【中考数学】有理数解答题训练经典题目(及答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考数学】有理数解答题训练经典题目(及答案)
一、解答题
1.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.
例如:对于数列因为
所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列
的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.
(1)数列的“关联数值”为________;
(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数
列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________
(3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.
2.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:
(1)数轴上表示1和-3的两点之间的距离是________:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
3.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.
(1)数轴上A、B之间的距离记作,定义:设点C在数轴上
对应的数为x,当时,直接写出x的值.
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.
(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.4.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,
(1)动点Q运动3秒时,求此时Q在数轴上表示的数?
(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;
(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.
5.(1)阅读下面材料:
点、在数轴上分别表示实数,,、两点之间的距高表示为
当、两点中有一点在原点时,不妨设点在原点,如图1,
;
当、都不在原点时,
①如图2,点、都在原点的右侧,
;
②如图3,点、都在原点的左侧,
;
③如图4,点、在原点的两侧,
;
(1)回答下列问题:
①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;
②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;
③当代数式取最小值时,相应的的取值范围是________;
④求的最小值,提示:
.
6.阅读理解:
若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。
例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点,又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点。
知识运用:
(1)如图2,M,N为数轴上的两点,点M所表示的数为-2,点N所表示的数为4.
①在点M和点N中间,数________所表示的点是【M,N】的好点;
②在数轴上,数________和数________所表示的点都是【N,M】的好点。
(2)如图3,A,B为数轴上的两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,到达点A时停止,则经过几秒后,P,A和B中恰有一个点为其余两点的好点?
7.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.
(1)请直接写出、b、c的值: =________,b=________,c=________.
(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表
示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
8.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.
(1)请真接与出a=________,b=________;
(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.
9.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.
(1)求时,求点P和点Q表示的有理数;
(2)求点P与点Q第一次重合时的t值;
(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?10.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.
(1)求a,b,c的值,并在数轴上标出点A,B,C;
(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)
11.已知 a、b、c 在数轴上的位置如图:
(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;
(2)化简:;
(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).
12.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足
(1)A、B两点对应的数分别为 ________, ________;
(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.
(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?
(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.
13.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
动点P、Q同时出发,动点P 从点A出发,以每秒4个单位的速度沿A→B→A匀速运动回到点A停止运动.动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s)。
(1)当点P到达点B时,点Q表示的数为________。
(2)当t=1时,求点P、Q之间的距离。
(3)当点P在A→B上运动时,用含t的代数式表示点P、Q之间的距离。
(4)当点P、Q到点C的距离相等时,直接写出t的值。
14.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.
(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;
(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;
(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.
15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数轴,根据数形结合思想,回答下列问题:
(1)已知|x|=3,则x的值是________.
(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;
(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________
(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;
(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.
(6)|x+1|﹣|x﹣3|的最大值为________.
16.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。
一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒。
(1)请求出A、B、C三点分别表示的数;
(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;
(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是________。
17.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b
(1)直接写出:a=________,b=________
(2)数轴上点P对应的数为x,若PA+PB=20,求x的值
(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度
18.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
(1)用“>”“<”或”=”填空:b________0,a+b________0,a-c________0 ,b-c________0 (2)|b-1|+|a-1|=________;
(3)化简:|a+b|+|a-c|-|b|+|b-c|。
19.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.
(1)请写出线段AB的中点C对应的数.
(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?
(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?
20.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.
(1)数轴上点C表示的数是________;
(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.
①当t为何值时,点O恰好是PQ的中点;
②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)-4
(2)7;-3、4、2
(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,
∴-9-a<-9<-3,
∴数列3、-6、a的“关联数值”为-3,
∵
解析:(1)-4
(2)7;-3、4、2
(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,
∴-9-a<-9<-3,
∴数列3、-6、a的“关联数值”为-3,
∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,
∴-3<-3+a<a+3,
∴数列3、a、-6的“关联数值”为a+3,
∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,
∴a+6>6,a+6>a+3,
∴数列-6、a、3的“关联数值”为a+6,
∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,
∴9>9-a,9>6,
∴数列-6、3、a的“关联数值”为9,
∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,
∴-a-9<-a-6<-a,
∴数列a、-6、3的“关联数值”为-a,
∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,
∴-a<3-a<9-a,
∴数列a、3、-6的“关联数值”为9-a,
∵a>0,这些数列的“关联数值”的最大值为10,
∴-3、9、-a、9-a不符合题意,
∵a+6>a+3,
∴a+6=10,
解得:a=4.
