北师大版小学六年级数学下册总复习课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的约数.
约数
一个数的约数的个数是有 限的,其中最小的约数是1, 最大的约数是它本身.
倍数
一个数的倍数的个数是无 限的,其中最小的倍数是它 本身,没有最大的倍数.
约数和 倍数是 相互依 存的
3. 能被2.3.5整除的数的特征
能被2整除的数的特征: 个位上是0,2,4,6,8,
2、从个位加起。
3 975 + 56 8
3、哪一位上的数 相加满几十,要
5 14 7
向前一位进几。
二、整数减法: 5010-478=4532
1、相同数位对齐。
2、从个位减起。
3、被减数哪一位 上的数不够减,就
5010 - 4 78
从前一位退1作10, 和本位上的数加起
45 3 2
来,再减。
三、整数乘法:先用一
0.25=( 25% ) 小数点向右移动两位,添上%
去掉%,小数点向左移动两位 0.35%=( 0.0035)
百分数
16 ≈0.167=16.7%
1.2= 1120
=1
1 5
40%=
40 100
=
2 5
分数
数的整除
1. 整除与除尽 2. 约数和倍数 3. 能被2.3.5整除的数的特征 4. 偶数和奇数 5. 质数和合数 6. 质因数和分解质因数 7. 最大公约数和最小公倍数
⑵.如果两个数互质,它们的最大公约数就是1; 最小公倍数就是它们的积.
⑶.短除法 求24和36的最大公约数和最小公倍数
2 24 36
2 12 18
Байду номын сангаас
36 9
2
3
商互质
24和36的最大公约数是:2×2×3=12 除数相乘
24和36的最小公倍数是: 2×2×3×2×3=72 所有的除数和商相乘
正、负数
像+13、+38、+49……都是正数,“+”是正号,通 常省略不写;像-3、-10、-155……都是负数,读 作负三、负十、……“-”是负号;0既不是正数,也 不是负数。正数都大于0,负数都小于0 描述具有相反意义的量,可以用正、负数
正自然数
整 数0
负自然数
四则运算的意义: 1、加法:把两个数合并成一 个数的运算,叫做加法。 加数+加数=和 和-一个加数=另-一个加数
10.循环小数
一个小数的小数部分,从某一位起, 有一个或几个数字依次不断重复出现, 这样的数叫做循环小数. 如 0.5555…… 7.23838……
依次不断重复出现的数字叫做循环 节.
循环小数的简便记.法 0.5555…… 记作:0.5 ..
7.23838……记作:7.238
10.循环小数
循环节从小数部分第. 一位开始的叫
互质数的几种特殊情况
⑴、两个数都是质数,这两个数一定互质. ⑵、相邻的两个数互质. ⑶、1和任何数都互质.
求最大公约数和最小公倍数
4和28 最大公约数是( 4 ); 最小公倍数是( 28 )
⑴. 如果较小数是较大数的约数,那么 较小数就是这两个数的最大公约数; 较大数就是这两个数的最小公倍数.
4和15 最大公约数是( 1 ); 最小公倍数是( 60)
25×4=100.
100÷25=4
100÷4=26
4、除法:已知两个因数的积与其中 一个因数,求另一个因数 的运算,叫做除法。
被除数÷除数=商 被除数÷商=除数
商×除数=被除数
100÷5=20
20×5=100
100÷20=5
一、整数加法法则:
604+3975+568= 5147
1、相同数位对齐。 6 0 4
个因数每一位上的数
分别去乘另一个因数
各用的个因数数数去位哪乘上一,的 位 乘数 上 得,246××3230540=
分解质因数的方法:短除法
把30分解质因数
2 30 3 15 5
30=2×3×5
把30分解质因数正确的做法是( C ) A.30=1×2 ×3 ×5 1不是质数 B.2 ×3 ×5=30 书写格式不符
C.30=2×3×5
7. 最大公约数和最小公倍数
公约数,最大公约数: 几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做这几个数的最大公约数.
8.小数的性质
小数的末尾添上0或者去掉0,小数的大小不变.
