;C .3∠;D .BCD ∠;4.下列属于尺规作图的是( ) A .用量角器画∠AOB 的平分线OP B .利用两块三角板画15°的角 C .用刻度尺测量后画线段AB =10cm D .在射线OP 上截取OA =AB =BC =a5.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧6.如图所示,过点P画直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行7.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.如图,用尺规法作∠DEC=∠BAC,作图痕迹MN的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧评卷人得分二、填空题9.阅读下面材料:在数学课上,老师提出如下问题:作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小凡利用两块形状相同的三角尺进行如下操作:如图所示:(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB.所以,直线AB即为所求.老师说:“小凡的作法正确.”请回答:小凡的作图依据是________.10.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:∠以________为圆心,________为半径画弧.分别交OA,OB于点C,D .∠画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,∠以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.∠过点________画射线O′B′,则∠A′O′B′=∠AOB .11.下列语句表示的图形是(只填序号)∠过点O的三条直线与另条一直线分别相交于点B、C、D三点:_____.∠以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:_______.∠过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:_________.12.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法_______.13.下列作图中:∠用量角器画出90AOB∠=︒;∠作AOB∠,使2AOBα∠=∠;∠连接AB;∠用直尺和三角板作AB的平行线CD,属于尺规作图的是__________.(填序号)14.在几何里,把只用_________和_________画图的方法称为尺规作图.15.完成作图步骤:已知∠α,∠β(∠β>∠α),求作一个角,使它等于∠β-∠α.作法:(1)作∠AOB=_______;(2)以OA为一边,在∠AOB的内部作∠AOC=___,则∠BOC就是所求作的角(如图).16.阅读下面材料:数学课上,老师提出如下问题:小明解答如右图所示,其中他所画的弧MN是以E为圆心,以CD长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:_______________________________________.评卷人得分三、解答题17.已知平面内有α∠,如图(1).(1)尺规作图:在图(2)AOB∠的内部作AODα∠=∠(保留作图痕迹,不需要写作法);(2)已知(1)中所作的40AOD∠=︒,OE平分BOC∠,2AOE BOE∠=∠,求BOD∠.18.如图,已知线段40mmAB=,60BAM∠=︒,请你用量角器和刻度尺按下列要求画图:(1)以B为顶点,BA为一边,在BAM∠同侧画30ABN∠=︒,AM与BN相交于点C;(2)取线段AB的中点G,连接CG;(3)用量角器得ACB=∠;(4)用刻度尺测得线段CG=mm,AC的长为mm.(结果保留整数),图中与线段相等的线段有.19.尺规作图,不写作法,保留作图痕迹已知:线段a和∠α求作:∠ABC,使得AB=a,BC=2a,∠ABC=∠α.20.如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.参考答案:1.D【解析】【分析】运用作一个角等于已知角可得答案.【详解】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点睛】本题主要考查了尺规作图——作一个角等于已知角,熟练掌握作一个角等于已知角是解题的关键.2.A【解析】【分析】利用基本作图得到∠FCG=∠CAB=50°,然后利用互余计算∠B的度数.【详解】解:由作法得∠FCG=∠CAB,∠∠FCG=50°,∠∠CAB=50°,∠∠ACB=90°,∠∠B=90°-50°=40°.故选:A.