Non-Fermi liquid behavior in transport across carbon nanotube quantum dots
非牛顿流体电学:综述外文文献翻译、外文翻译、中英文翻译
附录A 外文翻译译文:非牛顿流体电学:综述3.在非牛顿流体电泳在第二节讨论了关于电渗流带电表面,如果我们通过想象改变参考系统,带电表面的流体应该是静止的,然后将带电面以速度大小相等但与以前面讨论的亥姆霍兹Smoluchowski的速度方向相反移动。
这种情况下有效地代表了电泳具有很薄的EDL的粒子在一个无限大的非运动牛顿流体范围[17,18,26,34] 。
显然,先前讨论电渗的亥姆霍兹Smoluchowski速度当然也可适用于分析在无限大非牛顿流体域具有薄EDL颗粒的电泳速度,仅仅与它的符号相反,并改变了充电通道壁与带电粒子的潜力。
事实上,支付给非牛顿液体粒子电泳最早的关注可以追溯到30年前Somlyody [ 68 ]提起的一项有关采用非牛顿液体以提供优越的阈值特性的电泳显示器的专利。
在1985年, Vidybida和Serikov [ 69 ]提出关于球形颗粒的非牛顿电泳研究第一个理论解决方案。
他们展示了一个粒子在非牛顿净电泳运动流体可通过以交替的电场来诱导一个有趣的且违反直觉的效果。
最近才被Hsu课题组填补这方面20年的研究空白。
在2003年,Lee[70]等人通过一个球形腔的低zeta电位假设封闭andweak施加电场分析了电泳刚性球形颗粒在非牛顿的Carreau流体的运动。
他们特别重视电泳球形粒子位于中心的空腔特征。
之后,该分析被扩展来研究电泳位于内侧的球面的任意位置的球形颗粒的腔体[71] 。
除了单个粒子电泳外, Hsu[72]等人假设粒子分散潜力在卡罗流体zeta进行了集中的电泳调查分析,并分析了由Lee[73]完成的其它任意潜力。
为了研究在边界上非牛顿流体电泳的影响,Lee[74]等人分析了电泳球状粒子在卡罗体液从带电荷到不带电荷的平面表面,发现平面表面的存在增强了剪切变稀效果,对电泳迁移率产生影响。
类似的分析后来由Hsu等 [75]进行了扩展。
为了更紧密地模拟真实的应用环境,Hsu等人[76]分析了球形粒子的电泳由一个圆柱形的微细界卡罗流体低zeta电位到弱外加电场的条件。
风积砂非饱和水力参数研究英文
Th e U n s a tu ra te d Hyd ra u lic P a ram e te rs fo r A e o lia n S a n dCH EN G D o n g 2hu i 13,W ANG W e n 2ke 1,L IW e i 2,W AN G Hu i11.C o l lege o f E nvir o nm en tal Sc i en ce a nd En gi n ee ri n g,C h anga n Un i ve rs ity,Xi πan 710054;2.Q i ngh ai Hydro geo l og y E ng i nee ri ng of Geo l o gy Su rvey I ns titu t e ,Xi n i ng 810008Ab s t ra ct The w ater cha racte ris ti c cu rve fo r aeo li an san d in t wo p r o ces se s o f we tting and d ryi ng wa s o btained b y the n ega ti ve w ate r co lum n techn i que.The va l ue s o f fitti ng p a ram e t e rs w e re calcul a ted a cco rd i ng t o Van Genuch t e n fo r m u l a and the p aram ete rs t ha t cha racte ri zed the p ro s 2p eriti e s o f aeo li an san d such as the un sa t u ra t ed i nfi ltra ti o n co effi ci en t and s p ec i fi c wa t e r cap acit y we re ob tained.The re su lts showed tha t the wa 2ter cha racte ris ti c cu rve f o r a eo li an sand i n w etting p r o ces s had gre ate r hys tere s i s qua l ity than that i n d ryi ng p ro ce s s .The m ax i m um o f s p eci fi c wa ter capac i ty bet w een t wo p r o ces s es w as si m il a r,bu t t h e m axi m um o ccu rred a t d i ffe ren t sucti o n,a t 30cm H 2O in d rying and at 10cm H 2O i n we tti ng.The u ns atura ted i nfil trati o n coeffi cient o f d rying p r o ce ss wa s fa rm o re than tha t i n we tting p r o ce ss .W hen the s ucti o n w as a t 70cm H 2O ,the d i ffe rence o f the i nfi ltra ti on coeffi c i en t be t ween t h e dry i ng p r o ces s and we tti ng p r o ce ss w a s up t o fou r o rd ers o f m ag nitude.Key w o rds Nega ti ve wa ter co l um n t e ch ni q ue;So il 2wafer cha racteristic cu rve;We tti n g and d ryi ng;U ns atura ted infiltrat i o n co effi ci e nt;Sp eci fi c wa ter cap ac i ty;Aeo li an sandR e ce i ve d:Decem be r 31,2009 Accep t e d:M a rch 23,2010Suppo rted by Key P r o j ect o f Sci en ce a nd Techno l og y R es ea rch o f M y f (3);S I T f M y f (I R T );G S y 2j f G S y (333)32@ So il 2wa te r C ha ra c te ristic Cu rve (SW CC )tha t show s the re la ti onshi p be t we en soil m a tri x pote nti a l a nd so il wa te r con 2t e nt,is a l so known a s So i l 2wa te r Re t e nti on Cu rve o r So il 2m ois t u re C urve,re fl e c ti ng the re l a ti onshi p be t w e e n wa te r con 2t e nt i n a ce rta i n ki nd of soil and po t e nti a l .It is a powe rful too l fo r studyi ng the re ten ti on and tran spo rt of so ilwa te r i n un sa t u 2ra te d zone ,a nd the c ha nge a cti on of shea r stre ss a nd vo l 2um e.It is ge ne ra l ly re cogni ze d t ha t SW CC i s re l a te t o so il m i ne ra l compo siti on,po re structu re ,m e cha nica l p r ope rti e s of so il pa rtic l e ,li qui d p r ope rti e s and po re a ir .It is no t ye t t o e duce t h is re la ti onshi p a ccordi ng t o the ba si c p r ope rti e s of so il from theore tica l a na l ysis,on l y ca n be m ea sure d by te s tm e t h 2od .F r om m ea su red SW CC ,a se ri e s of i m po rtan t pa ram e t e rs on un sa tu ra te d sta te ,such a s so il po ros it y,dry cap ac ity,spe c i fi c w a te r ca pac ity,equi va l e nt di am e te r and unsa t u ra te d pe r m e a bilit y coe ff i c i e nt,ca n be obta i ne d by using the re l a ti o n 2sh i p be t w e e n soilwa t e r and othe r unsa tura t e d so ilc ha ra c t e ris 2ti c pa ram e te rs .The aeo li a n sa nd i n M u U s De se rt wa s use d a s m a te ri a l ,a nd the wa te r cha ra c te ristic c urve of a eo li a n sa nd wa s ob 2t a i ned by Nega ti ve W a te r Co l u m n Tec hni que.Ma i n pa ram e te rs we re fitted by cha ra cte ri za ti o n Van Genuc ht e n em piri ca l form u 2l a,a nd t he se pa ram e te rs we re used t o ca l cul a t e i m po rta nt pa 2ram e te rs of a eoli a n sa nd o n unsa tura te d sta t e ,suc h a s unsa tu 2ra ted pe r m e abilit y coe ffi c i en t a nd sp ec i fi c wa te r capa city .D e te r m in a tio n o f W a te r C h a ra c te ris ticC u rveNe ga ti ve W a t e r Colu m n Tec hn i que is a comm on m e t ho d fo r l a bo ra tory study of SW CC.Typ i c a l nega ti ve wa t e r co l u m n appa ra tus is show n i n F i g .1.F i g.1 B uchne r fu nne l app ara tus w ith ce ram ic d i s k fo r o bta i 2ning wa t e r chara cteristi c cu rveD e te rm ina tion m e th od fo r w e tti n g c urve a nd drying cu rveThe a eo li a n sa nd i n Mu Us D e se rt wa s c ho se n a s re 2sea rch objec t i n the study .The di am e te r of u se d B uchne r fun 2ne l is 6cm ,a nd t he a ve ra ge po re di am e t e r of ce ram i c d isk is 4-7μm.The a que duc t is tra nsp a re nt p l a s ti c p i pe ,a nd the sam p l e so il is a eo li a n sa nd .The te sti ng s t e ps of d ryi ng curve a re a s f o ll ow s:grit funne l wa s i m m e rse d i n a ir 2fre e wa t e r fo r 24h t o sa tura t e sufficien tl y;aqueduc twa s j o i ne d t o grit funne l a nd g l a ss tube ,the a ir in funne l a nd duc t we re e xha uste d,g l a ss tube w a s fi xe d a nd kep t e rec t with butt e rfl y tube duri ng j oini ng,B uchne r funne l wa s a l so fi xe d;sand samp le w a s l oade d i n t o funne l ,the l oa ding sa nd qua ntit y wa s accounte d a cco rding t o the used co ntr o l bul k den sity and fixe d vo l u m e,a nd comp ac te d the sa nd ac co rd i ng t o t he l oa di ng he i ght de 2c i de d by the l oa di ng volu m e;Duri ng l o ading,hem os ta tic fo r 2q ,2f f ;f f ,f q ,f ,j f ,Ag ri cu lt u ra l Science &Techno l o gy,2010,11(2):1-3C op yri gh t κ2010,I n f o r m a ti on Ins titute of HAAS.A l l right s re s erved.A gricultura lB a s ic Sc ience a nd M e thodi nis tr o Educa ti o n 08021C h ang J iang cho l a rs nno va ti o n e am o i n i s tr o Ed uca ti o n 0811eo l o g i ca l u rve P ro e ct o C h i na eo l o g i cal urve 1212010102.C o rre spo n di n g au tho r .E m ail :chdh b sh c eps w a s u sed t o c l i p a ueduc t avo i di ng a ire nte ring the w a te r c ham be r o unne l A te r the l oa di ng o sa nd samp l e the i niti a l v o l um e o l i u i d i n g l a ss tube w a s note d t he n l oo se ne d hemo sta ti c o rcep s ad uste d the he igh t o gl a ss tube a ndsl ow l y i nl e t wa te r from t he bott om of po rous p l a te ,sa t u ra te d so il samp l e a nd plac ed f o r 12h,the vo l u m e of wa t e r outfl ow wa s no ted;holed pla stic fil m w a s use d to o cc l ude the o ri fi ce s of funne l a nd gla ss tube ,re duc i ng wa te r e vapora ti on a nd ke ep i ng the con stan t pre ssure in grit funne l ;droppe r wa s l ow 2e red 1-2cm t o l e t li qui d i n so il sam p l e exha usti ng fre e l y a nd re ac hi ng e quili bri um ,a nd the dista nce from li qui d surfa ce in dropp e r to so il ce nte r wa s m ea su re d with g ra dua te d sc a l e ,the vo l u m e of disc ha rge d l iquid w a s a lso no ted w ith sca l e.W hen de te r m i n i ng w e tti ng curve ,the po siti on of dropp e r wa s a dj u sted grada ti m to re duc e suc ti on,nam e l y the suc ti o n i n the de te r m i na ti on of we tti ng curve w a s adjuste d fr om bi g t o s m a ll .O t he r app roa che s a re t he sam e a s t he de te rm ina ti on of drying cu rve.Re