取得“关联数值”最大值的数列为-6,4、3.
【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,
∴数列的“关联数值”为-4.
故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,
由(1)得数列的“关联数值”为-4.
∵-4=-4,-4+2=-2,-4+2-(-3)=1,
∴数列4,2,-3的“关联数值”为1,
∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,
∴数列-3、4、2的“关联数值”为7,
∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,
∴数列-3、2、4的“关联数值”为5,
∵-2=-2,-2+4=2,-2+4-(-3)=5,
∴数列2、4、-3的“关联数值”为5,
∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,
∴数列2、-3、4的“关联数值”为-2,
∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2
故答案为7;-3、4、2
【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.
2.(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b
解析:(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b|=|4a|=8
∴a=2,b=-6或a=-2,b=6
综上所述:a=4,b=12或a=-4,b=-12或a=2,b=-6或a=-2,b=6.
(3)解:由线段上的点到线段两端点的距离的和最小,
①当点b在a的右侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=x−3+b−x=4,
解得:b=7;
②当点b在a的左侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=3−x+x−b=4,
解得:b=−1;
故答案为:7或−1.
【解析】【解答】解:(1)1和-3两点之间的距离为|1-(-3)|=4
【分析】(1)根据数轴上两点间的距离公式即可求解;(2)根据|b|=3|a|,分类讨论b=3a和b=-3a时的情况,分别求解a、b即可;(3)根据|x−a|+|x−b|的最小值为4可知,a、b对应点在数轴上距离为4,再根据a的取值可解得b.
3.(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.
①当C在A左侧时,,
,;
②C在A和B之间时,,
点C不存在;
③点C在B点右侧时,,
,
;
故答案
解析:(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.
①当C在A左侧时,,
,;
②C在A和B之间时,,
点C不存在;
③点C在B点右侧时,,
,
;
故答案为或8.
(2)解:依题意得:
.
点P对应的有理数为.
(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,
,
解得,;
甲向左运动,乙向右运动时,即时,
此时,,
依题意得,,
解得,.
答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.
【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分
类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程
求解即可.
4.(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为−1,
∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2
(2)解:设每改变一次方向为一次运动,
解析:(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为−1,
∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2
(2)解:设每改变一次方向为一次运动,
分析动点Q的移动规律可知,第一次到达数轴上表示数1的位置,第3次到达数轴上表示数2的位置,第5次到达数轴上表示数3的位置,…,
所以第2n-1次到达数n的位置,
所以第19次到达数轴上表示数10的位置,
此时运动的总路程为:,
∴Q运动的时间t=190÷2=95秒
(3)解:∵3秒时,动点Q所在的位置为2,
∴5秒时,动点Q所在位置为−2,
①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,
Q在数轴3位置向左运动时,PQ=5+ ×0.1=,
设点P激活后第一次与继续运动的点Q相遇时用的时间为t1,则(2−0.1)t1=,
解得:t1=,
∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2+ ×0.1+ ×0.1)=;
②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,
Q在数轴3位置向左运动时,PQ=5− ×0.1=,
设点P激活后第一次与继续运动的点Q相遇时用的时间为t2,则(2+0.1)t2=,
解得:t2=,
∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2− ×0.1− ×0.1)=;
综上所述,点P激活后第一次与继续运动的点Q相遇时所在的位置是或 .
【解析】【分析】(1)根据动点Q的移动规律,分析得出0.5秒和3秒时所在位置,即可求出答案;(2)分析动点Q的移动规律,求出到达数轴上表示数10的位置时所走的总路程,然后根据时间=路程÷速度进行计算即可;(3)首先求出5秒时,动点Q所在位置为−2,然后分情况讨论:①P点向左运动,②P点向右运动,分别列出方程求出相遇时用的时间,然后再计算点Q相遇时所在的位置即可.