【点睛】本题考查了作图-复杂作图-作一个角等于已知角,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作,也考查了直角三角形的两锐角互余.3.C【解析】【分析】按照同旁内角的概念逐一判断即可.【详解】解:从图形可以判断,∠1,∠2,∠BCD都是∠B的同旁内角,但∠3不是;故答案为C.【点睛】本题考查了同旁内角的概念,熟知同旁内角概念的模型(如图的∠1和∠2)是解题的关键.4.D【解析】【详解】解:根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选D.5.C【解析】【详解】解:选项A,画角既需要顶点,还需要角度的大小,错误;选项B,延长线段AB到C,则AC>BC,即AC=BC不可能,错误;选项C,作一个角等于已知角是常见的尺规作图,正确;选项D,画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.6.D【解析】【详解】试题解析:如图所示,根据图中直线a、b被c所截形成的内错角相等,可得依据为内错角相等,两直线平行.故选D.7.D【解析】运用作一个角等于已知角可得答案.【详解】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点睛】本题主要考查了尺规作图——作一个角等于已知角,熟练掌握作一个角等于已知角是解题的关键.8.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故选D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.9.内错角相等,两直线平行【解析】【分析】根据平行线的判定方法即可解决问题;【详解】解:如图所示:∠两块形状、大小相同的三角尺,将第二块三角尺沿第一块三角尺移动,使其另一边经过∠∠1=∠2,∠AB∠直线l(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定定理、尺规作图,依据作图过程发现∠1=∠2是解题的关键.10.O任意长O′OC C CD D′【解析】【分析】根据作一个角等于已知角的作图方法解答即可.【详解】∠以O为圆心,任意长为半径画弧.分别交OA,OB于点C、D .∠画一条射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,∠以点C为圆心CD长为半径画弧,与第2步中所画的弧交于点D′.∠过点D′画射线O′B′,则∠A′O′B′=∠AOB.故答案为:(1). O;(2). 任意长;(3). O′;(4). OC;(5). C ;(6). CD ;(7). D′【点睛】本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.11.(3)(2)(1)【解析】【详解】解:观察图形,根据所给的信息可得:∠过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);∠以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);∠过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3);(2);(1).【点睛】本题考查了直线、射线与线段的知识,注意掌握三者的特点,给出图形应该能判断出是哪一个.12.SSS【解析】【详解】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证, 因此由作法知其判定依据是SSS ,即边边边公理.故答案为SSS.13.∠∠【解析】【详解】尺规作图的定义:只能用没有刻度的直尺和圆规作图,因此属于尺规作图的是∠、∠. 故答案为∠∠.14. 没有刻度的直尺 圆规【解析】【分析】根据尺规作图的概念进行回答即可.【详解】在几何里,把只用没有刻度的直尺和圆规画图的方法称为尺规作图.故答案为没有刻度的直尺,圆规.【点睛】牢记尺规作图的概念,尺规作图只允许使用两种工具:没有刻度的直尺和圆规. 15. ∠β; ∠α【解析】【详解】试题解析:(1)作,AOB β∠=∠(2)以OA 为一边,在AOB ∠的内部作,AOC α∠=∠ 则BOC ∠ 就是所求作的角(如图). 故答案为,.βα∠∠16.边边边定理证明两个三角形全等,则它们的对应角相等【解析】【分析】由作图过程可知,BE BM OC OD EM CD ====,根据边边边定理证明∆OCD∠∆BME ,可得FBE AOB ∠=∠.【详解】解:以B 点为圆心,OC 为半径画弧EM 交BO 于E,以E 点为圆心,DC 为半径画弧交弧EM 于N, 由此过程可知,BE BM OC OD EM CD ====∴ ∆OCD∠∆BME (SSS )∴FBE AOB ∠=∠故答案为边边边定理证明两个三角形全等,则它们的对应角相等【点睛】本题考查了作一个角等于已知角的作图依据,正确理解作图过程是解题的关键. 17.(1)图见解析;(2)20°.