s ults of w e tting c u rve an d d ry i n g c u rvesThe w e tti ng c urve a nd drying cu rve ob ta i ned from e x p e ri 2m e nt a re shown i n F i g .2.It c an be se e n from F i g.2tha t the re la ti onshi p be t wee n so ilwa te r m a tri x po t e nti a l a nd wa te r con 2t e nt is no t si ngl e 2va l ue.W he n wa te r con t e nts a re sam e ,the m a tri x po ten ti a l i n we tting a nd drying pro ce ss a re d i ffe re nt,a nd t h i s hyste re sis phenom eno n is e spec ia ll y o bvi ous i n a eo li 2a n sa nd m e diu m.I n a dditi on,the m a xi m um suc ti on of a eo li a n sa nd w a s 85cm H 2O ,l e ss tha n 10kP a ,du ri ng d ryi ng a nd we tting p roce ss.F ig.2 The relati o ns hi p b et we en the s ucti o n a nd wa t e r co nten ti n Aeo li an s andU n s a tu ra te d P rop e rty o f A e o lia n S a n dW a te r ch a ra c te ris tic cu rve m ode l o f ae o lia n s an dI n orde r t o buil d the re l a ti onshi p be t w ee n so il m a tr i x po 2t e nti a l a nd wa te r conte nt,fo re ign sc ho l a rs have propose d a se rie s o f emp iri c a l fo r m u l a s,a nd som e rep re se nta ti ve emp iri 2ca l fo r m ula s a re a s foll ow i ng:ψm (θ)=a e xp (-b θ)(e x pone ntia l ty p e)[1](1)ψm (θ)=a (θ-b )(powe r func ti o n ty p e)[1](2)ψm (θ)=a (θs -θ)b θc(V isse r fo r m ul a )[2](3)ψme ψm λ=(θ-θr )(θs -θr )(B r ooks fo r m ul a )[3](4)(θ-θr )(θs -θr )=1[1+(αψm )n ]m m =1-1n (Va n f o rm ul a )[4](5)In the form ul a s:ψm is the so il m a tri x po te ntia l ;θis the so il wa te r conte nt ;θr is the sa tura te d w a te r con ten t ;θs is the re 2;α,x y f y f x f V f ,2pro vem ent tha n fo r m ul a (1)and (2).B rooks fo r m ul a a ndVa n for m ul a use d bo th re si dua l wa te r conte nt a nd sa t u ra te d wa t e r con tent to e xp re ss the re l a ti onshi p be t we en w a te r co n 2ten t and suc ti on .Espe c i a ll y i n Va n f o r m ul a tha t adds pa ram e 2te r αwhi c h cha rac te rize s a ir en try va l ue a nd pa ram e te r m a nd n which cha ra c t e ri ze curve shape ,e xte ndi ng the app li ca ti on ra nge of fo r m ul a a nd m aking the e xp re ss i o n of suc ti o n a nd wa t e r conte nt c l ose r to the ac tua l situa ti on .Va n Genuchte n fo r m ul a wa s adop ted t o fit m e a su re d da ta a nd obta i n em p i rica l pa ram e te rs in fo r m u l a.Afte r i nve rs i o n of l e a st squa re m e tho d,the obta i ne d pa ram e te rs a re shown i n Table 1,a nd the m ea su red da ta a nd fitti ng re su lts a re shown i n F i g .3.Tab le 1 The va l ue s o f pa ram e ter fit acco rd i ng t o Van Gen uchten fo r 2m u l aC u rve typ e s θscm 3/cm 3θrcm 3/cm 3α1/cm n D ryi ng 7.8640.000.028143 4.0419We tti ng8.0041.040.0823973.6195F i g.3 The wa t e r cha racterist i c cu rve fo r Aeo l ian s and (byVan Genuch t e n f o rm ul a ) It ca n be see n from inve rsi on pa ram e t e rs tha t αa nd n a rem a i n p a ram e te rs whi ch diffe re ntia te d ryi ng p r o ce ss a nd we t 2ting p roc e ss in the a eo li a n sa nd cha rac te risti c c urve of Va n fo r m u l a.Sp e c if i c w a te r c ap a c itySp ec i fic wa te r cap ac ity exp re sse s the wa t e r co nten t c ha nge bego t by unit m a trix po te nti a l .S pe cifi c w a te r c apa city tha t changed w ith wa te r con tent o r m a tri x pote nti a l is a n i m 2po rtan t pa ram e te r for a na l yzing the tra nspo rt of so il w a te r .Sp ec i f i c wa t e r ca pac ity is ge ne ra ll y exp re s se d by fo l l ow i ng fo r m u l a:C (θ)=5θ5ψm (θ)(6)Com bi ne d w ith Va n fo r m ula ,spe c i fic wa te r ca pac ity u se dm a tri x po t e nti a l a s va ri a bl e c an be obta i ne d .C (ψm )=-αm n (θs -θr )(αψm )n -1[1+(αψm )n ]m +1(7)Consequen tl y,t he sp ec i f i c wa te r c apa c i ty curve o f aeo li 2a n sa nd ca n be obta ine d ac co rd i ng t o w a te r c ha ra cte risti c c urve.The obta i ne d spe cifi c wa te r ca pac ity curve a cco rding t o fo r m u l a (7)a nd suc ti o n va l ue w a s shown i n Fig .4.It is sugge ste d t ha t in F i g .4t ha t duri ng the dryi ng p roce s s f ,x f y f 5O 3O;,x f y f 5O O 2Ag ri cultura l Sc i ence &Tech no l o gy Vo l .11,No.2,2010si dua lwa te r co ntent m and n a re the emp iri ca l co nsta nts.E pone ntia l t pe and powe r unc ti on t pe o r m u l a s ca n we ll e p re ss t he so il m ed i a o l a rge r sucti o n .And isse r o r m ula i ntr o duce d the sa tura ted wa te r conte nt so it ha s gre a te r i m o aeo li a n sa nd the m a i m um spec i ic wa t e r cap ac it o 7cm H 2appe a rs whe n suc ti on is 0cm H 2du ri ng we tti ng p r o ce ss the m a i m um sp ec i ic wa te r c apa cit o a bout 0cm H 2appe a rs whe n suc ti o n is 10cm H 2.F ig.4 Spec i fic wa ter capa ci ty i n we tting p roce s s and dry i ngp r o ces sU ns a tura ted p e rm e ab ility co eff i c ien tUnsa tura ted pe r m ea bility coe ffi c ient is func ti on of wa te r conte nt a nd m a tri x pote nti a l .The un sa tu ra te d p e r m e a bil ity co 2e ffi c ient t ook w a te r conte nt a s va riab l e is:K(θ)=K s S 121-1-S 1mm 2(8)or t ook m a tri x po t e nti a l a s indepe nde nt va ri a bl e ,e xp re ss i ng a s:K (ψm )=K s {1-(αψm )n -1[1+(αψm )n ]-m }2[1+(αψm)n]m 2(9)I n t he fo r m ul a s:K s is the sa tura ted pe r m ea bil ity coe ffi c i e nt .The l abo ra t o ry m e a surem en t va l ue of aeo l ian sand is 2.47m /d .Acco rdi ng t o fo r m u l a (9)and Ta bl e 1,the unsa t u ra te d pe r m e a bilit y coe ff i c i e nts in drying p roce s s a nd we tting p roce s s of a eo li a n sand can be o bta i ne d (F i g .5).It ca n be se e n from F i g .5tha t when m a tri x po te ntia l i s a bove 10cm H 2O ,t he un 2sa t u ra te d pe r m ea bility coe ffic i en t i n dryi ng pro ce ss is m uc h l a rge r t ha n we tting proc e ss;whe n the suc ti on i s 70cm H 2O ,the di ffe rence of p e r m e a bil ity coe ffi c i e nt rea che s m a xi m um ,nea rl y 4o rde rs o f m a gni tude.C o n c lu s io nB ec ause t he suc ti ons of a eo li a n sa nd i n dryi ng a nd we t 2ti ng p roce s s a re le ss t ha n 10kPa ,so the w a t e r c ha rac te risti c cu rve s of a eoli a n sand in drying and we tti ng p roce ss c an be conve ni e ntl y m e a sure d with ne ga ti ve wa te r co l um n te chn i que.Afte r e va l ua t e d t he fitti ng pa ram e te r va lue w it h Van Ge nucht 2e n fo r m ul a wh i ch e xp re sse d wa te r c ha ra cte risti c cu rve ,thepa ram e te rs w hi ch cha ra c te ri ze d un sa t u ra te d p r ope rty,such a s unsa tura ted pe r m ea bility co effi c i e nt a nd spe cifi c wa te r c a 2pac ity,ca n be ob t a ine d .It is sugge s t e d fr om re se a rch re sults tha t the wa te r cha ra c t e ri s ti c curve of a eo li a n sa nd i n we tti ng p r o ce ss ha s mo re hyste re sis na ture than dryi ng proc e ss;the d i ffe re nce of m a xi m u m spe c i fic wa te r c apa c i ty is littl e ,but the m a xi m um va l ue in dryi ng proce ss appe a rs when sucti on is 30cm H 2O w hil e it i n we tting p roce s s appe a rs the suc ti on is 10cm H 2O ;the un sa t u ra te d p e r m e a bil ity coe ffi c i e nt i n dryi ng p r o ce ss is m uch l a rge r t ha n w e tti ng p r oc e ss,a nd w he n the suc ti o n is 70cm H 2O ,the di ffe rence of pe r m ea bility coe ffic i en t re a che s m axi m u m ,ne a rl y 4orde rs of magnitude.F i g.5 U n satu rated p erm eab i lit y coe ffici en t i n we tti n g p r o ces sa nd dry i ng p r o ces sR e fe re n c e s[1]BRUCE RR ,LUX MO RE RJ.W ate r re t en ti o n:fi e l d m e t hod [M ]//M ethod s o f so i l ana l ys i s .Part 1.Phys i cal and m i ne r a l og i ca l m e t h 2o ds .2n de d .M adison ,W I :ASA and SSSA,1986:679.[2]V I SSER WC.P r o ges s i n t he know l edge abou t t he e ffect of s o i lmo is t u re con t e nt o n p l an t p rod ucti o n [C ].W ageni ng en,the Ne t h 2erl and s:I ns tit u t e f o r Land and W aterM anagem en t R es earch,1966.[3]BROO KS RH,COR EY AT .hydrau l ic p rope rties o f po r o u s m ed i a[C ].Fo rt Co ll ins:Co l o rado State U ni ve rs i ty,Hyd r o l ogy Pape rNo.3,1964.[4]VAN GENUC HTEN MTH.A cl o sed f o r m equati o n fo r Pred i cti ng thehydrau l i c co nducti vit y o f uns atura t ed so i l [J ].So il Sci Soc Am J ,1980,44(5):892.R es p o n s i b le ed ito r:ZHANG C a i 2li R es p on s ib le t ran s la to r:WANG C h e n g 2b in R e s p o n s ib l e p ro o frea d e r:WU Xiao 2y an风积砂非饱和水力参数研究程东会13,王文科1,李威2,王会1 (1.长安大学环境科学与工程学院,陕西西安710054;2.青海省水文地质工程地质环境地质调查院,青海西宁810008)摘要 利用负水柱方法测定了风积砂脱湿和吸湿2个过程的水分特征曲线,用Van Genuchten 公式求出拟合参数值,得到非饱和渗透系数、比水容量等表征风积砂非饱和性质的参数。