5.(1)3;3;4;|x+1|;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则 x 在1和2015之间即可,要使最小,则 x 在2和2014之间即可…… 以此类推,要使最小,
解析:(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式
【解析】【解答】解:①表示2和5的两点间的距离为,
表示-2和-5的两点之间的距离为,
表示1和-3的两点之间的距离为;
②表示和-1的两点和之间的距离为,
若,则,∴,∴或
③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是
【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;
6.(1)2;0;-8
(2)解:由题意设PB=4t,AB=40+20=60,则PA=60-4t,
点P走完所用的时间为60÷4=15(秒)
分四种情况:
①当PA=2PB时,即2×4t=60-4
解析:(1)2;0;-8
(2)解:由题意设PB=4t,AB=40+20=60,则PA=60-4t,
点P走完所用的时间为60÷4=15(秒)
分四种情况:
①当PA=2PB时,即2×4t=60-4t,t=5,P是【A,B】的好点;
②当PB=2PA时,即4t=2(60-4t),t=10,P是【B,A】的好点;
③当AB=2PB时,即60=2×4t,t=7.5,B是【A,P】的好点;
④当AB=2AP时,即60=2(60-4t),t=7.5,A是【B,P】的好点,
即当经过5秒或7.5秒或10秒时,点P,A和B中恰有一个点为其余两点的好点。
【解析】【解答】解:(1)①设设所求的数为x,由题意得:
x-(-2)=2(4-x)
解之:x=2;
②在数轴上,数0和数-8所表示的点都是【N,M】的好点。
故答案为:2,0,-8
【分析】(1)①设所求的数为x,再根据好点定义,列出关于x的方程,解方程求出x 的值;②根据好点的定义可以得到结论。
(2)由已知条件用含t的代数式表示出PB,AB,PA的长,再求出点P走完所用的时间,然后分情况讨论:①当PA=2PB时;②当PB=2PA时;③当AB=2PB时;④当AB=2AP 时,由此分别建立关于t的方程,解方程求出t的值即可。
7.(1)-1;1;5
(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 < 0
则|x+1|﹣|x﹣1|+2|x-5|
=x+1﹣(1﹣x)+2(5-x)
=x+1﹣1+x+10-2x
解析:(1)-1;1;5
(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 0
则|x+1|﹣|x﹣1|+2|x-5|
=x+1﹣(1﹣x)+2(5-x)
=x+1﹣1+x+10-2x
=10
(3)解:BC﹣AB的值不随的变化而改变,总为2
秒时,点A表示的数为,点B表示的数为,点C表示的数为,此时,BC=()-()= ,
AB=()-()= ,
所以BC-AB=()-()=2
∴BC﹣AB的值不随着时间t的变化而改变,总为2.
【解析】【解答】解:(1)∵是最大的负整数,
∴ =﹣1
∵(c﹣5)2+| +b|=0
∴c-5=0;a+b=0
∴b=1;c=5
【分析】(1)根据绝对值和完全平方式的非负性求值即可;(2)由0≤x≤1得出x+1>0;x﹣1≤0;x-5 0,然后根据绝对值的意义进行化简;(3)分别表示出t秒后,点A,B,C 所表示的数,然后根据两点间的距离求得BC,AB的长度,然后进行计算并化简. 8.(1)5;6
(2)解:①点M未到达O时(0<t≤2时),
NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t
即3t+10-5t=5t,解得 t=107 ,
②点M到达O返回
解析:(1)5;6
(2)解:①点M未到达O时(0<t≤2时),
NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t
即3t+10-5t=5t,解得 t=,
②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),
OM=5t-10,AM=20-5t,MP=3t+5t-10
即3t+5t-10=20-5t,解得 t=
③点M到达O返回时,在A点右侧,即t>4时
OM=5t-10,AM=5t-20,MP=3t+5t-10,
即3t+5t-10=5t-20,解得 t=(不符合题意舍去).
综上或;
(3)解:如下图:
根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t
依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,
解得t=4.此时M对应的数为20.
【解析】【解答】解:(1)∵|a-5|+(b-6)2=0.
