小学五年级数学竞赛题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学竞赛题及答案
一、拓展提优试题
1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.
2.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.
3.如图,从A到B,有条不同的路线.(不能重复经过同一个点)
4.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;
5.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.
6.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.
7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.
8.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.
9.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=
厘米.
10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?
11.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了
千克面粉.
12.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.
13.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.
14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.
15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.
【参考答案】
一、拓展提优试题
1.解:作CE⊥AB于E.
∵CA=CB,CE⊥AB,
∴CE=AE=BE,
∵BD﹣AD=2,
∴BE+DE﹣(AE﹣DE)=2,
∴DE=1,
在Rt△CDE中,CE2=CD2﹣DE2=24,
=•AB•CE=CE2=24,
∴S
△ABC
故答案为24
2.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,
根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,
=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,
综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S
△APK
=S
,
△AKE
S△APK=S ABCDEF=47,所以阴影面积为47×3=141
故答案为141.
3.解:如图,因为,从A到B有5条直连线路,
每条直连线路均有5种不同的路线可以到达B点,
所以,共有不同线路:5×5=25(条),
答:从A到B,有25条不同的路线,
故答案为:25.
4.解:根据分析,AD=BE+EC=5+4=9,
AB=1+4=5,S△EFC=×EC×FC=×4×4=8;
S△ABE=×AB×BE=×5×5=12.5;
S△ADF=×AD×DF=×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:20.
5.解:行驶300米,甲车比乙车快2小时;
那么甲比乙快1小时,需要都行驶150米;
300﹣150=150(千米);
故答案为:150
6.解:根据分析,得知,=45=5×9
既能被5整除,又能被9整除,故a的最大值为5,b=9,
45被59□95整除,则□=8,五位数最大为59895
故答案为:59895
7.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,
所以S△DOC=240÷4=60(平方厘米),
又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,
所以S△ECF=S△DOC=×60=20(平方厘米),
所以阴影部分的面积是 20平方厘米.
故答案为:20.
8.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②
三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,
阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半
16÷2=8
答:阴影部分的面积是8.
故答案为:8.
9.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),
所以BC=18﹣16=2(厘米),
答:BC=2厘米.
故答案为:2.
10.解:42÷2=21(只)
21÷3×26
=7×26
=182(只)
182÷2×3