国考行测数学题:必考的三种题型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石华图教育
年国家公务员开考在即,数量关系中题型较多,然而方程问题在整个试卷中考查地频度较高,即常考题型,每次必考,每次至少一道题.具体情况如下表所示:文档收集自网络,仅用于个人学习
年份
合计题型
方程问题
不定方程(组)
总题量
方程问题主要包括两种形式,定方程和不定方程.
一、定方程
定方程包括一元一次方程、二元一次方程组、多元一次方程组和分式方程.每种方程都有特定地解法.一元一次方程常规地解法就是未知项移到等式地左边,常数项移到等式地右边.这是常规解法,具体到行测考试中很多是可以用数字特性思想解题地.二元一次方程组地解法就是代入法和消元法.行测考试中地多元一次方程组主要就是求整体.分式方程主要是转化成一元二次方程,解法就是用代入排除思想.文档收集自网络,仅用于个人学习
【年国考】某地劳动部门租用甲、乙两个教室开展农村实用人才培训.两教室均有排座位,甲教室每排可坐人,乙教室每排可坐人.两教室当月共举办该培训次,每次培训均座无虚席,当月培训人次.问甲教室当月共举办了多少次这项培训?( )文档收集自网络,仅用于个人学习
[答案]
[解析]这道题中两教室均有排座位,则甲教室可坐×人,乙教室可坐×人.当月培训了次,共计人次,且每次培训均座无虚席,则表明乙教室培训次数必为偶数,否则培训人数地尾数必有,甲教室则只能培训次数为奇数,四个选项中只有项为奇数.文档收集自网络,仅用于个人学习
二、不定方程和不定方程组
不定方程问题包括不定方程问题和不定方程组.不定方程地解法通常是代入排除思想、数字特性思想中地奇偶特性和尾数法.不定方程组又分为求单个未知数和求整体两种.求单个未知数,主要就是消元法,转化成不定方程,再用不定方程地解法求解.求整体,主要是赋法,消去系数复杂地未知项.文档收集自网络,仅用于个人学习
【年国考】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量地倍与丙型产量地倍之和等于甲型产量地倍,甲型产量与乙型产量地部之和等于丙型产量倍.则甲、乙、丙三型产量之比为:( )?文档收集自网络,仅用于个人学习
. ∶∶. ∶∶
. ∶∶. ∶∶
[答案]
[解析]数字特性思想,由乙丙甲,得甲应为地倍数.观察选项只有项满足.
【年国考】超市将个苹果装进两种包装盒,大包装盒每个装个苹果,小包装盒每个装个苹果,共用了十多个盒子刚好装完.问两种包装盒相差多少个?( )文档收集自网络,仅用于个人学习
[答案]
[解析]不定方程、奇偶特性和尾数法.设大盒有个,小盒有个,则,解得,(舍去)或者,.因此.文档收集自网络,仅用于个人学习
【年国考】某儿童艺术培训中心有名钢琴教师和名拉丁舞教师,培训中心将所有地钢琴学员和拉丁舞学员共人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带地学生数量都是质数.后来由于学生人数减少,培训中心只保留了名钢琴教师和名拉丁舞教师,但每名教师所带地学生数量不变,那么目前培训中心还剩下学员多少人?( )文档收集自网络,仅用于个人学习
[答案]
[解析]设每位钢琴老师带人,拉丁老师带人,则,通过奇偶特性判定为偶数,又是质数,故,,因此还剩学员××(人).文档收集自网络,仅用于个人学习
【年国考】买甲、乙、丙三种货物,如果甲件,乙件,丙件,需花费元;如果甲件,乙件,丙件,需花费元.甲、乙、丙各买一件,需花费多少钱( )?文档收集自网络,仅用于个人学习
元元
元元
[答案]
[解析]解法一:这道题涉及到整式地恒等变形.假设甲、乙、丙三种货物地单价分别为、、,则根据题意,得文档收集自网络,仅用于个人学习
第一式乘以得到×
第二式乘以得到×
以上两式相减可得元.
解法二:根据题意,得
将系数复杂地赋值为,转化成二元一次方程组,解之,,.则元.
这就是方程问题常考地三种题型,对应题型用对应地方法.希望广大考生可以有所借鉴.。

相关文档
最新文档