运用小数的性质,可以在小数末尾添上0. 3.5=3.50 也可以把小数化简. 3.500=3.5
9.小数点数位移动引起小数大小的变化
小数点向右(左)移动一位、两位、三 位……原来的数就扩大(缩小)10倍、100倍、 1000倍……
如果要把一个数扩大或缩小10倍、100 倍……只需要移动小数点,数位不够时用0补 足.
约分的方法: 1.用分子分母的公约数(1除外)逐次去除分子和
分母,直到得到最简分数为止. 2.用分子和分母的最大公约数去除分子和分母.
8.百分数的意义
表示一个数是另一个数的百分之几的数叫百分数. 百分数又叫百分率或百分比.
百分数后面不 能带单位名称.
9.分数、小数、百分数的互化
小数
1 =0.25=25% 4
=594
=
24 54
4.分数的分类
真分数---- 分子比分母小的分数. 真分数<1 假分数---- 分子比分母大或者分子和分母
相等的分数. 假分数≥1
5.分数的基本性质
分数的分子和分母同时乘以或者除以相同的数 (零除外),分数的大小不变.
一个分数的分母不变,分子乘以3,则这个分数( 扩大)3倍 如果分子不变,分母除以5,则这个分数( 扩)大5倍
(素数)
合数:
只有1和它本身两个约数 除了1和它本身还有别的约数
1: 不是质数也不是合数
最小的质数是: 2 最小的合数是: 4
6. 质因数和分解质因数
质因数: 每一个合数都可以写成几个质数相乘的形式, 这几个质数叫做这个合数的质因数.
分解质因数: 把一个合数用几个质因数相乘的形式表示出来. 叫做分解质因数.
1.分数的意义和分数单位
单位“1”----一个物体,一个计量单位或是许多物体组成的一个 整体,都可以用自然数1来表示,通常我们把它叫做 单位“1”
分 数---- 把单位“1”平均分成若干份,表示这样的一份或者几 份的数,叫做分数.
分数单位---- 把单位“1”平均分成若干份,表示其中的一份的数.
分数各部分的名称:
6.最简分数
*计算的结果,能约分的要约成最简分数; 假分数的,一般要化成带分数或整数.
*判断一个最简分数能不能化成有限小数:
分母中除了2和5以外,不含有其他的质因数,就能化成有限小数.
4 25
7 20
23 8
√√
√
6
9
3
8
12 40
×√
√
7.约分
约分------把一个分数化成和它相等,但分子和分母 都比较小的分数.
北师大版小学六年级数学下 册总复习课件
★数的认识 ★数的运算 ★量的计量 ★比与比例 ★式与方程 ★图形的认识与测量 ★图形的位置与变换 ★统计的可能性 ★策略与方法(一)
数的认识
整数和小数 分数和百分数
数的整除 正数与负数
1.自然数,0和整数
数物体的时候,用来表示物体个数的 0,1,2,3…叫做自然数.
★分母相同的两个分数,分子大的分数比较大.
9 11
<
10 11
8 15
>
7 15
★分子相同的两个分数,分母小的分数比较大.
4 9
<
4 7
11 12
>
5 12
★通分:先求出原来几个分母的最小公倍数,然后把各个 分数分别化成用这个最小公倍数作分母的分数.
1
4
6 <9
1 6
=
1×9 6×9
4 9
=
4×6 9×6
如果最高位相同,则左边第二位上的 数较大的,这个数就大……
6.小数
把整数“1”平均分成10份,100份……这样的一
份或几份分别是十分之几,百分之几……可以用小数
表示.
如:
1 10
记作:0.1
8 100
记作:0.08
小数点右边第一位是十分位,计数单位是十分之 一;第二位是百分位,计数单位是百分之一……
小数部分的最大计数单位是十分之一,没有最小 的计数单位.
小数部分有几个数位,就叫做几位小数.
7.小数的读法和写法
读小数时,小数的整数部分按整数的读法来读,小 数点读作“点”,小数部分按照顺序读出每一个数 位上的数字. 如 45.469 读作: 四十五点四六九
写小数时,整数部分按照整数的写法来写,小数点 写在个位右下角,小数部分顺次写出每一个数位上 的数字.
4
7
分子 (表示所取的份数) 分数线 分母 (表示平均分的份数)
2.分数与除法
分数与除法的关系:
被除数÷除数= 被除除数数(除数≠0)
a÷b=
a b
(b≠0)
5 9
表示:
把单位“1”平均分成9份,取其中的5份.
