近五年高考数学试题(理科)及解答全过程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试

理科数学(必修+选修I)

一、选择题

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i

2. 函数)20y x x =≥的反函数为

(A)()24

x y x R =∈ (B) ()2

04x y x =≥

(C)()24y x x R =∈ (D) ()240y x x =≥ 3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)2

2

a b > (D) 3

3

a b >

4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 5

5.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3

π

个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)

1

3

(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若

2,1AB AC BD ===,则D 到平面ABC 的距离等于

(A)

2

2

(B) 3 (C) 6 (D) 1

7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友

1本,则不同的赠送方法共有

(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线12+=-x

e y 在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为

(A)

1

3

(B) 12 (C) 23 (D) 1

9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫

-= ⎪⎝⎭

(A) 12-

(B) 14- (C) 14 (D) 1

2

10.已知抛物线C :2

4y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=

(A)

45 (B) 35 (C) 3

5

- (D) 45-

11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,脱该球面的半径为4.圆M 的面积为4π,则圆N 的面积为

(A) 7π (B) 9π (C) 11π (D) 13π 12. 设向量,,a b c 满足1

1,,,602

a b a b a c b c ===---=,则c 的最大值对于

(A) 2 (B) (C) (D) 1

二、填空题

13. (

20

1的二项展开式中,x 的系数与9

x 的系数之差为 .

14. 已知,2παπ⎛⎫

⎪⎝⎭

,sin α=,则tan 2α= .

15. 已知12F F 、分别为双曲线22

:1927

x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .

16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,

12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .

三、解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。 17.(本小题满分10分)

ABC ∆的内角A 、B 、C 的对边分别为,,a b c 。已知90,A C a c -=+=,求C

18.(本小题满分12分)

根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。

(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;

(Ⅱ)X 表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X 的期望。 19.(本小题满分12分)

如图,四棱锥S-ABCD 中,//,AB CD BC CD ⊥,侧面SAB 为等边三角形,

AB=BC=2,CD=SD=1.

(Ⅰ)证明:SD SAB ⊥平面;

(Ⅱ)求AB 与平面SBC 所成的角的大小。

20.(本小题满分12分)

设数列{}n a 满足1111

0,

111n n

a a a +=-=--

(Ⅰ)求{}n a 的通项公式; (Ⅱ)设1

1n n a b n

+-=

,记1

n

n k

k S b

==

∑,证明:1n S <。

21.(本小题满分12分)

已知O 为坐标原点,F 为椭圆2

2

:12

y C x +=在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++=

(Ⅰ)证明:点P 在C 上;

(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一个圆上。

相关文档
最新文档