非牛顿流体
Introduction
• 考虑了之前常被忽略的因素: 速度分布 加热和冷却在杀菌中的贡献 和环境空气的热交换 产品温度的非均匀分布 传质、传热过程中有效扩散参数
• 本研究的目的不是为了建立流体力学模型(需要复杂的有 限元去划分材料设备),而是通过全局平衡,使模型的复 杂度降低而容易使用,解决模型问题所需时间减少,保证 其在优化过程中的可行性。
Results & Discusssion
温度以及浓分布度
Results & Discusssion
模型假设的影响
Results &Conclusion
• 我们建立了在管系统中的非理想层流的非牛顿流体食物的 连续热加工过程的数学模型模拟,并用刺果番茄汁进行检 验,它是假塑性流体,加热主要是对酵母以及霉菌的破坏。 我们得到的结果是一致的,我们进行了一系列的模拟去研 究模型中假设的影响。 • 我们观察到: • (a)加热、冷却部分对于过程致死力有贡献; • (b)保温管的进口温度需要升高以补偿和周围环境的热 交换,从而导致致死力的上升; • (c)热量以及质量的有效扩散系数被用来表征非理想层 流,这对于温度分布以及过程的致死力有显著影响。
Mathematical Model
无量纲的轴向区域( η =z/L) 0-1(加热部分) 1-2(保温部分) 2-3(冷却部分) 无量纲径向结构域(x=r/Ri) 0(管中心) 1(内管的内壁)
Mathematical Model
传质方程
Mathematical Model
传热方程
Mathematical Model
Conclusion
• 为了达到SA=5.74的杀菌效果,最大流速下的经典的保温方 法需要19m长的保温管,然而我们推荐的模型预测达到相 同的杀菌效果只需要5m长的保温管。 模型要求:大量的过程参数,可以解方程的数学处理器。 优点:灵活性,可以通过很短的计算时间,表征热处理过 程中的不同阶段,从而满足设备设计以及处理过程的优化 的要求。 展望:进一步工作会是通过完全仪器单元以及参数评估程 序对模型进行更全面的确认,可以预料到这个全面的数学 模型可以促进食品工业生产出满足消费者要求的高品质的 加工产品。
非水介质酶促反应中水的作用
知识讲座非水介质酶促反应中水的作用许志国 夏咏梅 方 云(江南大学化学工程与材料学院 无锡 214036)The Role of Water in Enzymatic Reactions in Non -aqueous MediaXu Zhiguo Xia Yongmei F ang Yun(School of Chemical and Material E ngineering ,Southern Yangtze U niversity ,Wuxi 214036)AbstractThe role of water in enzymatic reactions in non -aqueous media was summarized.Distribution of water and rates of dis 2tributing equilibration ,kinetic effect of water as well as methods for measuring and controlling water activity in enzymatic reac 2tions in non -aqueous media were discussed respectively.K ey w ords enzymatic reaction non -aqueous media water activity摘要对非水介质酶促反应体系中水的作用以及相关因素进行了初步总结,着重讨论了水在体系中的分配及影响因素、水的分配平衡速度、水活度的测定及控制方法和水作为反应物的动力学影响。
关键词 酶促反应 非水介质 水活度 与在水溶液中进行的酶催化反应相比,酶在非水相中进行催化反应有如下优越性:(1)有利于疏水性底物的反应;(2)可使用简单的吸附或包埋法固定化酶或直接使用不溶性酶粉,有利于酶的回收和重复利用;(3)可以使水解反应平均向有利于合成的方向移动(如酯合成),防止依赖于水的副反应发生;(4)能提高酶的稳定性,可扩大反应的p H 值适应范围;(5)可控制底物的专一性等。
非饱和-饱和区域中重金属污染物运移的数值模拟
非饱和-饱和区域中重金属污染物运移的数值模拟1梁冰,姜利国辽宁工程技术大学,辽宁阜新 (123000)E-mail:lbwqx@摘要:为了定量整体描述非饱和-饱和区域内水流及溶质迁移过程,在基于非饱和流动理论及溶质运移理论基础上,建立了非饱和-饱和区域内水流方程与重金属污染物运移方程耦合的数学模型,采用V-G模型来描述土壤水分特征函数,用Lagrange-Quadratic方法进行求解并给出模拟结果;分析结果表明,在非饱和-饱和区域内的压力水头、饱和度以及污染物阻滞因子等参数均随含水率的变化而改变,这是区别于饱和流的主要特点。
关键词:饱和-非饱和流,重金属污染物,V-G模型1. 引言随着工农业生产的迅速发展和社会人口的不断增长,土壤污染问题的日趋严重,各种施加在地表的污染物随入渗的水经过非饱和带进入地下水中,因此,非饱和带中污染物迁移问题己引起人们的高度重视。
由于土壤一旦被重金属所污染,不仅影响土质,而且关系到植物、动物甚至人类的健康,而且很难彻底消除。
由于重金属污染物具有多源性、隐蔽性、一定程度上的长距离传输性和污染后果的严重性,因此土壤中重金属污染问题受到各国的广泛关注。
据有关文献记载,最早开始针对土壤介质中重金属污染的研究始于上世纪80年代。
当时美、英等国通过大量的室内及野外土柱试验,在确定了非饱和带垂向一维弥散系数和衰减系数后,逐步开始研究重金属离子在非饱和带的迁移转化规律,考虑土壤液相和固相浓度的分配系数,并借助于Henry,Freundlich和Langmuir的等温吸附模式来表示液相和固相浓度吸附和解吸问题。
在数学模型求解方面也在不断发展,由非饱和带的简单解析解发展到在非饱和-饱和带区域中考虑复杂因素的数值解,求解的初始条件和边界条件也在不断改进,使之更加接近于污染物迁移的实际情况。
国内学者对重金属污染物在非饱和土壤中迁移转化也进行了大量的研究工作,如朱济成(1977)、吴岳(1981)、聂永丰(1987)等针对氮、磷、重金属和有机农药污染方面进行了试验和数值模拟研究[1]。
AdsCft在凝聚态中应用简介
Why AdS/CMT ?
• Understand strongly coupled quantum many body systems is difficult.
(Non-fermion liquid, High T SC, interplay between disorder and interaction, metal/insulator phase transition)
The Duality Dictionary
Finite Temperature
Gauge/Gravity Duality as a LAB
Black hole full of answers (Nature 448, 1000-1001 (30 August 2007))
Some Applications
Another example: Area laws for the entanglement entropy - a review,J. Eisert, M. Cramer, M.B. Plenio, arXiv:0808.3773
Ancient thoughts源自• 天地万物莫大于秋毫。《庄子》 • 一花一世界。 •
• What is AdS/CFT?
Applied AdS/CFT
• How it works? • Two typical examples of AdS/CMT • Conclusion and future
What is Gauge/Gravity duality and the position of it
The Conclusion Of Gauge/Gravity (AdS/CFT) Duality Maldacena 1997
fermi liquid
费米液体理论(朗道-费米液体理论)费米液体理论是朗道在1956年提出的相互作用费米子理论模型,通常可用于绝大多数金属低温下的正常态。
该理论解释了为什么相互作用费米子系统的有些性质与费米气体的性质如此相似,而另一些性质却明显不同。
费米液体理论中的基本观点:1)准粒子,包括准电子和准空穴。
尽管费米子之间的相互作用可能很强,但是准粒子之间的相互作用很弱。
2)准粒子跟电子或空穴量子数相同。
如动量k,自旋1/2,以及电荷±1。
3)费米液态的状态可以用准粒子的集体来描述。
4)准粒子之间存在弱相互作用(加俐略平移不变性要求)费米液体可以用费米液体理论(弱相互作用准粒子)描述的费米子体系,我们通称为费米液体。
比如,低温下大多数金属中的电子以及未进入超流态的He-3液体。
费米液体与费米气体比较:费米液体的低能激发及动力学行为,可以用弱相互作用的准粒子来描述,而弱相互作用准粒子与费米气体有着十分类似的性质,比如费米气体和费米液体的比热在温度T<<Tf 都呈线性,而且低能激发形式()*Fp F Fpp pmεε-=-(p Fεε-分别是激发能与费米能级,*m为有效质量)相同,不同的是准粒子的质量此时用有效质量来描述,值得一提的是,有效质量正是对准粒子之间存在相互作用的一种反应。
以He-3费米子为例,虽然He-3原子之间存在强相互作用,但其行为可以很好的用准粒子来描述,低能激发形式与费米气体相同,动量空间的粒子数分布仍然可能看成阶跃函数。
关键字:费米液体,费米气体(无相互作用),低能激发。
观察非牛顿流体的作文
观察非牛顿流体的作文英文回答:Non-Newtonian fluids are fascinating substances that do not follow the traditional laws of fluid mechanics. Unlike Newtonian fluids, such as water or oil, non-Newtonianfluids exhibit unique properties that change depending on the applied force or stress.One example of a non-Newtonian fluid is cornstarch mixed with water. When you mix these two ingredients together, you get a substance that behaves like a solid when you apply force to it, but flows like a liquid when left undisturbed. This property is known as shear-thickening, where the viscosity of the fluid increases with increasing stress. It's like trying to run on a pool of cornstarch and water mixture you sink in when you apply force, but if you stand still, you slowly sink in.Another example is oobleck, a mixture of cornstarch andwater. When you squeeze or hit oobleck, it becomes firm and resists the applied force. However, if you try to slowly pour oobleck, it flows like a liquid. This property is called shear-thinning, where the viscosity of the fluid decreases with increasing stress. It's like trying to walk on a pool of oobleck you can slowly sink in and walk, butif you try to run, you'll sink in.Non-Newtonian fluids also have practical applications. For example, they are used in body armor to protect against ballistic impact. The fluid inside the armor stiffens upon impact, distributing the force and reducing the risk of injury. Non-Newtonian fluids are also used in the manufacturing of paint, where the viscosity can be controlled to ensure proper coverage and consistency.中文回答:非牛顿流体是一种非常有趣的物质,不遵循传统的流体力学定律。
第八章非牛顿流体和物理化学渗流PPT课件
CLa
p t
r
CL a
p r
t
Cf a
p t
Ct CL Cf
2 rp 2n r p rC L n p r 2C t n K eff 1 n p r n n 1 p t
当CL很小,且径向压力梯度很小时:
CL
n
p r
2
0
1
n1
得
2 rp 2 n r p rCtnK eff n p rn
n 1
其中
tD1n1n13nriD3n
第二节 纯黏性液体的渗流
井底处的无因次压力 rD 1
pW D (tD )1 1nriD 1n13 1n riD 1nri1 D 2
当tD较大时,
r 1
iD
n
,1简化为
pWD(tD)
2riD1n
1n3n
n 1
取对数
lgpW D(tD)1 3 n nlgtDC
1
2C 0
tD xD Npe xD 2
应用了渗流速度v、只有在它是常数时,方程式才是线性的并容易求解。在v不是常 数时,就很难用解析方法求解。
第三节 物理化学渗流基本现象
二、一维理想扩散渗流方程及解
在一维渗流情况下,带有扩散传质的渗流过程中,组分的连续性方程
CuvC t x x
考虑到Fick扩散定律
CvCD* t x
2C x2
第一项表示的是某一流动单元中浓度的上升速度,称为累积相
第二项表示的由液体流动而带出的浓度的变化,称为对流相
右端相则是由扩散引起的浓度变化,称为扩散项
第三节 物理化学渗流基本现象
边界条件 通过变量替换:
C=C1 C=0 C(∞,t)=0
高等植物Na+ 吸收、转运及细胞内Na+ 稳态平衡研究进展
植物学通报Chinese Bulletin of Botany 2007, 24 (5): 561−571, 收稿日期: 2006-12-20; 接受日期: 2007-05-08基金项目: 863计划(No. 2006AA10Z126)、国家自然科学基金(No. 30671488)和新世纪优秀人才支持计划(No. NCET-05-0882)* 通讯作者。
E-mail: smwang@.综述.高等植物Na +吸收、转运及细胞内Na +稳态平衡研究进展张宏飞, 王锁民*兰州大学草地农业科技学院, 兰州 730000摘要 盐胁迫是影响农业生产的重要环境因素之一。
本文对植物Na +吸收的机制和途径、Na +在植物体内的长距离转运以及细胞内Na +稳态平衡的研究进展进行了概述。
参与植物Na +吸收与转运的蛋白和通道可能包括HKT 、LCT1、AKT 和NSCC 等。
其中, HKT 是植物体内普遍存在的一类转运蛋白, 能够介导Na +的吸收, 其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。
LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白, 然而在典型的土壤Ca 2+浓度下LCT1并不能发挥吸收Na +的功能。
AKT 家族的成员在高盐环境下可能也参与了Na +的吸收。
目前虽然还没有克隆到编码NSCC 蛋白的基因, 但是NSCC 作为植物吸收Na +的主要途径的观点已被广泛接受。
SOS1和HKT 参与了Na +在根部与植株地上部的长距离转运过程, 它们在木质部和韧皮部的Na +装载和卸载中发挥重要作用, 从而影响植物的抗盐性。
另外, 由质膜Na +/H +逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca 2+结合蛋白SOS3组成的SOS 复合体对细胞的Na +稳态具有重要的调节作用, 单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。
SOS 复合体与其它位于质膜或液泡膜上的Na +/H +逆向转运蛋白以及H +泵一起调节着细胞的Na +稳态。
医药行业专业英语词汇