5 9
米表示:
把5米平均分成9份,每份是( 每份是( 5 )米.
1 9
),
9
3.分数大小的比较
一个物体也没有用0表示.
0也是自然数. 0和自然数都是整数.
但不能说整 数只包括0 和自然数
2.十进制计数法
一(个)、十、百、千、万……都叫做计 数单位.其中“一”是计数的基本单位.
10个一是十,10个十是百……10个一百 亿是一千亿……每相邻两个计数单位之间 的进率都是十.这种计数方法叫做十进制 计数法.
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽.
区别: 整除是除尽的一种特殊情况,整除也可以说是除尽, 但除尽不一定是整除.
除尽
整除
2. 约数和倍数
4. 偶数和奇数
一个自然数,不是奇数就是偶数
偶数: 能被2整除的数叫做偶数 奇数: 不能被2整除的数叫做奇数
最小的偶数是: 0 最小的奇数是: 1
偶数±偶数=(偶数) 奇数±奇数=( 偶数)
偶数±奇数=(奇数 )
偶数×偶数=(偶数) 奇数×奇数=( 奇数)
偶数×奇数=(偶数 )
5. 质数和合数
质数:
例:(1,2,4)是8和12的公约数,( 4 )是8和12的最大公约数.
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数, 其中最小的一个叫做这几个数的最小公倍 数.
例:(12,24,36 …)都是4和6的公倍数,(12 )是4和6的最小公倍数.
互质数: 公约数只有1的两个数叫做互质数.
4.四舍五入法
求一个数的近似数,要看尾数的最高位 上的数是几,如果比5小,就把尾数都舍去; 如果尾数最高位上的数是5或大于5,就把 尾数舍去后,要向它的前一位进1.
5.整数大小的比较
比较两个多位数的大小,首先看它们 位数的多少,位数较多的数较大;
如果两个数的位数相同,那么首先看 最高位,最高位上的数较大的,这个数就 大;
纯循环小数.如 0.5
循环节不是从小数部分.第. 一位开始
的叫混循环小数.如7.238
11.小数的分类
(1).按小数位数是有限还是无限分
小数
有限小数 无限小数
纯循环小数 无限循环小数
混循环小数
无限不循环小数
(2).按小数的整数部分是否为0分
纯小数
小数
带小数(混小数)
12.数的改写
一个较大的多位数,为了读写方便,常常把它改写成用 “万”或“亿”作单位的数.有时还可以根据需要,省略这个数某 一位后面的尾数,写成近似数.
把76450000改写成用“万”作单位的数7是6(45万 ) 把235800改写成用“万”作单位的数是2( 3.58)万 235800省略万位后面的尾数约为( 24万) 把34562800000改写成用“亿”作单位的数后,保留两位 小数是( 345.6)3亿
4.62975保留两位小数是:( 4.63 ) 4.62975保留三位小数是:( 4.630)
3.整数的读法和写法
读数时,从高位起,一级一级地往下读,属于亿级和万 级的要读出级名. 684528563读作六: 亿八千四百五十二万八千五百六十三.
读数时,每级末尾的“0”都不读,其他数位有一个0 或连续几个0都只读一个0. 8000406000读作八: 十亿零四十万六千.
写数时,从高位起,一级一级地往下写,哪一位上一个单 位也没有,就在哪个数位上写0
25+75=100
100-75=25 100-25=75
2、减法:已知两个加数的和与其中 的一个加数,求另一个加数的运算。
被减数-减数=差
被减数-差=减数
差+减数=被减数 85-35=50 85-50=35 50+35=85
3、乘法:求几个相同加数的 和的简便运算叫做 乘法。
因数×因数=积 . 积÷一个因数=另一个因数
你能举些 例子吗?
能被5整除的数的特征: 个位上是0或5
能被3整除的数的特征:各个位上的数字的和能被3整除
能同时被2,5整除的数的特征: 个位是0
能同时被2,3,5整除的数的特征: 个位是0,而且各个位上的 数字的和能被3整除.
注意:有一些数能被7,9,11,13整除,但是不容易看出来, 这是大家在约分中容易忽略的.
