s-snom工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s-snom工作原理
英文回答:
S-SNOM Working Principle.
Scanning s-SNOM (scattering-type scanning near-field optical microscopy) is a powerful technique for imaging the local optical properties of materials with nanoscale resolution. The working principle of s-SNOM is based on the scattering of light from a sharp metallic tip that is brought into close proximity to the sample surface. The tip acts as a subwavelength antenna that concentrates the incident light field and enhances the scattering signal from the sample.
The scattering signal collected by the tip is directly related to the optical properties of the sample at the nanoscale. For example, the amplitude of the scattering signal is proportional to the local refractive index, while the phase of the scattering signal is related to the local
thickness and topography of the sample. By raster scanning the tip across the sample surface, it is possible to generate images that map the spatial distribution of these optical properties.
S-SNOM has a number of advantages over other near-field optical microscopy techniques, such as apertureless SNOM
and photoluminescence SNOM. First, s-SNOM does not require the use of a subwavelength aperture, which can be difficult to fabricate and maintain. Second, s-SNOM is compatible
with a wide range of samples, including opaque and non-fluorescent materials. Third, s-SNOM can be used to image both the real and imaginary parts of the sample's optical response.
S-SNOM has been used to study a wide range of materials, including semiconductors, metals, polymers, and biological materials. It has been used to investigate the optical properties of nanostructures, such as quantum dots and plasmonic resonators. It has also been used to study the local optical properties of materials in heterogeneous systems, such as solar cells and thin films.
中文回答:
S-SNOM工作原理。

扫描s-SNOM(散射型扫描近场光学显微镜)是一种功能强大的
技术,可用于成像具有纳米级分辨率的材料局部光学特性。

s-SNOM
的工作原理是基于从靠近样品表面的尖锐金属尖端散射光。

该尖端
充当亚波长天线,可集中入射光场并增强样品的散射信号。

尖端收集的散射信号与纳米尺度上样品的局部光学特性直接相关。

例如,散射信号的振幅与局部折射率成正比,而散射信号的相
位与样品的局部厚度和形貌相关。

通过在样品表面上对尖端进行光
栅扫描,可以生成映射这些光学特性的空间分布的图像。

与其他近场光学显微镜技术(如无孔径SNOM和光致发光SNOM)相比,s-SNOM具有一些优势。

首先,s-SNOM不需要使用次波长孔径,其难以制造和维护。

其次,s-SNOM与各种样品兼容,包括不透明和
非荧光材料。

第三,s-SNOM可用于对样品光学响应的实部和虚部进
行成像。

s-SNOM已用于研究各种材料,包括半导体、金属、聚合物和生
物材料。

它已被用于研究纳米结构(例如量子点和等离子体谐振器)的光学特性。

它还被用于研究异质系统中材料的局部光学特性,例
如太阳能电池和薄膜。

相关文档
最新文档