医药行业专业英语词汇(非常有用)FDA和EDQM术语: CLINICAL?TRIAL:临床试验? ANIMAL?TRIAL:动物试验? ACCELERATED?APPROVAL:加速批准? STANDARD?DRUG:标准药物? INVESTIGATOR:研究人员;调研人员PREPARING?AND?SUBMITTING:起草和申报? SUBMISSION:申报;递交? BENIFIT(S):受益? RISK (S):受害? DRUG?PRODUCT:药物产品? DRUG?SUBSTANCE:原料药? ESTABLISHED?NAME:确定的名称? GENERIC?NAME:非专利名称? PROPRIETARY?NAME:专有名称;? INN (INTERNATIONAL?NONPROPRIETARY?NAME):国际非专有名称? ADVERSE?EFFECT:副作用? ADVERSE?REACTION:不良反应? PROTOCOL:方案? ARCHIVAL?COPY:存档用副本? REVIEW?COPY:审查用副本? OFFICIAL?COMPENDIUM:法定药典(主要指USP、?NF).? USP(THE?UNITED?STATES?PHARMACOPEIA):美国药典 NF(NATIONAL?FORMULARY):(美国)国家处方集? OFFICIAL=PHARMACOPEIAL=?COMPENDIAL:药典的;法定的;官方的? AGENCY:审理部门(指FDA)? IDENTITY:真伪;鉴别;特性? STRENGTH:规格;规格含量(每一剂量单位所含有效成分的量)? LABELED?AMOUNT:标示量? REGULATORY?SPECIFICATION:质量管理规格标准(NDA提供)? REGULATORY?METHODOLOGY:质量管理方法? REGULATORY?METHODS?VALIDATION:管理用分析方法的验证 COS/CEP?欧洲药典符合性认证 ICH(International?Conference?on?Harmonization?of?Technical?Requirements?for?Registrat ion?of?Pharmaceuticals?for?Human?Use)人用药物注册技术要求国际协调会议 ICH文件分为质量、安全性、有效性和综合学科4类。
非牛顿流体的,作文,六百字
非牛顿流体的,作文,六百字英文回答:Non-Newtonian fluids are fluids that do not follow the typical flow behavior observed in Newtonian fluids, such as water or oil. These fluids have complex and often time-dependent rheological properties, which means their flow behavior changes under different conditions.One example of a non-Newtonian fluid is cornstarch mixed with water. When a force is applied to this mixture, it behaves like a solid, but when the force is removed, it flows like a liquid. This phenomenon is known as shear-thinning, where the viscosity of the fluid decreases under shear stress.Another example is oobleck, a non-Newtonian fluid made from cornstarch and water. When pressure is applied, it becomes solid and can even support the weight of a person, but when the pressure is released, it flows like a liquid.Non-Newtonian fluids are used in various applications, such as in the food industry for thickening agents, in the manufacturing of paints and inks, and even in body armorfor impact resistance.中文回答:非牛顿流体是指不遵循牛顿流体典型流动行为的流体,比如水或油。
新型浓密膏体流变特性测试实验台研制与验证
第30卷第8期仪器仪表学报V ol.30 No. 8 2009年8月 Chinese Journal of Scientific Instrument Aug. 2009 新型浓密膏体流变特性测试实验台研制与验证*瞿圆媛1,胡伟伟1,郭光明1,王 星1,2,陈 洁1,3,吴 淼1(1 中国矿业大学(北京)机电与信息工程学院北京100083;2 北京时林机电设备有限公司北京100083;3 博莱斯(北京)管道技术有限公司北京100085)摘 要:非牛顿流体在管道输送时其流变特性是管道工艺设计的主要依据。
基于管流法的流变测试原理,分析已有浓密膏体流变特性测试实验台优缺点,取长补短对其实施改进。
采用液压系统代替气压方式推送物料实现管道输送,以“稳流量测压差”代替“定压力测流量”的方式获取关键参数,以此推算浓密膏体的流变特性,为浓密膏体的管道输送工艺设计提供新实验平台。
以赤泥为例进行实验验证,确定了67.5%~68.5%浓度赤泥不同管径输送下的流变模型。
测量过程表明本实验台可行且操作方便、数据可靠;原始实验数据及其处理结果符合理论规律。
关键词:非牛顿流体;管流法;浓密膏体;流变特性;管道输送;压差;赤泥中图分类号:TV131.66文献标识码:A国家标准学科分类代码:460.40Design and verification of a new rheological test system for dense pasteQu Yuanyuan1, Hu Weiwei1, Guo Guangming1, Wang Xing1,2, Chen Jie1,3, Wu Miao1(1School of Electromechanical and Information Engineering, China University of Mining and Technology (Beijing) Beijing 100083, China; 2 SALIN Electromechanical Equipments LLC (Beijing) ,Beijing 100083, China;3 BRASS (Beijing) Pipeline Technologies, Ltd, Beijing 100085, China )Abstract:In order to measure the rheological characteristic of high concentration and viscous industry dense paste waste, a kind of non-Newtonian fluid, and help designing the transport pipelines definitely, a new rheological test system based on the principles of pipe flow type with better performance is introduced in this paper. Instead of “measuring the corresponding flow rate under fixed pressure value”, a manner called “measuring the corresponding pressure when flow rate is kept stable at different values” is used in the new system. Besides, the system is driven by a well controlled hydraulic pressure system. At the end, the rheological equations for red mud with a concentra-tion of 67.5%~68.5% when transported by the pipelines with different diameters are decided using the new rheological test system. Test results prove that the new system is useful and reliable. Also the acquired data, original or processed, are in accordance with the authoritative theoretic description.Key words:non-Newtonian fluid; pipe flow type; dense paste; rheological characteristic; pipeline transportation; corresponding pressure; red mud1引 言管道输送高浓度黏稠工业固体废弃物是继液体和浆体管道输送后新兴的管道输送技术,输送时以“浓密膏体”的形式在管道中流动。
强磁场下的固体物理研究进展
知识和进展强磁场下的固体物理研究进展3曹 效 文(中国科学院等离子体物理研究所强磁场实验室 合肥 230031)摘 要 强磁场下的物理研究是一个富有成果的研究领域.40T 以上稳态强磁场的研制成功为固体物理研究提供了新的科学机遇.文章简要地介绍强磁场下某些固体物理,其中包括高温超导体的H -T 相图和非费米液体行为,德哈斯(de Haas )效应和费米面性质,电子的Wigner 结晶及其动力学行为,磁场诱导的相变(如绝缘体-金属和超导转变),多级磁有序,串级自旋密度波和大块材料中的量子霍尔效应等的实验研究的近期进展,希望以此引起人们对国内强磁场下物理研究的关注.关键词 强磁场,超导体,德哈斯(de Haas )效应,Wigner 结晶,相变PR OGRESS OF SOLI D STATE PH YSICS IN HIGH MAGNETIC FIE LDC AO X iao 2Wen(H igh Magnetic Field Laboratory ,Institute o f Plasma Physics ,Chinese Academy o f Sciences ,H e fei 230031,China )Abstract The physics of high magnetic fields is a subject rich in achievements.S teady high magnetic fields above 40T have been success fully developed ,providing new opportunities for studying solid state physics under such fields.An overview is presented of recent progress in this area ,including the H 2T phase diagram and non 2Ferm i liquid be 2havior of high tem perature superconductors ,the de Haas effect and properties of the Ferm i surface ,W igner crystalli 2gation of electrons and its dynam ical properties ,magnetic field 2induced phase transitions such as insulator 2metal and superconductor transitions multistage magnetic ordering ,successive spin density waves and the quantum Hall effect in bulk material.K ey w ords high magnetic field ,superconductor ,de Haas effect ,W igner crystal of electrons ,phase transition3 2002-01-28收到初稿,2002-04-28修回 在现代实验物理研究中,科学机遇往往与所能达到的极端条件有密切关系,这些极端条件包括强磁场、极低温、高压和强激光等.下一个目标的极端条件的创立便是产生新的科学机遇条件.以强磁场为例,在20世纪70年代末曾把30T 磁场强度定义为可获得科学机遇的场,当时运行的稳态场仅为20—25T.30T 稳态场运行若干年后,下一个目标机遇场为40T 以上稳态场.磁体设计,导体材料以及相关技术研究近年来获得的长足进步[1]为上述目标提供了必要的科学技术储备,于是美国于1990年8月在佛罗里达大学开始实施以45T 稳态混合磁体为核心的强磁场实验室计划[2].日本则在筑波实施40T 混合磁体计划[3].荷兰的Nijmegen 强磁场实验室也有40T 混合磁体计划.在我国合肥强磁场实验室也有40T 以上稳态强磁场计划.超导强磁场技术由于高温超导体Bi 系银包套带材的加盟,已由原来的21T 提高到24T [4].目前,超导磁体的最高场主要受限于高温超导材料工艺和磁体技术.从Bi 系材料在高场下的J c (H )特性来看,随着这些工艺和技术的进步,30T 的超导磁体估计在5—10年内是可望实现的.当然,在上述机遇场以下磁场范围内仍有不少工作可做,并且仍有一定的科学机遇,例如,Y C o 5单晶的磁晶各向异性就是1966年用一个5T 的超导磁体进行的研究中发现的.这一发现为当时制备新的永磁材料指出了光明前景.强磁场下的固体物理是一个富有成果的研究领域,并且曾铸就过固体物理研究的辉煌,例如量子霍尔效应[5]和分数量子霍尔效应[6]的发现导致了两次诺贝尔物理奖的获得,以及一系列新现象和新效应的发现和观察,其中包括磁场诱导的电子结晶点阵,・696・物理即Wigner固体[7],磁场诱导的绝缘体-金属转变和超导电性[8]等.有关强磁场下的科学研究讨论会和半导体物理都有定期的国际会议,强关联电子系统的国际会议也含有可观数量的强磁场下的研究内容.强磁场下的物理研究课题颇多,这里仅介绍某些方面,并借此引起国内物理学界对强磁场下物理研究的关注.1 强磁场下的高温超导体研究和低温超导体相比,高温超导体的超导转变温度Tc和上临界场H c2均高出近一个量级,即T c约为102K,H c2(0)高于102T.这么高的临界参量预示着高温超导体的潜在应用前景及其可观的经济价值,同时也丰富了超导物理的研究内容,例如与强磁场密切相关的H-T相图和以Jc(H)为中心的磁通动力学性质的研究等.到目前为止,这些研究多数仅限于液氮温区,对于高温超导体来说,由于Tc为百K量级,这一温度范围仍限于T c附近;所用磁场也多数限于10T以下,这对于临界场高于100T的高温超导体来说,也仅属于低场.更低温区的研究是必要的,但是要求更高的磁场,例如日本筑波40T稳态场磁体系统的建立就是以高温超导体为主要目标的. 111 高温超导体的H-T相图高温超导体H-T相图的一个显著特点是,在下临界场Hc1(T)与上临界场H c2(T)之间的混合态区域内存在着一个新的相变线———不可逆线I L(图中标为Hirr),如图1所示.这个新相交线的性质可以大致归纳为:对于无孪晶界和明显缺陷的单晶,I L 是一个由涡旋点阵态到涡旋液态的熔化线,这个相变属于一级相变;对于存在有效钉扎作用的缺陷的样品,如存在着明显无序的薄膜和有明显缺陷的单晶,I L是一个由涡旋玻璃固态到液态的转变,并且属于二级相变.不可逆线上下的不同涡旋状态表明了磁通钉扎强度的改变,因而I L上下的临界电流密度及其行为应该是有区别的.近来的实验结果[9]表明,在I L上下存在着Jc的剧烈变化,并遵守不同的温度关系和磁场关系.由此可以看出,I L是一个对材料结构(它直接影响Jc行为)敏感的参量,这与H c1(T)和H c2(T)是材料的本征参量形成鲜明对照.已有由于钉扎强度的改善,I L也随之抬高的有关报道.图1 Y BCO超导薄膜在磁场HΠΠc位形下的H-T相图[10] 关于高温超导体耗散(dissipation)行为的研究进一步表明,在I L和Hc2(T)之间还存在一个新的相界HK(T)线的证据[10].H K(T)线把涡旋液态分成两个区:在I L与HK(T)之间涡旋之间是关联的(corre2 lated),涡旋运动具有激活的特征;在H K(T)与H c2(T)之间,涡旋之间是非关联的,其运动以扩散运动为特征.关于这方面研究的报道仍较少,其相变性质也有待进一步研究.以上研究,一方面大多限于Tc附近温区,向更低温区扩展要求更高的磁场强度.另一方面,I L和H K(T)的性质和起源尚未得到完全一致的认识. 112 强磁场下的J c(H)特性虽然高的超导转变温度和高的上临界场预示着高温超导体的潜在应用前景,但最终决定其大规模应用前景的是在一定温度下的Jc(H)特性,通常要求Jc值高于104AΠcm2.高温超导体与低温超导体的Jc(H)关系的比较研究显示[11],在412K,Bi系银包套带材在15T以上磁场范围的Jc明显高于低温超导体,而Y BC O的C VD膜在77K的J c值,在25T以上磁场范围也明显地高于低温超导体.这些高温超导体Jc(H)的一个显著特点是,直到30T的高场仍未出现显著下降,这对高场应用十分有利.但是,我们必须记住,超导体J c(H)特性是一个对材料结构因素(如缺陷和第二相的存在等)敏感的临界参量,因此它强烈地取决于成材工艺.但到目前为止,Y BC O和Bi系材料中什么样的缺陷对钉扎是最有效的,仍不清楚.因而,任何一家生产者对其产品进行高场检验都是必须的.另一方面,高温超导材料在高场下与磁通运动特性密切相关的稳定性等问题也尚缺少系统的仔细研究.・796・31卷(2002年)11期113 强磁场下的正常态性质含铜氧化物超导体在T c 以上温区的面内电阻ρab 的线性行为及其与面外电阻ρc 的半导体行为的共存[12]常常被作为非费米液体的证据[13].这两种相反的电阻温度关系是否可以扩展到远离T c 的低温区,并作为一种正常态基态性质是一个不清楚的问题.一个最直接的方法是用强磁场抑制其超导电性来进行T c 以下温区的正常态性质的研究.但是这一方法是困难的,因为该类超导体上临界场很高,如前面所述.