【解析】【分析】(1)按照要求进一步画出图形即可; (2)利用角平分线性质结合2AOE BOE ∠=∠得出==60COE BOE ∠∠°,然后进一步求解即可.【详解】(1)如图所示:(2)∠OE 平分BOC ∠,∠∠COE=∠BOE ,∠2AOE BOE ∠=∠,∠2AOE COE ∠=∠,∠+=180AOE COE∠∠°,∠2+=180COE COE∠∠°,∠==60COE BOE∠∠°,∠60AOB∠=︒,∠40AOD∠=︒,∠=604020BOD∠︒︒︒=-.【点睛】本题主要考查了角度的计算,熟练掌握相关概念是解题关键.18.(1)如图,见解析;(2)如图,见解析;(3)90°(4)20mm,20mm,相等的线段有AC=CG=AG=GB【解析】【分析】(1)按照题中要求用量角器作角;(2)按照题中要求用刻度尺作G点;(3)用量角器测量∠ACB的度数;(4)用刻度尺测量线段CG,AC的长,通过测量结果及已知条件找到图中相等的线段.【详解】解:(1)以B为顶点,BA为一边,在∠BAM同侧用量角器画∠ABN=30°,AM与BN相交于点C,如图;(2)用刻度在线段AB上取点G,使AG=20mm,点G即为AB的中点,如图;(3)用量角器测量∠ACB的度数,得∠ACB=90°;(4)用刻度尺测量线段CG=20mm,AC的长为20mm,∠AB=40mm,G为AB中点,∠AG=BG=20mm,∠AC=CG=AG=GB,即AC=CG=AG=GB.本题考查用量角器和刻度尺画图,掌握线段的比较与图形的作法是解答此题的关键. 19.见解析【解析】【分析】先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所作.【详解】如图,先作∠B=∠α,分别在∠B的两边上截取BA=a,BC=2a,连接AC,则△ABC即为所求作.【点睛】考查了复杂作图,解题关键是掌握作一个角等于已知角的方法.20.(1)详见解析;(2)BC∠DE【解析】【分析】(1)利用基本作图作∠ADE=∠ABC,交AC于点E;(2)根据平行线的判断方法进行判断.【详解】解:(1)如图,∠ADE为所作;(2)BC∠DE.理由如下:∠∠ADE=∠ABC,∠BC∠DE.本题考查了作图-基本作图,解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。
初一下册数学练习册答案北师大版
以下是为⼤家整理的初⼀下册数学练习册答案北师⼤版的⽂章,供⼤家学习参考!更多最新信息请点击第⼀章勾股定理课后练习题答案 说明:因录⼊格式限制,“√”代表“根号”,根号下内⽤放在“()”⾥⾯; “⊙”,表⽰“森哥马”, §,¤,♀,∮,≒,均表⽰本章节内的类似符号。
§1.l探索勾股定理 随堂练习 1.A所代表的正⽅形的⾯积是625;B所代表的正⽅形的⾯积是144。
2.我们通常所说的29英⼨或74cm的电视机,是指其荧屏对⾓线的长度,⽽不 是其长或宽,同时,因为荧屏被边框遮盖了⼀部分,所以实际测量存在误差. 1.1 知识技能1.(1)x=l0;(2)x=12. 2.⾯积为60cm:,(由勾股定理可知另⼀条直⾓边长为8cm). 问题解决 12cm2。
1.2 知识技能 1.8m(已知直⾓三⾓形斜边长为10m,⼀条直⾓边为6m,求另⼀边长). 数学理解 2.提⽰:三个三⾓形的⾯积和等于⼀个梯形的⾯积: 联系拓⼴ 3.可以将四个全等的直⾓三⾓形拼成⼀个正⽅形. 随堂练习 12cm、16cm. 习题1.3 问题解决 1.能通过。
. 2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的⾯积是相等的.然后 剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位 置上.学⽣通过量或其他⽅法说明B’ E’F’C’是正⽅形,且它的⾯积等于图①中 正⽅形ABOF和正⽅形CDEO的⾯积和。
即(B’C’) 2=AB2+CD2:也就是BC2=a2+b2。
, 这样就验证了勾股定理 §l.2 能得到直⾓三⾓形吗 随堂练习 l.(1) (2)可以作为直⾓三⾓形的三边长. 2.有4个直⾓三⾓影.(根据勾股定理判断) 数学理解 2.(1)仍然是直⾓三⾓形;(2)略;(3)略 问题解决 4.能. §1.3 蚂蚁怎样⾛最近 13km 提⽰:结合勾股定理,⽤代数办法设未知数列⽅程是解本题的技巧所在 习题 1.5 知识技能 1.5lcm. 问题解决 2.能. 3.最短⾏程是20cm。
北师大版七年级数学下册第一章整式的乘除 幂的运算课后作业题一(基础部分含答案)