约数
一个数的约数的个数是有 限的,其中最小的约数是1, 最大的约数是它本身.
倍数
一个数的倍数的个数是无 限的,其中最小的倍数是它 本身,没有最大的倍数.
约数和 倍数是 相互依 存的
3. 能被2.3.5整除的数的特征
能被2整除的数的特征: 个位上是0,2,4,6,8,
2、从个位加起。
3 975 + 56 8
3、哪一位上的数 相加满几十,要
5 14 7
向前一位进几。
二、整数减法: 5010-478=4532
1、相同数位对齐。
2、从个位减起。
3、被减数哪一位 上的数不够减,就
5010 - 4 78
从前一位退1作10, 和本位上的数加起
45 3 2
来,再减。
三、整数乘法:先用一
0.25=( 25% ) 小数点向右移动两位,添上%
去掉%,小数点向左移动两位 0.35%=( 0.0035)
百分数
16 ≈0.167=16.7%
1.2= 1120
=1
1 5
40%=
40 100
=
2 5
分数
数的整除
1. 整除与除尽 2. 约数和倍数 3. 能被2.3.5整除的数的特征 4. 偶数和奇数 5. 质数和合数 6. 质因数和分解质因数 7. 最大公约数和最小公倍数
⑵.如果两个数互质,它们的最大公约数就是1; 最小公倍数就是它们的积.
⑶.短除法 求24和36的最大公约数和最小公倍数
2 24 36
2 12 18
Байду номын сангаас
36 9
2
3
商互质
24和36的最大公约数是:2×2×3=12 除数相乘
24和36的最小公倍数是: 2×2×3×2×3=72 所有的除数和商相乘
正、负数
像+13、+38、+49……都是正数,“+”是正号,通 常省略不写;像-3、-10、-155……都是负数,读 作负三、负十、……“-”是负号;0既不是正数,也 不是负数。正数都大于0,负数都小于0 描述具有相反意义的量,可以用正、负数
正自然数
整 数0
负自然数
四则运算的意义: 1、加法:把两个数合并成一 个数的运算,叫做加法。 加数+加数=和 和-一个加数=另-一个加数
10.循环小数
一个小数的小数部分,从某一位起, 有一个或几个数字依次不断重复出现, 这样的数叫做循环小数. 如 0.5555…… 7.23838……
依次不断重复出现的数字叫做循环 节.
循环小数的简便记.法 0.5555…… 记作:0.5 ..
7.23838……记作:7.238
10.循环小数
循环节从小数部分第. 一位开始的叫
互质数的几种特殊情况
⑴、两个数都是质数,这两个数一定互质. ⑵、相邻的两个数互质. ⑶、1和任何数都互质.
求最大公约数和最小公倍数
4和28 最大公约数是( 4 ); 最小公倍数是( 28 )
⑴. 如果较小数是较大数的约数,那么 较小数就是这两个数的最大公约数; 较大数就是这两个数的最小公倍数.
4和15 最大公约数是( 1 ); 最小公倍数是( 60)
25×4=100.
100÷25=4
100÷4=26
4、除法:已知两个因数的积与其中 一个因数,求另一个因数 的运算,叫做除法。
被除数÷除数=商 被除数÷商=除数
商×除数=被除数
100÷5=20
20×5=100
100÷20=5
一、整数加法法则:
604+3975+568= 5147
1、相同数位对齐。 6 0 4
个因数每一位上的数
分别去乘另一个因数
各用的个因数数数去位哪乘上一,的 位 乘数 上 得,246××3230540=
分解质因数的方法:短除法
把30分解质因数
2 30 3 15 5
30=2×3×5
把30分解质因数正确的做法是( C ) A.30=1×2 ×3 ×5 1不是质数 B.2 ×3 ×5=30 书写格式不符
C.30=2×3×5
7. 最大公约数和最小公倍数
公约数,最大公约数: 几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做这几个数的最大公约数.
8.小数的性质
小数的末尾添上0或者去掉0,小数的大小不变.