因此,选择一个T c 较低的同类材料和提高所能达到的场强是人们所希望的.Ando 等[14]利用61T 场强的脉冲场研究了Bi 2Sr 2CuO y 单晶(T c =13K )在T c 以下温区的正常态各向异性电阻行为.结果表明,直到0166K (T ΠT c =0105)仍然保持着上述的面内和面外电阻的温度关系行为,即仍表明一个非费米液体性质.其实,含铜氧化物超导体还存在一个面内和面外电阻行为相反的磁输运行为,这就是在高场区面内电阻ρab 表现出正磁阻,而面外电阻ρc 则呈现出负磁阻[15].进一步的研究表明,随着磁场的增加,ρab (H )趋于饱和[14],而ρc (H )则趋于线性减小[16].这种相反的磁电阻行为的起源尚不清楚,可能与T c 以上温区电阻的相反行为有关.有人认为ρc (H )的负磁电阻行为与双极化子超导理论相一致[16],或者被认为与态密度项对涨落电导的贡献有关,或与赝能隙的磁场关系有关,即负磁电阻意味着赝能隙随磁场的增加而减小.实际上,高温超导体正常态的非费米液体行为的一个直接证明是由Hill 等[17]近来刚刚完成的,他们用强磁场抑制了电子型氧化物超导体(Pr ,Ce )2CuO 4(T c =20K )的超导电性,并测量了在极低温下正常态的热导和电导.试验结果表明,二者之间的比值违反了维德曼-弗兰兹定律(Wiedeman -Franz law ),并强烈地表明存在着电子的自旋-电荷分离态.由于维德曼-弗兰兹定律是费米液体理论的一个固有结果,因此上述结果是高温超导体的非费米液体行为的第一个直接证明[18].为了确认费米液体图像对这类超导体的不适用性,对不同超导体及其不同化学掺杂量样品的重复测量是必要的.在高温超导体中还普遍存在着另一个反常的正常态输运行为,霍尔角C ot θH =ρxx Πρxy ∝T 2,并且也被作为非费米液体的实验证据.但近来也有C ot θH ∝T 关系的报道[19],这一结果与费米液体的物理图像是一致的.2 强磁场下费米面性质研究磁场对固体中载流子运动的重要影响之一是量子化效应.在一个均匀磁场中,电子作环绕磁力线的螺旋运动.在一恒定磁场下,其回转频率ω0=qB Πm 3.如果在垂直于磁场方向施加一频率为ω=ω0的交变场,其能量将被电子共振吸收,这就是回旋共振现象.随着磁场增大,电子的这种螺旋运动会形成一个个高度简并的朗道(Landau )能级,当这些朗道能级与费米面相切时,就会出现磁化率、电阻或比热等物理量随磁场的振荡现象,并且这些振荡与磁场的倒数1ΠH 呈周期结构.磁化率随1ΠH 呈现的周期性振荡称为德哈斯-范阿尔芬(de Haas -van Al 2phen ,dHvA )效应,类似的电阻周期性振荡称为舒布尼科夫-德哈斯(Shubnikov -de Haas ,SdH )效应.为了清楚地显现出de Haas 效应,要求满足两个条件:ω0τµ1和ω0>k B T ,式中τ是电子的自由运动时间.由ω0τµ1,要求尽可能高的磁场强度和高纯度的单晶;为满足ω0>k B T 要求实验必须在足够低的温度下进行,通常在1K 以下温度进行,低温也有利于τ值的提高.电子能带结构是凝聚态物质物理性质的核心问题,而基于de Haas 效应的费米面及其性质的实验研究是了解电子能带结构的最直接和最有效的方法.自de Haas 效应发现以来,新的合成材料的不断出现和磁场强度的不断提高,使得费米面及其性质研究的内容进一步丰富,并使其一直是凝聚态物理研究中的前沿课题,例如一个时期以来有机超导体[20]和以稀土元素化合物为主体的强关联体系[21]的费米面及其性质研究等.这里值得一提的有两项实验研究:一个是Y BC O 高温超导体的dHvA 效应.Mueller 等[22]在Los Alam os 国家实验室在214—412K 温区采用100T 脉冲磁场观察到了Y BC O 的dHvA 效应,经傅里叶变换处理的结果,表明三个独立的基频分别为0153,0178和3115kT.K ido 等[23]在118—311K 温度范围内,用场强为27T 的直流磁场,观察到频率为0154kT 的dHvA 效应,与Mueller 的0153kT 基本一致.由上述两个实验,我们可以得出两个重要结论:(1)Y BC O 高温超导体存在着费米面;(2)在上临界场H c2以下的混合态能够观察到dHvA 效应,而传统认为,H >H c2是观察这一效应的必要条件.基于这一结论,在低温A15超导体V 3Si 上获得了类似结果[24].・896・物理另一个值得一提的费米面研究实验是β″(BE DT -TTF)SF5CH2CF2S O3有机超导体的SdH效应.通常观察的是与磁场垂直的面内电阻ρxx(H)的de Haas 振荡.但Nam等[25]近来用60T脉冲场第一次观察到层间电阻ρzz随磁场的振荡,并且电导最小值即电阻振荡峰值与温度的关系呈现出热激活行为,这一结果对有机超导体费米面及其性质的认识无疑提供了新的信息.3 电子的Wigner结晶磁场对固体中载流子运动的另一重要影响是维度效应.在一个低载流子浓度的三维系统中,当磁场足够强(例如ωτµ1)时,电子运动轨道呈圆柱形,电子的运动实际上只沿单一方向发生.在一个垂直于磁场的二维系统中,磁场把输运载流子捕获在它的最低朗道能级上,载流子的运动轨道被限制在平面内,其迁移动能大大降低,系统实际上成为准零维的.在一个处于低温下的低载流子密度的系统中,可以出现“磁冻结”状态的局域化.当磁长度lc=( ΠeB)1Π2可以和载流子的平均距离a0相比拟时,就会出现载流子的有序排列,即凝聚成电子结晶点阵,这就是所谓的Wigner结晶.这种电子的磁冻结现象是数十年来电子-电子相关能量观察的顶点.在输运测量中,当“磁冻结”发生时,将伴随着电阻率的急剧增大,实际上发生了金属-绝缘体转变.Wigner电子结晶已先后在低载流子浓度的二维电子气系统[26]和三维系统[7,27]中观察到.不难看出,磁场引起的输运电子局域化,磁冻结和Wigner结晶的实质是磁场诱导的输运载流子运动维度减小的结果.在二维电子气系统中,lc趋近于a0也是导致分数量子霍尔效应的条件.在实验中,随着磁场的增大,系统首先进入分数量子霍尔效应态,然后,最终进入Wigner 结晶态[26].近来G lass on[28]利用输运测量观察了Wigner结晶中的动力学有序化;Li等[29]利用微波共振实验研究了二维电子系统中载流子-载流子和载流子-杂质互作用之间的竞争在高场绝缘相中的作用,结果表明,在载流子-载流子互作用为主的系统中形成Wigner结晶,而在载流子-杂质互作用占支配地位的系统中则形成Wigner玻璃态.4 磁场诱导的相变411 绝缘体-金属和超导转变K hmelnitskii[30]从理论上提出,如果一个系统是全局域的,那么在磁场中可能恢复到退局域态.一个典型的实验结果是[31]:Si掺杂的G aAs异质结在H=5T附近发生半导体-金属转变,在H<5T时表现为负的电阻温度系数,在H≥5T时则呈现出正的电阻温度系数.近来,碳纳米管的实验也表明了类似的磁场诱导的绝缘体-金属相变[32].近来,Uji等[8,33]在实验中发现,对于准二维绝缘材料λ-(BETS)2FeCl4,当平行于层面的磁场达到1015T时,系统发生绝缘体-金属转变;当磁场增加到18T时发生超导转变,相应的Tc=0104K,然后随着磁场增加,Tc升高.遗憾的是,该实验中的磁场仅能达到20T.紧接着,Balicas等[33]利用塔拉哈西国家强磁场实验室的45T稳态场,研究了不同温度下的磁电阻R(H)和不同磁场下的电阻转变R(T),如图2所示.结果表明,Tc的最高值为412K,对应的磁场值是33T.然后,随着磁场的进一步增加,Tc降低,如图2(b)所示.Uji等[8]认为,上述磁场诱导的超导电性是由于平行于传导层的强磁场抑制了轨道效应;Balicas等[33]则认为是由于外加磁场补偿了定向排列的Fe3+离子的交换场所致,即可以依照Jaccar2 ieo-Peter效应解释.图2 (a)λ-(BETS)2FeCl4单晶体的电阻R的磁场关系,测量的温度间隔为0125K;(b)电阻转变的温度关系.磁场诱导的超 导转变的最高温是33T附近的412K[33]磁场诱导的绝缘体-金属转变的另一个例子是含锰氧化物的巨磁电阻效应.这种相变应归结为磁场诱导的载流子的退局域化效应.但是这类实验通常仅要求10T以下的低磁场.对于在低温下处于反铁磁态的掺杂的钙钛矿锰氧化物,更强的磁场会导致一个绝缘体-金属转变,实际上是一种反铁磁-铁磁转变,并伴随着电荷有序或轨道有序相的融・996・31卷(2002年)11期化[34].412 磁场诱导的磁相变在含有稀土元素的材料中,由于f电子往往呈现出强关联效应,继而导致各种反常态,磁有序反常是其中之一.一个典型的例子是,在CeP的磁相图中有六个以上的磁有序相存在[35],在磁化强度的磁场关系中表现为六个台阶,并且这些磁有序相的临界场在1ΠH坐标上几乎是等间隔的,这相应于朗道能级与费米面相切.在PrC o2Si2系统中也观察到类似的反常磁有序现象[36].这种串级磁有序的机制尚不清楚.413 有机导体中磁场诱导的串级自旋密度波和量子霍尔效应以Bechgaard盐为基础的有机材料[通式(T MTSF)2X,X=PF6,AsF6,ClO4,ReO4等]通常具有准一维或准二维特性,库仑作用占支配地位,因此,自旋密度波(S DW)基态是有利的.另一方面,某些有机导体在某个临界压力Pc以上是超导的,如(T MTSF)2PF6等.有些常压下就是超导体,如(T MTSF)2ClO4等.当沿着c方向施加一个超过临界场的强磁场时,可观察到一系列的金属-S DW相变,例如在(T MTSF)2ClO4中,这一串级金属-S DW 相变发生在3—27T磁场范围,热力学测量证明这些相变属于一级相变.此外,霍尔效应测量表明,每个S DW相对应的霍尔效应都是量子化的,这是第一个在大块材料上观察到的量子霍尔效应.串级自旋密度波和量子霍尔效应被认为是近年来有机材料研究中的两个重要发现[37],并且与有关理论预计是一致的[38].5 强磁场下的纳米材料当金属颗粒直径减小到纳米尺度时,金属颗粒的电子态成为3D阱或W ood-Sax on势的本征态.由于这个本征态是用球形谐振波函数描述的,所以纳米颗粒的电子态完全不同于大块金属的布洛赫波函数[39].纳米材料中的晶粒尺寸与一些基本物理量,如德布罗意波长和超导相关长度等可以相比拟,电子运动出现限域性,量子尺寸效应以及强关联性.这些使得纳米材料呈现出一系列不同寻常的性质.强磁场对固体性质影响可归结为磁场对电子运动行为的影响,如前面有关部分所述.当磁长度lc= ( ΠeB)1Π2达到纳米材料晶粒量级(如B=25T时,l c =5175nm)时,纳米材料会呈现出怎样的物理性质,是值得关注的问题.6 结束语本文简要的介绍了强磁场下固体物理研究的某些方面及其进展,由此可以了解强磁场在现代物理研究中的重要作用,同时还可以看到这些研究大多是在1K以下的极低温条件下进行的.因此,在获得强磁场条件的同时还必须佐以必要的极低温条件.参考文献[1]曹效文.物理,1996,25:552[Cao X W.Wuli(Physics),1996,25:552(in Chinese)][2]Brooks J et al.Physica B,1994,197:19;Muller J R et al.IEEET ransition M agnetics,1994,30:1563[3]Inone K et al.Physica B,1992,177:7;1994,201:517[4]Ohkura K et al.Appl.Phys.Lett.,1995,67:1923[5]V on K litzing K et al.Phys.Rev.Lett.,1980,45:494[6]S tümer H L et al.Phys.Rev.Lett.,1983,50:1953[7]R osenbaum T F et al.Phys.Rev.Lett.,1985,54:241[8]Uji S et al.Nature(London),2001,410:908[9]Cao X W,W ang Z H,Li K B.Physica C,1998,305:68[10]Palstra T T M et al.Phys.Rev.B,1990,41:6621;Puzmak R et al.Phys.Rev.B,1995,52:3756;Chien T R et al.Phys.Rev.Lett.,1991,66:3075;Cao X W,W ang Z H,Li K B.Phys.Rev.B,2000,62:12552;Cao X W,W ang Z H,Xu X J.Phys.Rev.B,2002,65:064521[11]Nakagawa Y et al.Physica B,1994,201:49[12]Iye Y.Ed.G insberg D M.Physical Properties of H igh T em peratureSuperconductorsⅢ.S ingapore:W orld Scientific,1991[13]Anders on P W.Science,1992,256:1526[14]Ando Y et al.Phys.Rev.Lett.,1996,77:2065[15]Y an Y F et al.Phys.Rev.B,1995,52:R751[16]Z avaritsky V N,S pring ford M,Alexadror A S.Physica B,2001,294—295:363[17]H ill R W et al.Nature,2001,414:711[18]Behnia K.Nature,2001,414:696[19]Vedeneev S I,Jansen A G M,W yder P.Physica B,2000,284—288:1023[20]W onitza J.Ferm i sur face of low dimensional organic metals and su2perconductors.S pringer T racts in M orden Physics,V ol.134.Berlin:S pringer,1996[21]Physica B,2000,281—282:736—786多篇文章[22]Mueller F M et al.Bull.Am.Phys.S oc.,1990,35:550[23]K ido G et al.Proc.2nd ISSP Int.Sym p.on Physics and Chem istryof Oxide Superconductors.T oky o:S pringer;Physica B,1992,177:46[24]Mueller F M.Physica B,1992,177:41[25]Nam S et al.Phys.Rev.Lett.,2001,87:117001・7・物理[26]W illiams F I B et al .Phys.Rev.Lett.,1991,66:3285;S ontos M Bet al .Phys.Rev.Lett.,1992,68:1188;R odgers P J et al .PhysicaB ,1993,184:95[27]Shayegan M et al .Phys.Rev.B ,1985,31:6123;Dupuis N ,M ont 2ambaux.Phys.Rev.Lett.,1992,68:357;Brossard L et al .Eur 2Phys.J.B ,1998,1:439[28]G lass on P et al .Phys.Rev.Lett.,2001,87:176802[29]Li C C et al .Phys.Rev.B ,2000,61:10905[30]K hmelnitskii D E.Phys Lett.,1984,106A :182[31]Jiang H W et al .Physica B ,1994,197:449[32]Fujiwara A et al .Physica B ,2001,298:541[33]Balicas L et al .Phys.Rev.Lett.,2001,87:067002[34]G arcia 2Landa B et al .Physica B ,2001,294—295:107;Hayashi Tet al .Physica B ,2001,294—295:115[35]Suzuki T et al .Physica B ,1995,206Π207:771[36]Sugiyama K et al .Physica B ,1992,177:275[37]M ontambaux G et al .Physica B ,1992,177:339[38]Chaikin P M et al .Physica B ,1992,177:353[39]Pedersen J et al .Nature ,1991,353:733;H ori H et al .Physica B ,2001,294—295:292・物理新闻・一种测试“复杂性”的新方法(A N ew W ay to Measuring Complexity ) 对于一个生物系统,我们应该如何去测定它的复杂性呢?最近美国哈佛大学医学院和葡萄牙里斯本大学的M.C osta 教授及其研究小组提出了一个新的设想,他们认为疾病与衰老可以用信息的损失来定量描述.换句话说,一个生物组织(或器官)的复杂性是与它对环境的适应性和它的功能性的发挥有着密切的关系,而疾病与衰老将会降低生物组织(器官)的复杂性,使得它们不容易适应环境的变化以及抵抗灾变事件的能力.但是传统对复杂性的描述常常是与这种“信息损失理论”相矛盾的,按信息科学的观点来说,一个系统的复杂性是由该系统能生成多少新的信息量来确定的.如果我们用一个具有心律不齐或者有心房颤动的病人作试验,从他的心电图上可发现其复杂性要比一个健康人大得多;这是因为在心脏病患者的心电图中可观察到许多的无规振荡(即白噪声),而无规振荡是可以连续不断地产生“新”信息量的.也就是说,心电图上前一时刻的心律跳动是无法预测他下一时刻的心律跳动的,因此这是一个具有较高复杂性的系统.与此相反,一个健康人的心电图中,他的心律跳动是遵守1Πf 噪声规则的,因此它所需的信息量较少,也就是它的复杂性程度较低.为什么会产生这种矛盾呢?M.C osta 教授的研究组认为,生物组织的内部存在着时间尺度上的多重性,因此对复杂性的量度需要用多标度的时间尺度来测定,为此他们在计算生物系统复杂性时使用了“多标度熵(multi 2scale entropy 简称MSE )”的新概念.具体的计算方法如下:将一个记录有30000次心律跳动的时间序列进行粗粒化,就是用20个跳动作为一个单位,计算出每一个单位的平均心律跳动,用这些平均数重构成一个新的时间序列并测出它的不可预测性,反复进行粗粒化并测定不可预测性.如果不可预测性高,表示信息量大,也就是该生物系统的复杂性程度高.他们采用不同长度的心律跳动(从2—20个)作为划分单位来重复计算其不可预测性.显然这种多尺度的测量方法可以揭示出信息量在不同时间尺度下的复杂排列.将一个健康的年青人与一个患有心律不齐和心房颤动的老年病人的心电图作对比,利用MSE 算法后,可以发现始终保持着健康的心脏要比衰老有病的心脏具有较高的复杂性.(云中客 摘自Phys.Rev.Lett.,5August 2002)・107・31卷(2002年)11期。