北师大版七年级数学下册第一章整式的乘除 幂的运算课后作业题一(基础部分含答案)1.当x=﹣6,y=16时, 20162017x y 的值为( ) A .﹣6 B .6 C .16- D .162.下列运算正确的是( )A .B .C .D .3.下列计算正确的是( )A .a 3-a 2=aB .a 2·a 3=a 6C .(3a)3=9a 3D .(a 2)2=a 44.下列计算正确的是( )A .102×102=2×102B .102×102=104C .102+102=104D .102+102=2×1045.计算:(-3b 3)2÷b 2的结果是( )A .-9b 4B .6b 4C .9b 3D .9b 46.计算的结果是() A . B .C .D .7.下列计算正确的是( )A .a +a =a 2B .(2a )3=6a 3C .(a ﹣1)2=a 2﹣1D .a 3÷a =a 28.下列计算正确的是( )A .5a 4•2a =7a 5B .(﹣2a 2b )2=4a 2b 2C .2x (x ﹣3)=2x 2﹣6xD .(a ﹣2)(a +3)=a 2﹣69.若23a =,25b =,则322a b +等于____________。
10.计算:[﹣(b ﹣a )2]3=_____.11.计算: ()()2a a -÷-=________,()201820170.254⨯-=______.12.已知4x =2x+3,则x=_________.32÷8n-1=2n ,则n=_________.13.4(m -n )3÷(n -m )2=___________.14.计算:(-a)5÷(-a)=_________.15.已知2n x =,则3n x =__________.16.计算 ()()752.410510-⨯⨯⨯ 的值为______________. 17.(x —y )2(y —x )518.计算:(-a2)3·(b3)2·(ab)419.解方程与不等式:(1)(x-3)(x-2)+33=(x+9)(x+1) (2)(2x+3)(2x-3)<4(x-2)(x+3) 20.已知a=833,b=1625,c=3219,试比较a,b,c的大小.21.计算:(1)(2)(3)(4)22.(8分)计算:(1)x·x7;(2)a2·a4+(a3)2;(3)(-2ab3c2)4;(4)(-a3b)2÷(-3a5b2).23..答案1.D解:∵x=﹣6,y=16, ∴20162017x y = 201620162016·()?x y y xy y =201611(6)66=-⨯⨯=16.故选D. 2.D 解:,,,所以选D.3.D 解:A.a 3与a 2不能合并,故A 错误;B. a2⋅a 3=a 5,故B 错误;C. (3a)3=27a 3,故C 错误;D. (a 2)2=a 4,故D 正确.故选:D.4.B解:A. 102×102=104≠2×102 ,故不能选;B. 102×102=104 ,故可以选;C. 102+102=2×102≠104,故不能选;D. 102+102=2×102≠2×104,故不能选.故正确选项为:B.5.D 解:(-3b 3)2÷b 2=9b 6÷b 2= 9b 4.6.D 解:= .故选D.7.D解:A ,a+a=2a≠a 2,故该选项错误;B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a-1)2=a 2-2a+1≠a 2-1,故该选项错误;D ,a3÷a=a 2,故该选项正确,故选:D .8.C解:A .原式=10a 5,故A 错误;B .原式=4a 4b 2,故B 错误;C .正确;D .原式=a 2+a ﹣6,故D 错误.故选C .9.675解:原式=23a ×22b =(2a )3×(2b )2=33×52=675.故答案为:675.10.-(a-b)6解:积的乘方法则为底数不变,指数相乘。
北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习
第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。
北师大版数学七年级下册3.1《用表格表示的变量间关系》精选练习(含答案)
北师大版数学七年级下册3.1《用表格表示的变量间关系》精选练习一、选择题1.生活中太阳能热水器已经慢慢普及使用.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒太阳时间的长短而变化,这个问题中因变量是( )A.太阳光的强弱B.水的温度C.晒太阳的时间D.热水器2.人的身高h随时间t的变化而变化,那么下列说法正确的是( )A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量3.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼4.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量5.下表是某报纸公布的世界人口数情况:上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有6.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器7.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量8.