苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
C
D
A
2.总结 垂径定理:
数学语言(符号)表述: 板书垂径定理的内容
活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。
环节三:运用新知 教师活动4
例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。
线段AC 与BD 相等吗?为什么?
例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。
变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。
想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?
学生活动4
(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.
(2)学生独立分析,老师板书,写出证明过程.
例2是例1的延伸,要求学生在课堂作业纸上完成,
并请一名学生上黑板板演并关注证明过程是否规范.
变式:生生互动完成!
想一想:学生合作完成,并交流展示,教师引导归纳
活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。
环节四:课堂小结
O
A
B
O
F
E
D
C
B
A
7.板书设计 2.2圆的对称性(2)
垂径定理:例题板书:(略)学生板书:(略)
数学语言(符号)表述:
8.作业与拓展学习设计
1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .
2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.
3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___
4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC
=45°,求CD的长。
5.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:
(1)桥拱半径,(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?
6.直径为10cm的圆柱形油罐内装进一些油后,其横截面如图,若油面宽AB=6cm,求油的最大深度.
7.在半径为5的圆中,弦AB∥CD,AB=6,CD=8,试求弦AB和CD的距离.
9.特色学习资源分析、技术手段应用说明
课前备课教师要善于研究教材和大纲,精心选题,题目要有一定代表性;教学过程中灵活运用多媒体手段有效开展教学,激发学习的学习兴趣和学习积极性;课堂中充分发挥学习的主体作用,全面有
A B
F
M
C
D
O。