冠县实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冠县实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.
①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等
④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )
A .①②
B .②③
C .③
D .③④
2. 已知函数22
()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1
和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
3. “2
4
x π
π
-
<≤
”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 4. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )
A .
B .
C .
D .
5. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )
A .
B .
C . +
D . ++1
6. 函数f (x )=xsinx 的图象大致是( )
A .
B .
C .
D .
7. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f ()的值为( )
A .
B .0
C .
D .
8. 抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
9. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .6
10.连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )
A .
B .
C .
D .
11.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
12.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
二、填空题
13.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .
14.设变量x ,y 满足约束条件,则的最小值为 .
15.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________.
16.设函数f (x )=若f[f (a )],则a 的取值范围是 .
17.
(sinx+1)dx 的值为 .
18.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .
三、解答题
19.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .
(1)求证:BD ⊥平面AA 1C 1C ; (2)求二面角C 1﹣AB ﹣C 的余弦值.
20.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
21.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
22.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若,求f(x)的单调区间;
(Ⅲ)若a=﹣1,函数f (x
)的图象与函数的图象仅有1个公共点,求实数m 的取值范
围.
23.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .
24.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点E 与点C 、D 不重合,EF AC ⊥,EF
AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,
使平面PEF ⊥
平面ABFED .
Ⅰ求证:BD ⊥平面P O A ;
Ⅱ记三棱锥P A B D -的体积为1V ,四棱锥P BDEF -的体积为2V ,且
124
3
V V =,
求此时线段PO 的长.
A 1
B 1
C 1
D
D 1 C
B A
E F
P
A
C
D
O
E
F F
E
O D
C
A
冠县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】D
【解析】
【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.
【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB=
当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确
使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;
取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D 2. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 3. 【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A. 4. 【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B.
5.【答案】D
【解析】解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,
边AC上的高OB=1,PO=为底面上的高.
于是此几何体的表面积S=S
+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.
△PAC
故选:D
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.【答案】A
【解析】解:函数f(x)=xsinx满足f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),函数的偶函数,排除B、C,因为x∈(π,2π)时,sinx<0,此时f(x)<0,所以排除D,
故选:A.
【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.7.【答案】C
【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.
再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,
故f(x)=sin(2x﹣),
故f ()=sin (﹣)=sin =,
故选:C .
【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.
8. 【答案】D
【解析】解:抛物线x=﹣4y 2
即为
y 2=﹣x ,
可得准线方程为x=

故选:D .
9. 【答案】C
【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2
=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)
抛物y 2
=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,
∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .
【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
10.【答案】A
【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,
而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;
由古典概型公式可得⊥的概率是:;
故选:A .
【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.
11.【答案】D 【解析】
试题分析:分段间隔为5030
1500
,故选D. 考点:系统抽样 12.【答案】C
【解析】解:命题p :∀x ∈R ,2x 2
﹣1>0, 则其否命题为:∃x ∈R ,2x 2
﹣1≤0,
故选C ;
【点评】此题主要考查命题否定的定义,是一道基础题;
二、填空题
13.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 14.【答案】 4 .
【解析】解:作出不等式组对应的平面区域, 则的几何意义为区域内的点到原点的斜率, 由图象可知,OC 的斜率最小,

,解得

即C (4,1),
此时=4, 故的最小值为4, 故答案为:4
【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.
15.
【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及
面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
16.【答案】或a=1.
【解析】解:当时,.
∵,由,解得:,所以;
当,f(a)=2(1﹣a),
∵0≤2(1﹣a)≤1,若,则,
分析可得a=1.
若,即,因为2[1﹣2(1﹣a)]=4a﹣2,
由,得:.
综上得:或a=1.
故答案为:或a=1.
【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.
17.【答案】2.
【解析】解:所求的值为(x﹣cosx)|﹣11
=(1﹣cos1)﹣(﹣1﹣cos(﹣1))
=2﹣cos1+cos1
=2.
故答案为:2.
18.【答案】m≥2.
【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},
又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.
故答案为m≥2.
三、解答题
19.【答案】
【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1,
∵AC=AA1,∴AA1=A1C1,
∵∠AA1C1=60°,∴△AA1C1为等边三角形,
同理△ABC1是等边三角形,
∵D为AC1的中点,∴BD⊥AC1,
∵平面ABC1⊥平面AA1C1C,
平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,
∴BD⊥平面AA1C1C.
(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,
平面ABC1的一个法向量为,设平面ABC的法向量为,
由题意可得,,则,
所以平面ABC的一个法向量为=(,1,1),
∴cosθ=.
即二面角C1﹣AB﹣C的余弦值等于.
【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.
20.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
21.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得:
10×(0.005+0.01+0.025+a+0.01)=1,
解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,
数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,
若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,
则所有的基本事件有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),
(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,
则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.
22.【答案】
【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,
∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.
又∵f(1)=0,∴所求切线方程为y=e(x﹣1),
即.ex﹣y﹣4=0
(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,
①若a=﹣,f ′(x )=﹣x 2e x ≤0,∴f (x )的单调递减区间为(﹣∞,+∞),
②若a <﹣,当x <﹣或x >0时,f ′(x )<0;
当﹣
<x <0时,f ′(x )>0.
∴f (x )的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0]. (Ⅲ)当a=﹣1时,由(Ⅱ)③知,f (x )=(﹣x 2+x ﹣1)e x
在(﹣∞,﹣1)上单调递减,
在[﹣1,0]单调递增,在[0,+∞)上单调递减,
∴f (x )在x=﹣1处取得极小值f (﹣1)=﹣,在x=0处取得极大值f (0)=﹣1,

,得g ′(x )=2x 2
+2x .
当x <﹣1或x >0时,g ′(x )>0;当﹣1<x <0时,g ′(x )<0.
∴g (x )在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.
故g (x )在x=﹣1处取得极大值,
在x=0处取得极小值g (0)=m ,
∵数f (x )与函数g (x )的图象仅有1个公共点,
∴g (﹣1)<f (﹣1)或g (0)>f (0),即.

【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.
23.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,
a BG 25=
,a GE BG BE 2
3
22=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=
θsin 3
2
=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =
21C 1D ,B 1H ∥C 1D ,而EF =2
1
C 1
D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1B
E 且EH ⊆平面A 1BE ,∴B 1
F ∥平面A 1BE . ……12分 24.【答案】
【解析】Ⅰ证明:在菱形ABCD 中,
∵BD AC ⊥,∴BD AO ⊥. ∵EF AC ⊥,∴PO EF ⊥, ∵平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF ,
∴PO ⊥平面ABFED ,
∵BD ⊂平面ABFED ,∴PO BD ⊥.
∵AO PO O =,∴BD ⊥平面POA .
Ⅱ设AO
BD H =.由Ⅰ知,PO ⊥平面ABFED ,
∴PO 为三棱锥P A B D -及四棱锥P B D E F -的高,
∴1211
,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形,∵1243
V V =,
∴3344ABD CBD BFED S S S ∆∆==梯形,∴1
4
CEF CBD S S ∆∆=,
∵,BD AC EF AC ⊥⊥,
∴//EF BD ,∴CEF ∆∽CBD ∆. ∴21
()4
CEF CBD S CO CH S ∆∆==,
∴111
222
CO CH AH ===⨯
∴PO OC ==。

相关文档
最新文档