运用小数的性质,可以在小数末尾添上0. 3.5=3.50 也可以把小数化简. 3.500=3.5
9.小数点数位移动引起小数大小的变化
小数点向右(左)移动一位、两位、三 位……原来的数就扩大(缩小)10倍、100倍、 1000倍……
如果要把一个数扩大或缩小10倍、100 倍……只需要移动小数点,数位不够时用0补 足.
约分的方法: 1.用分子分母的公约数(1除外)逐次去除分子和
分母,直到得到最简分数为止. 2.用分子和分母的最大公约数去除分子和分母.
8.百分数的意义
表示一个数是另一个数的百分之几的数叫百分数. 百分数又叫百分率或百分比.
百分数后面不 能带单位名称.
9.分数、小数、百分数的互化
小数
1 =0.25=25% 4
=594
=
24 54
4.分数的分类
真分数---- 分子比分母小的分数. 真分数<1 假分数---- 分子比分母大或者分子和分母
相等的分数. 假分数≥1
5.分数的基本性质
分数的分子和分母同时乘以或者除以相同的数 (零除外),分数的大小不变.
一个分数的分母不变,分子乘以3,则这个分数( 扩大)3倍 如果分子不变,分母除以5,则这个分数( 扩)大5倍
(素数)
合数:
只有1和它本身两个约数 除了1和它本身还有别的约数
1: 不是质数也不是合数
最小的质数是: 2 最小的合数是: 4
6. 质因数和分解质因数
质因数: 每一个合数都可以写成几个质数相乘的形式, 这几个质数叫做这个合数的质因数.
分解质因数: 把一个合数用几个质因数相乘的形式表示出来. 叫做分解质因数.
1.分数的意义和分数单位
单位“1”----一个物体,一个计量单位或是许多物体组成的一个 整体,都可以用自然数1来表示,通常我们把它叫做 单位“1”
分 数---- 把单位“1”平均分成若干份,表示这样的一份或者几 份的数,叫做分数.
分数单位---- 把单位“1”平均分成若干份,表示其中的一份的数.
分数各部分的名称:
6.最简分数
*计算的结果,能约分的要约成最简分数; 假分数的,一般要化成带分数或整数.
*判断一个最简分数能不能化成有限小数:
分母中除了2和5以外,不含有其他的质因数,就能化成有限小数.
4 25
7 20
23 8
√√
√
6
9
3
8
12 40
×√
√
7.约分
约分------把一个分数化成和它相等,但分子和分母 都比较小的分数.
北师大版小学六年级数学下 册总复习课件
★数的认识 ★数的运算 ★量的计量 ★比与比例 ★式与方程 ★图形的认识与测量 ★图形的位置与变换 ★统计的可能性 ★策略与方法(一)
数的认识
整数和小数 分数和百分数
数的整除 正数与负数
1.自然数,0和整数
数物体的时候,用来表示物体个数的 0,1,2,3…叫做自然数.
★分母相同的两个分数,分子大的分数比较大.
9 11
<
10 11
8 15
>
7 15
★分子相同的两个分数,分母小的分数比较大.
4 9
<
4 7
11 12
>
5 12
★通分:先求出原来几个分母的最小公倍数,然后把各个 分数分别化成用这个最小公倍数作分母的分数.
1
4
6 <9
1 6
=
1×9 6×9
4 9
=
4×6 9×6
如果最高位相同,则左边第二位上的 数较大的,这个数就大……
6.小数
把整数“1”平均分成10份,100份……这样的一
份或几份分别是十分之几,百分之几……可以用小数
表示.
如:
1 10
记作:0.1
8 100
记作:0.08
小数点右边第一位是十分位,计数单位是十分之 一;第二位是百分位,计数单位是百分之一……
小数部分的最大计数单位是十分之一,没有最小 的计数单位.
小数部分有几个数位,就叫做几位小数.
7.小数的读法和写法
读小数时,小数的整数部分按整数的读法来读,小 数点读作“点”,小数部分按照顺序读出每一个数 位上的数字. 如 45.469 读作: 四十五点四六九
写小数时,整数部分按照整数的写法来写,小数点 写在个位右下角,小数部分顺次写出每一个数位上 的数字.
4
7
分子 (表示所取的份数) 分数线 分母 (表示平均分的份数)
2.分数与除法
分数与除法的关系:
被除数÷除数= 被除除数数(除数≠0)
a÷b=
a b
(b≠0)
5 9
表示:
把单位“1”平均分成9份,取其中的5份.