非牛顿流体英语作文
非牛顿流体英语作文Title: The Fascinating World of Non-Newtonian Fluids:An Exploration of Their Unique Properties and Applications。
The realm of fluid mechanics has long been dominated by the study of Newtonian fluids, such as water and air, which adhere to Newton's law of viscosity — the linear relationship between the shear stress and the shear rate. However, non-Newtonian fluids defy this simplistic characterization, presenting a variety of behaviors that make them both scientifically fascinating and immensely useful in numerous applications. This essay delves into the complexities and properties of non-Newtonian fluids, exploring their unique behaviors and their significantroles in both industrial and everyday settings.Non-Newtonian fluids are distinguished from their Newtonian counterparts by their variable viscosity, which changes in response to different forces and conditionsrather than remaining constant. This unique characteristiccan be further categorized into different types of behavior including shear-thinning, shear-thickening, thixotropic,and rheopectic fluids, each with distinctive responses to stress and time.Shear-thinning fluids, also known as pseudoplastics, decrease in viscosity as the shear rate increases. A common example of a shear-thinning fluid is paint, which flows more readily under a brush stroke but thickens when at rest, ensuring that it does not drip excessively from walls or brushes. This property is immensely valuable in the manufacturing and application of coatings, allowing for smoother application and better surface coverage.Conversely, shear-thickening fluids, or dilatants, behave in the opposite manner. Their viscosity increaseswith the shear rate. Cornstarch mixed with water is aclassic example, forming a mixture that acts like a solid when subjected to a sudden force but flows like a liquid when handled gently. This characteristic is exploited inthe development of protective gear, such as body armor and athletic wear, where the material must remain flexibleunder normal conditions but become instantly rigid when struck by a high-impact force.Thixotropic fluids decrease in viscosity over time when a constant shear force is applied and recover their viscosity once the force is removed. This behavior is essential in the application of certain adhesives and sealants, which must be fluid during application butsolidify once in place. The automotive and construction industries rely heavily on thixotropic materials to ensure that substances stay where they are applied and perform their function upon setting.Rheopectic fluids, though less common, exhibit the opposite behavior to thixotropic fluids; they become more viscous over time under shear. Some lubricants and printing inks are designed to be rheopectic to improve their performance under operating conditions that require enhanced viscosity during prolonged working periods.The applications of non-Newtonian fluids extend beyond these examples and permeate various sectors includingculinary arts, pharmaceuticals, and biotechnology. In the culinary world, chefs use non-Newtonian properties to create dishes with unique textures and consistencies that enhance the dining experience. In pharmaceuticals, understanding the non-Newtonian behavior of certain mixtures can be crucial for the design of drug delivery systems. Furthermore, in biotechnology, non-Newtonianfluids are often used in the formulation of bioinks for 3D bioprinting, aiding in the development of tissue engineering and regenerative medicine.The study of non-Newtonian fluids is not only crucial for their practical applications but also for the theoretical insights they provide into complex fluid dynamics. Researchers are continually exploring the underlying mechanisms that dictate the behavior of these fluids, improving our understanding of how these materials interact with the environment and with other materials. Advanced computational models and experimental setups are regularly developed to predict and analyze the behaviors of non-Newtonian fluids under various conditions.In conclusion, non-Newtonian fluids represent a vital area of study in the field of fluid mechanics, offering both intriguing scientific challenges and a broad spectrum of practical applications. From improving the quality of everyday products like food and cosmetics to enhancing the safety of protective gear, the peculiar properties of these fluids have a profound impact on multiple industries and disciplines. As research continues to unravel more about their complex behaviors, we can anticipate a future where the applications of non-Newtonian fluids become even more diverse and integral to technological advancements and quality of life improvements. Through a better understanding of these materials, we can harness their properties to meet specific needs and challenges, paving the way for innovations that were once thought impossible.。
相变微胶囊悬浮液在热输运中应用的研究进展
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第5期·1860·化 工 进展相变微胶囊悬浮液在热输运中应用的研究进展刘小诗,邹得球,贺瑞军,申俊锋,郭江荣,胡志钢,胡云平,刘默(宁波大学海运学院,浙江 宁波 315211)摘要:相变微胶囊悬浮液是将相变微胶囊分散在基液中形成的两相流体,具有载热密度大、传热温差小等优点,在热输运中具有独特优势。
本文综述了影响相变微胶囊悬浮液热输运的关键影响因素:稳定性、流动阻力特性及热输运特性。
从静止稳定性及循环稳定性两方面分析了相变微胶囊悬浮液稳定性存在的问题并提出了解决方法。
从黏度、压降两方面阐述了相变微胶囊悬浮液的流动阻力特性。
结合阻力特性及热输运能力,分析了相变微胶囊悬浮液的热输运特性。
最后介绍了相变微胶囊悬浮液在暖通空调、太阳能热利用、电力电子与动力设备散热等方面的应用。
关键词:相变微胶囊悬浮液;稳定性;非牛顿流体;相变材料;微通道中图分类号:TK02 文献标志码:A 文章编号:1000–6613(2018)05–1860–09 DOI :10.16085/j.issn.1000–6613.2017-1439Research progress of application of microencapsulated phase changeslurry (MEPCS )in heat transportLIU Xiaoshi ,ZOU Deqiu ,HE Ruijun ,SHEN Junfeng ,GUO Jiangrong ,HU Zhigang ,HU Yunping ,LIU Mo(Faculty of Maritime and Transportation ,Ningbo University ,Ningbo 315211,Zhejiang ,China )Abstract :Microencapsulated phase change slurry (MEPCS )is a kind of two-phase fluid ,which has the advantages of high heat transfer density and small temperature difference. In this paper ,the key factors that affect the heat transport of MEPCS were reviewed. The stability problems and the solutions were analyzed in terms of static stability and cyclic stability. The flow resistance characteristics of MEPCS were discussed in terms of viscosity and pressure drop. Combined with the characteristics of resistance and heat transport capacity ,the heat transport characteristics of MEPCS were analyzed. Finally ,the applications of MEPCS in heating ventilating & air conditioning ,solar energy utilization ,electronics and power equipment cooling were introduced.Key words :microencapsulated phase change slurry (MEPCS );stability ;non-Newtonian fluids; phase change material (PCM );microchannels近年来,随着能源供给与需求矛盾的日益突出以及节能减排要求的提高,能量的储存与输运受到国内外的广泛关注,其中,开发高效储热与热输运介质是能源领域的研究热点。
非牛顿液体作文500字
非牛顿液体作文500字English Answer:Non-Newtonian fluids are fascinating substances that do not follow the traditional Newtonian flow behavior. Unlike Newtonian fluids, which have a constant viscosity regardless of the applied shear stress, non-Newtonianfluids exhibit variable viscosity under different conditions.There are several types of non-Newtonian fluids, including shear-thinning fluids, shear-thickening fluids, and viscoelastic fluids. Shear-thinning fluids, such as ketchup or toothpaste, become less viscous when subjected to shear stress. This means that they flow more easily when you squeeze the bottle or apply force. On the other hand, shear-thickening fluids, like cornstarch and water mixture, become more viscous when subjected to shear stress. They resist flow and can even behave like a solid under certain conditions.Viscoelastic fluids, such as slime or Silly Putty, exhibit both viscous and elastic properties. They can flow like a liquid but also stretch and bounce like a solid. This unique behavior is due to the presence of long-chain polymer molecules that interact with each other.Non-Newtonian fluids find applications in various fields. For example, in the food industry, they are used to create desired textures and consistencies in products like sauces, dressings, and ice cream. In the medical field,non-Newtonian fluids are used in drug delivery systems, as they can change their viscosity to release drugs at a controlled rate. They also play a role in industrial processes, such as oil drilling and paint manufacturing.中文回答:非牛顿流体是一种非常有趣的物质,它不遵循传统的牛顿流体流动行为。
