北京市北京第一实验小学五年级奥数竞赛数学竞赛试卷及答案百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市北京第一实验小学五年级奥数竞赛数学竞赛试卷及答案百度
文库
一、拓展提优试题
1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
2.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.
3.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.
4.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.
5.用0、1、2、3、4这五个数字可以组成个不同的三位数.
6.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”
是.
7.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.
8.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.9.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有
种不同的围法(边长相同的矩形算同一种围法).
10.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.
11.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面
积是空白部分面积的 倍.
12.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明
分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了 千克面粉.
13.观察下面数表中的规律,可知x = .
14.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.
15.A 、B 两桶水同样重,若从A 桶中倒2.5千克水到B 桶中,则B 桶中水的重量是A 桶中水的重量的6倍,那么B 桶中原来有水 千克.
【参考答案】
一、拓展提优试题
1.64
[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。
要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。
由于12060lmn lm =⇒=。
此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。
要使得()2644l m ⨯-+最大,那么就是要使l m +最小。
考虑到60lm =,容易知道当10,6l m ==时,l m +最小。
所以只有一面染色的小正方体最多有
()264410664⨯-⨯+=
2.【分析】设这两个数为a ,b .,且a <b .千位最小差只能是1.为了让差
尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.
解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:
5123﹣4876=247
故答案为:247.
3.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
4.解:顺水速度为:
24+3+3=30(千米/小时);
甲、乙两港相距:
5÷(+),
=5÷,
=(千米);
答:甲、乙两港相距千米.
故答案为:.
5.解:4×4×3,
=16×3,
=48(种);
答:这五个数字可以组成 48个不同的三位数.
故答案为:48.
6.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,
最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:
2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.
故答案是:2016.
7.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,
四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的
(2)S
△ABC :S
△ACD
=1:2,根据风筝模型,BG:GD=1:2;
(3)S
△BGC
:S CGD=BG:GD=1:2,故;
故AGDH面积=六边形总面积﹣(S
△ABC +S
△CGD
)×2=360﹣(+40)×
2=160.
故答案是:160
8.解:3n是5的倍数,3n的个数一定是0或5
又因为大于0的自然数n是3的倍数,
所以3n最小是45
3n=45
n=15
所以n最小取15时,n是3的倍数,3n是5的倍数.
答:n的最小值是15.
故答案为:15.
9.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,
由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),
故答案为8.
10.解:依题意可知:
结果的首位是2,那么在第二个结果中的首位还是2.
再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.
当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.
当第一个乘数尾数是3时,来看看偶数的情况.
23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.
故是23×95=2185,那么23+95=118.
故答案为:118
11.解:根据分析,如图所示,将图进行分割成面积相等的三角形,
阴影部分由18个小三角形组成,而空白部分有6个小三角形,
故阴影部分面积是空白部分面积的18÷6=3倍.
故答案是:3.
12.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,
现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.
故答案是:2.
13.解:根据分析可得,
81=92,
所以,x=9×5=45;
故答案为:45.
14.解:依题意可知:
第一层的共有4个角满足条件.
第二层的4个角是4面红色,去掉所有的角块其余的符合条件.
分别是3+2+3+2=10(个);
共10+4=14(个);
故答案为:14
15.解:2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:B桶中原来有水3.5千克.故答案为:3.5.。