∴a-5=0,b-6=0
∴a=5,b=6
故依次填:5,6;
【分析】(1)中根据非负数的性质即可得解;(2)分三种情况,分别表示MP和MA,根据MP=MA列出方程,解方程即可(需注意t>0);(3)依据题意画出图形,根据图形可知MN=NO+OM=11t.M,N,O,A为端点的所有线段的长度和为3MN+OA=142,将MN=11t代入,即可求出t的值,M点表示的数可求.
9.(1)解:当 t=2 时,
点P表示的数为:,
点Q表示的数为:
(2)解:
=4
答:点P与点Q第一次重合时的t值为4
(3)解:点P和点Q第一相遇前
解析:(1)解:当时,
点P表示的数为:,
点Q表示的数为:
(2)解:
答:点P与点Q第一次重合时的t值为4
(3)解:点P和点Q第一相遇前,
,
解得,;
当点P和点Q相遇后,点P到达点B前,
,
解得,;
当点P从点B向点A运动时,
,
解得,;
由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.
【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.
10.(1)解:∵a是最大的负整数,
∴a=-1,
∵|b-3|+(c+4)2=0,
∴b-3=0,c+4=0,
∴b=3,c=-4.
表示在数轴上为:
(2)解:BC=3-(-4)=7,则运
解析:(1)解:∵a是最大的负整数,
∴a=-1,
∵|b-3|+(c+4)2=0,
∴b-3=0,c+4=0,
∴b=3,c=-4.
表示在数轴上为:
(2)解:BC=3-(-4)=7,则运动时间为秒
(3)解:设点M表示的数为x,使P到A、B、C的距离和等于13,
①当M在点B的右侧,x-(-4)+x-(-1)+x-3=13.
解得x= ,
即M对应的数是 .
②当M在C点左侧,(-4)-x+(-1)-x+3-x=13.
解得x=-5,
即M对应的数是-5.
综上所述,点M表示的数是或-5
【解析】【分析】(1)根据最大的负整数是1,可得到a的值,再利用几个非负数之和为0,求出b,c的值,然后根据a,b,c的值在数轴上标出A、B、C的位置。
(2)利用两点间的距离公式求出BC的长,再根据段P的运动速度就可求出点P到达点B 的运动时间。
(3)设点M表示的数为x,使P到A、B、C的距离和等于13,再分情况讨论:①当M
在点B的右侧;②当M在C点左侧,分别建立关于x的方程,分别求出方程的解。
11.(1)>;<;<
(2)解:∵a+1>0,c-b<0,b-1<0,
∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c
(3)解:由已知得:b+1=-1-c,即b+c=-2,
解析:(1)>;<;<
(2)解:∵a+1>0,c-b<0,b-1<0,
∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c
(3)解:由已知得:b+1=-1-c,即b+c=-2,
∵a+b+c=0,即-2+a=0,∴a=2,
则2b -c - (a - 4c - b).
=2b -c - a + 4c + b
=3(b+c)-2=
【解析】【解答】解:(1)根据题意得:c<0<b<1<a
∴a+1>0;c-b<0;b-1<0
【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.
12.(1)-8;6
(2)-2
(3)解:①相遇前相距2个单位长度:
t=[6-(-8)-2]÷(4+2)=1.5(秒)
②相遇后相距2个单位长度:
t=[6-(-8)+2]÷(4+2)=2(秒)
解析:(1)-8;6
(2)-2
(3)解:①相遇前相距2个单位长度:
t=[6-(-8)-2]÷(4+2)=1.5(秒)
②相遇后相距2个单位长度:
t=[6-(-8)+2]÷(4+2)=2(秒)
综上所述:1.5秒或2秒后A、B两点相距2个单位长度.
(4)解:AP+2OB-OP的值不会发生变化.
∵OP=7t,OA=-8+4t,
∴AP=7t-(-8+4t)=3t+8,
∵OB=6+2t,
∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,
∴AP+2OB-OP的值不会发生变化,定值为20.
【解析】【解答】(1)∵,
∴a+8=0,b-6=0,
解得:a=-8,b=6,
故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,
∴对折点表示的数是[6+(-8)]÷2=-1,
∵-1与原点的距离是1,
∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,
故答案为:-2
【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.