非水溶性超分散纳米催化剂在多孔介质中的运移机理研究
非水溶性超分散纳米催化剂在多孔介质中的运移机理研究卢宁;赵法军【摘要】With the continuous development of in situ upgrade heavy oil thermal recovery process, non-aqueous nano-dispersed catalyst, as an alternative to pellet catalyst, shows good prospects for application. In order to evaluate the effectiveness of the injected nano-catalyst in formation, it is necessary to investigate its migration mechanism in the formation. In this paper, taking a single spherical collector as formation model, collectionefficiency (η)was defined and c alculated to show the effect of each transport mechanism on particle migration process. By calculating the aggregation efficiency, influence factors were quantitatively analyzed from five aspects. The result shows that interception effect and hydrodynamic action have great influence on particle migration. In addition, the effect of straining should be paid attention to when the concentration of injected nanoparticles is higher.%随着原位改质热采稠油工艺的不断发展,水溶性超分散纳米催化剂作为丸粒状催化剂的替代者,具有良好的应用前景.为评价注入的纳米催化剂在地层中的效用,需要研究其在地层内的运移机理.以单球型聚集器作为地层(即多孔介质)的假想模型,定义并计算聚集效率η以定量分析各因素对粒子运移的影响,从五个方面对影响纳米粒子在聚集器内的因素进行了综述分析.研究发现,捕获作用、水动力作用对粒子运移的影响较大.此外,注入纳米粒子浓度较高时,变形作用的影响也应予以关注.【期刊名称】《当代化工》【年(卷),期】2017(046)009【总页数】4页(P1741-1743,1748)【关键词】稠油;超分散催化剂;纳米粒子;运移;多孔介质【作者】卢宁;赵法军【作者单位】东北石油大学提高油气采收率教育部重点实验室,黑龙江大庆163318;东北石油大学提高油气采收率教育部重点实验室,黑龙江大庆 163318【正文语种】中文【中图分类】TE624.9Abstract:With the continuous development of in situ upgrade heavy oil thermal recovery process, non-aqueous nano-dispersed catalyst, as an alternative to pellet catalyst, shows good prospects for application. In order to evaluate the effectiveness of the injected nano-catalyst in formation, it is necessary to investigate its migration mechanism in the formation. In this paper, taking a single spherical collector as formation model, collection efficiency (η) was defined and calculated to show the effect of each transport mechanism on particle migration process. By calculating the aggregation efficiency, influence factors were quantitatively analyzed from five aspects. The result shows that interception effect and hydrodynamic action have great influence on particle migration. In addition, the effect of straining should be paid attention to when the concentration of injected nanoparticles is higher.Key words:Heavy oil; Nano-dispersed catalyst; Nanoparticle; Transport; Porous media石油是世界上重要的不可再生能源之一。
高分子材料加工原理--聚合物流体的流变性 ppt课件
表 PLLA的特性黏度降
温度/℃
室温 205 215 225
特性黏度[η]
1.35 1.16 0.89 0.82
[η]
0 0.19 0.46 0.53
当Tg <T<Tg+100时,由WLF方程式: ❖ lg(T / Ts)= -C1(T-Ts)/[C2+(T-Ts)] ❖ 若Ts=Tg, 则C1=17.44,C2=51.6
1-直链,2—三支链,3—四支链
图 超支化聚(硅氧烷)
2.平均分子量的影响
(1)分子量对0 的影响
➢ Flory等: 0=KM K-取决于聚合物性质和温度的经验常数 -与聚合物有关的指数 当M < Mc时,=1~1.6; M > Mc,时=2.5~5.0
推论:高分子量聚合物加工时,粘 度很高,加工困难。
a ↓ a↑
支链越多,越短,流动时的空间位阻
越小,表观粘度越低。
例1: 超支化聚合物具有较低的a 例2: 橡胶生产中加入再生橡胶,以 改善其加工性能。
(3) 长支链数↑
a ↑, c↓
(4)聚合物链结构中的侧基 当侧基体积较大时,自由体积增大,
流体粘度对压力和温度敏感性增加。
图 顺丁胶的粘度与分子支化度的关 系
C↑
c↓ n ↓
(三) 温度的影响
1.温度对0 (或)的影响
图 常见聚合物流体的表观粘度与温度的关系
T ↑,链段活动能力↑ 体积↑ 分子间相互作用↓
↓
当T>>Tg时, 由Arrhenius方程式: η =AexpEη /RT
lnη =lnA+Eη /RT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0606214v 1 [c o n d -m a t .s t r -e l ] 8 J u n 2006Non-Fermi liquid behavior in transport across carbon nanotube quantum dotsLeonhard Mayrhofer and Milena GrifoniTheoretische Physik,Universit¨a t Regensburg,93040Germany(Dated:February 6,2008)A low energy-theory for non-linear transport in finite-size single-wall carbon nanotubes,based on a microscopic model for the interacting p z electrons and successive bosonization,is presented.Due to the multiple degeneracy of the energy spectrum diagonal as well as off-diagonal (coherences)elements of the reduced density matrix contribute to the nonlinear transport.A four-electron periodicity with a characteristic ratio between adjacent peaks,as well as nonlinear transport features,in quantitative agreement with recent experiments,are predicted.PACS numbers:PACS numbers:73.63.Fg,71.10.Pm,73.23.HkSince their recent discovery single-wall carbon nan-otubes (SWNTs),cf. e.g.[1],have attracted a lot of experimental and theoretical attention.In particular,as suggested in the seminal works [2,3],due to the pecu-liar one-dimensional character of their electronic bands,metallic SWNTs are expected to exhibit Luttinger liquid behavior at low energies,reflected in power-law depen-dence of various quantities and spin-charge ter experimental observations have provided a confir-mation of the theory [4,5].As typical of interacting electron systems in reduced dimension,SWNTs weakly coupled to leads exhibit Coulomb blockade at low tem-peratures [6]with characteristic even-odd [7]or four-fold periodicity [8,9,10].In [9]not only the ground state,but also several excited states could be seen in stability dia-grams of closed SWNT quantum dots.Such two-fold and four-fold character can be qualitatively understood from symmetry arguments related to the two-fold band degen-eracy of SWNTs and the inclusion of the spin degree of freedom.So far,a quantitative description has relied on density functional theory calculations [11]or on a mean field description of the Coulomb blockade [12].In par-ticular,the position of the spectral lines in the stability diagram measured in [9]was found to be in quantitative agreement with the predictions in [12].However,a mean field description may be not justified for one-dimensional systems.For example,to describe the spectral lines of the sample with four-fold periodicity (sample C)in [9],a quite peculiar choice of the mean field parameters was made,and a quantum dot length three times shorter than the measured SWNT length was assumed.Moreover,to date no quantitative calculation of the nonlinear current across a SWNT dot has been provided.In this Letter we investigate spectral as well as dynam-ical properties of electrons in metallic SWNT quantum dots at low energies.We start from a microscopic descrip-tion of metallic SWNTs and include Coulomb interaction effects,beyond mean-field,by using bosonization tech-niques [2,3],yielding the spectrum and eigenfunctions of the isolated finite length SWNT.Due to the many-fold degeneracies of the spectrum,the current-voltage char-acteristics is obtained by solving equations of motion forthe reduced density matrix (RDM)including off-diagonal elements.Analytical results for the conductance are pro-vided,which account for the different heights of the con-ductance peaks in [9].Moreover,we can quantitatively reproduce all the spectral lines seen in sample C in [9]by solely using the two ground state addition energies provided in that work.The derived level spacing is in agreement with the measured SWNT length.To start with,we consider the total HamiltonianH =H ⊙+H s +H d +H T +H gate ,(1)where H ⊙is the interacting SWNT Hamiltonian (cf.Eq.