5 9
米表示:
把5米平均分成9份,每份是( 每份是( 5 )米.
1 9
),
9
3.分数大小的比较
一个物体也没有用0表示.
0也是自然数. 0和自然数都是整数.
但不能说整 数只包括0 和自然数
2.十进制计数法
一(个)、十、百、千、万……都叫做计 数单位.其中“一”是计数的基本单位.
10个一是十,10个十是百……10个一百 亿是一千亿……每相邻两个计数单位之间 的进率都是十.这种计数方法叫做十进制 计数法.
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽.
区别: 整除是除尽的一种特殊情况,整除也可以说是除尽, 但除尽不一定是整除.
除尽
整除
2. 约数和倍数
4. 偶数和奇数
一个自然数,不是奇数就是偶数
偶数: 能被2整除的数叫做偶数 奇数: 不能被2整除的数叫做奇数
最小的偶数是: 0 最小的奇数是: 1
偶数±偶数=(偶数) 奇数±奇数=( 偶数)
偶数±奇数=(奇数 )
偶数×偶数=(偶数) 奇数×奇数=( 奇数)
偶数×奇数=(偶数 )
5. 质数和合数
质数:
例:(1,2,4)是8和12的公约数,( 4 )是8和12的最大公约数.
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数, 其中最小的一个叫做这几个数的最小公倍 数.
例:(12,24,36 …)都是4和6的公倍数,(12 )是4和6的最小公倍数.
互质数: 公约数只有1的两个数叫做互质数.
4.四舍五入法
求一个数的近似数,要看尾数的最高位 上的数是几,如果比5小,就把尾数都舍去; 如果尾数最高位上的数是5或大于5,就把 尾数舍去后,要向它的前一位进1.
5.整数大小的比较
比较两个多位数的大小,首先看它们 位数的多少,位数较多的数较大;
如果两个数的位数相同,那么首先看 最高位,最高位上的数较大的,这个数就 大;
纯循环小数.如 0.5
循环节不是从小数部分.第. 一位开始
的叫混循环小数.如7.238
11.小数的分类
(1).按小数位数是有限还是无限分
小数
有限小数 无限小数
纯循环小数 无限循环小数
混循环小数
无限不循环小数
(2).按小数的整数部分是否为0分
纯小数
小数
带小数(混小数)
12.数的改写
一个较大的多位数,为了读写方便,常常把它改写成用 “万”或“亿”作单位的数.有时还可以根据需要,省略这个数某 一位后面的尾数,写成近似数.
把76450000改写成用“万”作单位的数7是6(45万 ) 把235800改写成用“万”作单位的数是2( 3.58)万 235800省略万位后面的尾数约为( 24万) 把34562800000改写成用“亿”作单位的数后,保留两位 小数是( 345.6)3亿
4.62975保留两位小数是:( 4.63 ) 4.62975保留三位小数是:( 4.630)
3.整数的读法和写法
读数时,从高位起,一级一级地往下读,属于亿级和万 级的要读出级名. 684528563读作六: 亿八千四百五十二万八千五百六十三.
读数时,每级末尾的“0”都不读,其他数位有一个0 或连续几个0都只读一个0. 8000406000读作八: 十亿零四十万六千.
写数时,从高位起,一级一级地往下写,哪一位上一个单 位也没有,就在哪个数位上写0
25+75=100
100-75=25 100-25=75
2、减法:已知两个加数的和与其中 的一个加数,求另一个加数的运算。
被减数-减数=差
被减数-差=减数
差+减数=被减数 85-35=50 85-50=35 50+35=85
3、乘法:求几个相同加数的 和的简便运算叫做 乘法。
因数×因数=积 . 积÷一个因数=另一个因数
你能举些 例子吗?
能被5整除的数的特征: 个位上是0或5
能被3整除的数的特征:各个位上的数字的和能被3整除
能同时被2,5整除的数的特征: 个位是0
能同时被2,3,5整除的数的特征: 个位是0,而且各个位上的 数字的和能被3整除.
注意:有一些数能被7,9,11,13整除,但是不容易看出来, 这是大家在约分中容易忽略的.