赵先生手中有一张记录他从出生到24岁期间的身高情况表(如下表所示):对于赵先生从出生到24岁期间身高情况下列说法错误的是( )B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到21岁平均每年约增高5.8 cmD.赵先生的身高从0岁到24岁平均每年增高7.1 cm二、填空题9.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=0.10.每个同学购买一本课本,课本的单价是4.5元,总金额为y(元),学生数为n(个),则变量是_____,常量是_____.11.温度随着时间的改变而改变,则自变量是_____(时间,温度)12.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.在这个问题中, 是常量; 是变量.13.某种储蓄的月利率是0.36%,今存入本金100元,则本息和y(元)与所存月数x之间的关系式为_____,其中常量是_____,变量是_____.14.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是_____,变量是_____.三、解答题15.某种蔬菜的价格随季节变化如下表:单位:元/千克(1)观察表说出变量、自变量、因变量;(2)哪个月这种蔬菜价格最高,哪个月这种蔬菜的价格最低;(3)计算一下这种蔬菜的年平均价.16.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:请估计李明家六月份的总用电量是多少.17.声音在空气中的传播速度y(米/秒)(简称音速)随气温x(℃)的变化而变化.下表列出了一组不同气温时的音速.(1)当x的值逐渐增大时,y的变化趋势是什么?(2)x每增加5℃,y的变化情况相同吗?(3)估计气温为25℃时音速是多少.18.某商店售货时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《利用轴对称进行设计》习题
一、选择题
1.下面四个图案中,既包含图形的旋转,又有图形的轴对称的设计是( )
A. B. C. D.
2.如图,在网格中△ABC的三个顶点都在格点上,则网格内与△ABC成轴对称且也以格点为顶点的三角形共有( )
A.3个
B.4个
C.5个
D.6个
3.如图,在图形T上补一个小正方形,使它成为一个轴对称图形,一共有( )种方法.
A.3
B.4
C.5
D.无数种
4.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有( )
A.1种
B.2种
C.3种
D.4种
5.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,图中的设计符合要求的有( )
A.4个
B.3个
C.2个
D.1个
6.三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定( )
A.是边AB的中点
B.在边AB的中线上
C.在边AB的高上
D.在边AB的垂直平分线上
7.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( )
A.第一列第四行
B.第二列第一行
C.第三列第三行
D.第四列第一行
二、填空题
8.在学习“轴对称”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).
小明的这三件文具中,可以看做是轴对称图形的是_____(填字母代号);
9.花边中的图案以正方形为基础,由圆弧或圆构成,依照例图,
请你为班级黑板报设计一条花边,要求
(1)只要画出组成花边的一个图案,不写画法,不需要文字;
(2)以所给的正方形为基础,用圆弧或圆画出;
(3)图案应有美感;
(4)与例图不同._____.
10.如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:
_____.
11.仔细观察下列图案,并按规律在横线上画出合适的图形.
_____
三、解答题
12.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C在小正方形的顶点上,请图1、图2中各画一个四边形,满足以下要求:(1)在图1中,以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是非对称图形;
(2)在图2中以以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是轴对称图形.
13.作图与设计:
(1)用四块如图Ⅰ所示的黑白两色正方形瓷砖拼成一个新的正方形,使之形成轴对称图案,请至少给出三种不同的拼法(在①、②、③中操作);
(2)请你任意改变图Ⅰ瓷砖中黑色部分的图案,然后再用四块改变图案后的正方形瓷砖拼出一个中心对称图案(在④中操作).