(5)below)and H s/d describe the isolated metallic source and drain contacts as a thermal reservoir of non-interacting quasi-particles.Upon absorbing terms pro-portional to external source and drain voltages V s/d ,theyread (l =s,d )H l = σ q ε q ,l c † q σl c q σl ,where c †q σl creates a quasi-particle with spin σand energy ε q ,l =ε q −eV s/d in lead s/d .The transfer of electrons between the leads and the SWNT is taken into account byH T = l =s,d σd 3r T l ( r )Ψ†σ( r )Φσl ( r )+h.c.,(2)where Ψ†σand Φ†σl ( r )= q φ∗ q ( r )c † q σl are electron cre-ation operators in the SWNT and in lead l ,respec-tively,and T l ( r )describes the transparency of the tun-neling contact l .Finally,H gate =−µg N c accounts for a gate voltage capacitively coupled to the SWNT,with N c counting the total electron number in the SWNT.SWNT Hamiltonian .In the following the focus is on arm-chair SWNTs at low energies.Then,if periodic bound-ary conditions are applied,only the gapless energy sub-bands nearby the Fermi points F =± K 0=±K 0ˆe x withˆe x along the nanotube axis,are relevant [2,3].To each Fermi point two different branches r =R/L are asso-ciated to the Bloch waves ϕR/L,F,κ( r )=e iκx ϕR/L,F ( r ),where κmeasures the distance from the Fermi points ±K 0[2](Fig.1a left).In this Letter,however,we are interested in finite size effects.Generalizing [13]to the case of SWNTs we introduce standing waves which fulfill2 open boundary conditions(Fig.1a right):ϕOBC˜R/˜L,κ( r)=12 ϕR/L,K0,κ( r)−ϕL/R,−K0,−κ( r),(3)with quantization conditionκ=π(mκ+∆)/L,mκan integer,and L the SWNT length.The offset parameter∆occurs if K0=πn/L,and is responsible for the energy mismatch between the˜R and˜L branches.Including thespin degree of freedom,the electron operator reads Ψ( r)= ˜r=˜R,˜L κ,σϕOBC˜rκ( r)c˜rσκ=: σΨσ( r),(4)with c˜rσκthe operator which annihilates ϕOBC˜rκ |σ . The interacting SWNT Hamiltonian then readsH⊙= v F ˜rσsgn(˜r) κκc†˜rκσc˜rκσ+(5) 1√Lϕsgn(F)˜r,F( r)ψ˜r Fσ(x),(6)where we used the convention that R/L=±1,˜R/˜L=±1.Upon inserting(6)into(5),integration over the co-ordinates perpendicular to the tube axis yields the inter-acting Hamiltonian expressed in terms of1D operatorsand an effective1D interaction V eff(x,x′).Using stan-dard bosonization techniques[2,3]H⊙can now be diag-onalized when keeping only forward scattering processesassociated to V eff(x,x′).It readsL R L R~~K-Ke ekkFIG.1:Energy spectrum of a SWNT with open boundaryconditions(right)described in terms of left(˜L)and right(˜R)branches.It is constructed from suitable combinationsof travelling waves whose spectrum is shown on the left side.H⊙=12+∆sgn(˜r)N˜rσ+ q>0 j=c,s δ=±εjδq a†jδq a jδq,(7)where thefirst line is the fermionic contribution and rep-resents the energy cost,due to Pauli’s principle and theCoulomb interaction,of adding new electrons to the sys-tem.Specifically,N˜rσ= κc†˜rσκc˜rσκ,is the operatorthat counts the number of electrons in the(˜rσ)-branch,N c= ˜rσN˜rσyields the total electron number,andε0= v FπL2 L0dx L0dx′V eff(x,x′)cos(qx)cos(qx′).Thesecond line of(7)describes bosonic excitations in termsof the bosonic operators a jδq.Four channels are associ-ated to total(jδ=c+,s+)and relative(jδ=c−,s−)(with respect to the occupation of the˜R and˜L branch)charge and spin excitations.Generalized spin-charge sep-aration occurs,since for three of the channels the energydispersion is the same as for the noninteracting system,εjδq= v F q= v Fπ∂t=T r leads H I T(t),W I(t) ,(9)for the reduced density matrix(RDM)ρI=T r leads W Iof the SWNT.Here W I(t)is the density matrix of thewhole system consisting of the leads and the quantumdot,and T r leads indicates the trace over the lead de-grees of freedom.The apex I denotes the interactionrepresentation with H T from(2)as the perturbation.We make the following approximations:i)We assumeweak coupling to the leads,and treat H T up to sec-ond order,i.e.,we consider the leads as reservoirs whichstay in thermal equilibrium and make the factorizationansatz W I(t)=ρI(t)ρsρd=:ρI(t)ρleads whereρs/d=Z−1s/de−β(H s/d−µs/d N s/d),with Z s/d the partition functionandβthe inverse temperature.ii)Being interested inlong time properties,we can make the so called Markovapproximation,where the time evolution of˙ρI(t)is onlylocal in time.iii)Since we know the eigenstates| N, mof H⊙,it is convenient to calculate the time evolutionofρI in this basis.We assume that matrix elements be-tween states representing a different number of electrons(charge states)in the SWNT and with different energiesvanish.Coherences between degenerate states with thesame energy E are retained!Hence we can divideρI(t)into block matricesρI,E Nnm(t),where E,N are the energyand number of particles in the degenerate eigenstates|n ,3|m .We arrive at equations of the Bloch-Redfield form˙ρI,E Nnm (t )=−kk ′R E Nnm kk ′ρI,E N kk ′(t )+E ′ M =N ±1kk ′R EN E ′M nm kk ′ρI,E ′Mkk ′(t ),(10)where k,k ′run over all degenerate states with fixed par-ticle number.The Redfield tensors are given by (l =s,d )R E Nnm kk ′= lE ′,M,jδmk ′Γ(+)E N E ′M l,njjk+δnk Γ(−)E N E ′Ml,k ′jjm ,(11)and R E N E ′M nm kk ′= l,α=±Γ(α)E ′M E Nl,k ′mnk,where the quantities Γ(α)E N E ′Ml,njjkare transition rates from a state with N to a state with M particles.Known the stationary densitymatrix ρI st ,the current (through lead l )follows from I =2ReN,E,E ′ nkjΓ(+)E N E ′N +1l,njjk −Γ(+)E N E ′N −1l,njjkρI,E Nkn,st .(12)iv)We exploit the localized character of the transparen-cies T l ( r )in Eq.(2),and make use of the slowly vary-ing nature of the operator ψ˜r F σ(x )in Eq.(6).This enables us to evaluate the 1D operator at the SWNT contacts and pull it out from the space integrals which enter the definition of the transition rates.It holds r |ψ˜r σF (x =0)|s :=(ψ˜r σ)E N E ′N +1rs ; r |ψ˜r σF (x =L )|s =e −iπsgn(F ){N ˜r σsgn(˜r )+∆}(ψ˜r σ)E N E ′N +1rsfor the matrix ele-ments between the states |r ,|s with energy E ,E ′and particle number N ,N +1,respectively.We thus can introduceΦl ˜r ˜r ′(ε)= d 3r d 3r ′T l ( r )T l ( r ′)q |εφl q ( r )φ∗l q ( r ′)×F F ′sgn(F F ′)ϕsgn(F )˜r ,F ( r )ϕsgn(F ′)˜r ′,F ′( r ′)ηl (∆),to describe the influence of the geometry of a tun-neling contact at the tube end.The term ηl (∆)=e iπsgn(F −F ′)∆(1−δl,d )accounts for the mismatch ∆.As-suming a 3D electron gas in the leads,e.g.of gold,we find that for a realistic range of energies is Φl ˜r ˜r ′(ε)=δ˜r ˜r ′Φl ,i.e.the leads are ”unpolarized”.We thus obtain Γ(±)E N E ′N +1l,rss ′r ′=1(ε−eV l −(E ′−E ))t ′,(13)with ρ⊕l (ε)=ρl (ε)f (ε),where ρl (ε)is the density of en-ergy levels in lead l ,and f (ε)the Fermi function.Alike,Γ(±)E N E ′N −1l,rss ′r ′=1(ε−eV l +(E ′−E ))t ′,(14)with ρ⊖l (ε)=ρl (ε)(1−f (ε)).When are coherences needed?Eqs.(10)with (12)show that coherences (in the energy basis)enter the evalua-tion of the current.In the low bias and temperature regime k B T,eV :=e (V s −V d )≪ε0,however,where only ground states contribute to the current,because ofN, 0|ψ†˜r σψ˜r σ| N ′, 0 =(1/2L )δ N ′, N,only diagonal ele-ments of the RDM contribute.Hence,due to the ”unpo-larized”character of the leads,the commonly used mas-ter equation (CME)with population’s dynamics only is valid.At larger biases coherences should be included [14].In the following we focus on the case ∆≈0,relevant to explain the experimental results for sample C in [9].Low bias regime (CME is valid).At low bias the cur-rent can be obtained by looking to transitions between ground states with N and N +1particles and energies E 0N ,E 0N +1.Then,the matrix element (ψ˜rσ) N ′ N is non zero only if N ′= N −ˆe rσ,with ˆe rσthe unit vector,andN′˜r σ(ψ†˜r σ) NN ′(ψ˜r σ) N ′ N =1l =s,d γl [C N,N +1f (εl )+C N +1,N (1−f (εl ))],(16)where ∆f =|f (εs )−f (εd )|,εl =eV l −∆E ,and∆E =E 0N −E 0N +1.Moreover,γl =(π/L )Φl ρl (0).This expression can be further simplified in the regime |eV |≪kT ≪ε0where the linear conductance G N,N +1is obtained by linearizing ∆f in V ,and by evaluating the remaining quantities in (16)at zero bias.The conduc-tance trace exhibits four-electron periodicity (Fig.2a),with two equal in height central peaks for the transitions N =4m +1→N +1,N =4m +2→N +1,and two4 smaller peaks for N=4m→N+1,N=4m+3→N+1also equal in height.The relative height between centraland outer peaks is G max4m+1,4m+2/G max4m,4m+1=27/(10+4√5[8]W.Liang,M.Bockrath and H.Park,Phys.Rev.Lett.88,126801(2002).[9]S.Sapmaz et al.,Phys.Rev.B71,153402(2005).[10]S.Moriyama et al.,Phys.Rev.Lett.94,186806(2005).[11]S.-H.Ke,H.U.Baranger and W.Yang,Phys.Rev.Lett.91,116803(2003).[12]Y.Oreg,K.Byczuk and B.I.Halperin,Phys.Rev.Lett.85,365(2000).[13]M.Fabrizio, A.O.Gogolin,Phys.Rev.B51,17827(1995).[14]In the case of noninteracting electrons and unpolarizedleads,the CME is always correct if the usual Bloch wave Slater determinants are used as energy eigenstates. [15]F.Cavaliere et al.,Phys.Rev.Lett.93,036803(2004).。