13.(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= 43 ,
当0≤1≤ 43 时,PQ
解析:(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= ,
当0≤1≤ 时,PQ=4-3t
当<1≤2时,PQ=3t-4
(4)解:t= ,t= ,t= ,t=4
【解析】【分析】先表示出运动t(s)点P经过的路程为4t,点Q经过的路程为t;P到达点B和终点A所用的时间分别为2(s)、4(s),点Q到达点B所用的时间为4(s)。
(1)P到达点B用2(s),此时CQ=2,故可求;
(2)当t=1时,求出线段AP、CQ,故可求PQ;
(3)先由AP=AC+CQ求出点P、Q相遇时的时间,然后分0≤t≤和≤t≤2两种情况求解即可;
(4)利用PC=PQ列出方程求解即可。
14.(1)-10;14;24
(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,
∴BC=|t-10-(14-2t)|=|3t-24|,
∵BC=6
解析:(1)-10;14;24
(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,
∴BC=|t-10-(14-2t)|=|3t-24|,
∵BC=6,
∴|3t-24|=6,
解得:t1=6,t2=10.
答:当BC=6(单位长度)时,t的值为6或10
(3)
【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,
∴点B在数轴上表示的数是-10,
∵CD=1,点D在数轴上表示的数是15,
∴点C在数轴上表示的数是14,
∴BC=14-(-10)=24,
故答案为:-10;14;24
( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,
∵0<t<24,
∴点C一直在点B的右侧,
∵M为AC中点,N为BD中点,
∴点M在数轴上表示的数为,点N在数轴上表示的数为,
∴MN= - = .
故答案为:
【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距
离公式可求出线段MN的长.
15.(1)卤3
(2)4;3
(3)|x﹣1|
;|x+3|
(4)8
(5)7;6
(6)4
【解析】【解答】解:(1)∵ |x|=3 ,则;
故答案为:卤3 ;(2) |6-2|=
解析:(1)
(2)4;3
(3)|x﹣1|
;|x+3|
(4)8
(5)7;6
(6)4
【解析】【解答】解:(1)∵,则;
故答案为:;(2),,
故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;
数轴上表示x和-3两点之间的距离为:;
故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;
故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;
故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,
|x+1|-|x-3|的最大值为4;
故答案为:4.
【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.
16.(1)解:由题意得:a+12=0, b+5=0,
则a=-12, b=-5,
c=-b=5,
∴A、B、C分别表示的数为-12,-5和5.
(2)解:设小蜗牛到点B的距离为1个单位长度时表示的数
解析:(1)解:由题意得:a+12=0, b+5=0,
则a=-12, b=-5,
c=-b=5,
∴A、B、C分别表示的数为-12,-5和5.
(2)解:设小蜗牛到点B的距离为1个单位长度时表示的数为x,
则 ,
解得:x=-4或-6,
∴小蜗牛运动的距离为:-4-(-12)=8, 或-6-(-12)=6.
∴小蜗牛运动6秒或8秒时,小蜗牛到点B的距离为1个单位长度.
(3)8或2
【解析】【解答】解:(3)设P点表示的数为x, 则
1)当P在AB之间时,即-12≤x<-5时,
PA+PB+PC=x-(-12)+(-5)-x+5-x=20,
解得x=-8.
2)当P在BC之间时,即-5≤x<5时,
PA+PB+PC=x-(-12)+x-(-5)+5-x=20,
解得x=-2.
3)当P在C的右边时,即x≥5时,
PA+PB+PC=x-(-12)+x-(-5)+x-5=20,
解得x=(舍去).
【分析】(1)根据非负数之和等于0,列式求得a、b值,再根据互为相反数的定义求得c;
(2)设小蜗牛到点B的距离为1个单位长度时表示的数为x, 根据数轴上两点间距离公式列式去绝对值求得x即可;
(3)设P点表示的数为x, 分三种情况,1)当P在AB之间时,即-12≤x<-5时; 2)当P在BC 之间时,即-5≤x<5时; 3)当P在C的右边时,即x≥5时,根据数轴上两点间距离公式分别列式求出x, 再检验即可.
17.(1)﹣2;5
(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴x=-
8.5
②当点P在点A右边,在点B左边,由PA+PB=20得: x
解析:(1)﹣2;5。