14.如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.
(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;
(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;
(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.
(注:图甲、图乙、图丙在答题纸上)
15.如图①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图②中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:
(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;
(2)请你在图②中画出第二个叶片F2;
参考答案
一、选择题
1.答案:D
解析:【解答】A、只有图形的旋转设计,故本选项错误;
B、只有图形的轴对称的设计,故本选项错误;
C、只有图形的旋转设计,故本选项错误;
D、既包含图形的旋转,又有图形的轴对称的设计,故本选项正确.
故选D
【分析】根据旋转和轴对称的定义判断.
2、答案:C
解析:【解答】如图:与△ABC成轴对称的三角形有:
①△FCD关于CG对称;②△GAB关于EH对称;
③△AHF关于AD对称;④△EBD关于BF对称;
⑤△BCG关于AG的垂直平分线对称.共5个.
故选C.
【分析】观察图形,根据图形特点先确定对称轴,再根据对称轴找出相应的三角形.3.答案:B
解析:【解答】如图所示:
,
共4种方法.
故选B.
【分析】先确定出此图的一个对称轴,再根据轴对称图形的性质画图形. 4.答案:C 解析:【解答】共有
3种.
故选C .
【分析】根据轴对称图形的定义即可作出. 5.答案:A
解析:【解答】:①是轴对称图形,符合题意; ②是轴对称图形,符合题意; ③是轴对称图形,符合题意; ④是轴对称图形,符合题意;
综上可得①②③④均符合题意,共4个. 故选A .
【分析】轴对称图形的概念:把一个图形沿着某条直线折叠,能够与原图形重合,结合各图形进行判断即可. 6.答案:C
解析:【解答】A 、即运用了轴对称也利用了旋转对称,故本选项错误; B 、利用了轴对称,故本选项错误;
C 、没有运用旋转,也没有运用轴对称,故本选项错误;
D 、即运用了轴对称也利用了旋转对称,故本选项错误; 故选C .
【分析】运用旋转和轴对称的定义. 7.答案:B
解析:【解答】根据题意得:涂成灰色的小方格在第二列第一行.
故选B.
【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.
二、填空题
8.答案:B,C
解析:【解答】B,C
【分析】找到沿某条直线折叠,直线两旁的部分能够互相重合的图形即可.
9.答案:见解答过程.
解析:【解答】此题答案不唯一,略举几例如图.
【分析】根据轴对称性质设计花边图案的能力,而且要符合考题中的四点要求,这是一道融数学与美术为一体的综合创新素质题.
10.答案:如图
解析:【解答】如图所示:
【分析】由于小正方形是轴对称图形,所以只要构成的大图对称即可.
11.答案:
解析:【解答】应填E的对称图形,如图:
【分析】图中是大写英文字母构成的轴对称图形,按字母顺序应填E.
三、解答题
12.答案:见解答过程.
解析:【解答】(1)如图1所示:(2)如图2所示:
【分析】(1)根据题意四边形为有两组角互补且是非对称图形,进而得出一组对角是两个直角即可;
(2)根据题意画一个等腰梯形即可.
13.答案:见解答过程.
解析:【解答】
如图所示.
【分析】把大正方形各边中点的连线为对称轴,根据轴对称定义,调整瓷砖位置即可.14.答案:见解答过程.
解析:【解答】
【分析】(1)可以作平行四边形,但不是矩形;(2)等腰梯形;(3)可以作正方形.根据轴对称,中心对称的定义,画出图形.中心对称图形是绕着一点旋转180°后可以重合的图形,轴对称图形是按一条直线折叠后重合的图形.
15.答案:(1)B(6,1).(2)如图.
解析:【解答】(1)B(6,1).
(2)如右图.
【分析】:(1)因为OA∥BC,OA=BC=4,所以B(4+2,1)即(6,1);
(2)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别作出点O、A、B、C的对应点,顺次连接即可.。