解析几何的论文[整理版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:在解析几何创立以前,几何与代数是彼此独立的两个分支。

解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。

作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用
关键字:解析几何,介绍,历史,作用。

基本介绍解析几何包括平面解析几何和立体解析几何两部分。

平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。

17世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支。

在解析几何创立以前,几何与代数是彼此独立的两个分支。

解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。

作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用
历史介绍
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。

比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体是沿着抛物线运动的。

这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。

何的思想。

只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。

笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。

学科应用
,,,解析几何又分作平面解析几何和空间解析几何。

,,,在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。

,,,在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。

,,,如椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。

比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。

,,,总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。

,,,运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。

,,,坐标法的思想促使人们运用各种代数的方法解决几何问题。

先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。

坐标法对近代数学的机械化证明也提供了有力的工具。

,,,圆锥曲线
,,,希腊著名学者梅内克缪斯(公元前4世纪)企图解决当时的著名难题“倍立方问题”(即用直尺和圆规把立方体体积扩大一倍)。

他把直角三角形ABC的直角A的平分线AO作为轴。

旋转三角形ABC一周,得到曲面ABECE',如图1。

用垂直于AC的平面去截此曲面,可得到曲线EDE',梅内克缪斯称之为“直角圆锥曲线”。

他想以此在理论上解决“倍立方问题。

”未获成功。

而后,便撤开“倍立方问题”,把圆锥曲线做为专有概念进行研究:若以直角三角形ABC中的长直角边AC为轴旋转三角形ABC一周,得到曲面CB'EBE',如图2。

用垂直于BC的平面去截此曲面,其切口为一曲线,称之为“锐角圆锥曲线”;若以直角三角形ABC中的短直角边AB为轴旋转三角形ABC一周,可得到曲面BC'ECE'。

如图3。

用垂直于BV的平面去截此曲面,其切口曲线EDE'称为“钝角圆锥曲线”。

当时,希腊人对平面曲线还缺乏认识,上述三种曲线须以“圆锥曲面为媒介得到,因此,被称为圆锥曲线的“雏形”。

编辑本段分支学科
,,,算术、初等代数、高等代数、数论、欧式几何、非欧几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论、数学物理学、函数等。

相关文档
最新文档