冶金原理

合集下载

钢铁冶金原理

钢铁冶金原理

1、表面张力:垂直作用在液面上任一直线的两侧,沿液体的切面向着两侧的拉力,N/m2、穿透度:它为反应过程中,矿球半径改变的分数,用f 表示,0(1)r r f =-。

它和R 的关系为1/31(1)f R =--。

3、沉淀脱氧:向钢液中加入能与氧形成稳定化合物的元素,形成的氧化物能借自身的浮力或钢液的对流运动而排出。

4、萃取精炼:在一定温度下,在熔盐粗金属中加入附加物,附加物与金属相内杂质生成不溶解于熔盐的化合物而析出,从而达到精炼的目的。

5、二元碱度:渣中的碱性氧化物CaO 含量与酸性氧化物SiO 2含量之比为炉渣的二元碱度。

6、反应度:或称转化率,矿球已反映了的百分数,用R 表示,30(/)1r r R =-。

7、分解压:分解反应的平衡常数等于分解出的气体B 的平衡分压,规定用()B AB P 表示,称为此化合物的分解压。

8、负吸附:溶解组分质点和溶剂质点之间的作用力大于溶剂质点之间的作用力。

溶解组分在表面不出现过剩浓度,称为负吸附。

9、G-D 方程:11220BB n dG n dG ndG ++==∑ 或11220BB x dG x dG xdG ++==∑ 他表示恒温、恒压下,溶液中各组分的偏摩尔吉布斯自由能(或其他偏摩尔量)的改变不是彼此独立的,而是互相制约、互相补偿的。

10、0i γ的物理意义:1)表示溶液中组元i 在浓溶液中服从拉乌尔定律和在稀溶液中服从亨利定律两定律间的差别。

2)是组元i 在在服从亨利定律浓度段内以纯物质i 为标准态的活度系数。

3)是不同标准态的活度及活度系数相互转换的转换系数。

4)是计算元素标准溶解吉布斯能的计算参数。

11、光学碱度:在氧化物中加入显示剂,用光学的方法来测定氧化物施放“电子的能力”以表示出2O -的活度,确定其酸-碱性的光学碱度。

12、过剩碱:用碱的总量减去形成复合化合物的消耗的碱性氧化物,用来表示渣中碱性氧化物。

13、亨利定律:当溶液组分B 的浓度趋近于零(0B x →)的所谓稀溶液中,组分B 的蒸汽压与其浓度B x 成线性关系:()BH x B p K x '=,p '--组分B 在B x 的平衡蒸汽压,()H x K --比例常数。

有色冶金原理

有色冶金原理
有色冶金炉渣的酸碱性
有色冶金的酸碱性,习惯上用硅酸度表示,有时也用碱度表示。
认识三元系图
简单三元系图 如左下图所示,A,B,C 代表三种不同组元, 分别代表三种不同组元的初晶 区,边上的点(1、2、3)为 克 二元结晶点
化合物稳定性的判断:组成点在其对应的初晶区内则为稳定化合物。
CS-C2S-C2AS三元系图分析
(1)生产能力低,反应速度慢; (2)对设备的腐蚀性大; (3)流程长,液固分离困难.
火法冶金与湿法冶金的优缺点比较
第一章:冶金炉渣
炉渣,熔化后称为熔渣,是各种氧化物的熔体。在冶炼过程的技术经济指标在很大程度上与炉渣有关。
冶金炉渣的作用
①使脉石集中与金属或锍分离。 ②作为一种介质,其中进生着许多极为重要的冶金反应。 ③金属液滴或锍液滴的沉降分离(对机械夹杂损失起着决定性的作用) ④决定最高的冶炼温度(大致为炉渣熔化后温度加上一定过热的温度(150~250℃)) ⑤对杂质的脱除和浓度加以控制。 ⑥作为一种中间产物,杂质中含金属量高。 ⑦可调节电极插入渣中的深度调节电炉的功率。(起热传递作用)
三元系图的点线面
三元系图的点线面判断
二次结晶线与三元不变点与基元三角形的判断
二次结晶线的判断:任一结晶线相邻的两给元和点的连线与该结晶线上任一点作出的切线相交则此结晶线为共晶线,反之则为包晶线。--切线相交原则。(也可与三元不变点联系:共晶点上相连的结晶线全为共晶线,包晶点相连的结晶线至少有一条是包晶线)
冶炼对炉渣的要求
①熔点低(能耗)②密度低(与主体金属分层)③适当组成(如酸碱度)④腐蚀性小(保护炉衬)
炉渣的组成,对于大多数炉渣和钢渣,这三种氧化物是FeO、CaO、SiO2,对高炉和某些有色冶金炉渣则为CaO、Al2O3、SiO2。 组成炉渣的各种氧化物可分为三类: (1)碱性氧化物:CaO、MnO、Feo、MgO等,这类氧化物能供给氧离子O2-,如:CaO=Ca2++O2- (2)酸性氧化物: SiO2 、P2O5等,这类氧化物能吸收氧离子而形成络合阴离子,如:SiO2+2O2-=SiO44- (3)两性氧化物:Al2O3、ZnO等,这类氧化物在酸性氧化物过剩时可供给氧离子面呈碱性,而碱性氧化物过剩时则对会吸收氧离子面呈酸性,如:Al2O3=2Al3++3O2- Al2O3+O2-=2AlO2-

冶金原理名词解释

冶金原理名词解释

Mingcijieshi第一章 冶金溶液热力学基础—重点内容本章重要内容可概括为三大点:有溶液参与反应的θG Δ、G Δ、溶液中组分B 活度一、名词解释生铁 钢 工业纯铁 熟铁 提取冶金 理想溶液 稀溶液 正规溶液 偏摩尔量X B 化学势μB 活度 活度系数 无限稀活度系数r B 0 一级活度相互作用系数e i j 一级活度相互作用系数εi j 标准溶解吉布斯自由能θB S G ∆ 溶液的超额函数生铁:钢:工业纯铁:熟铁:提取冶金:理想溶液:稀溶液:正规溶液是指混合焓不等于0,混合熵等于理想溶液混合熵的溶液称为正规溶液; 偏摩尔量X B 是指指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的广度性质XG 、S 、H 、U 、V 对组分B 摩尔量的偏导值;)(,,)/(B k n p T B B k n X X ≠∂∂=; 化学势μB 是指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的吉布斯能对组分B 摩尔量的偏导值;)(,,)/(B k n p T B B B k n G G ≠∂∂==μ;P27活度是指实际溶液按拉乌尔定律或亨利定律修正的浓度;活度系数是指实际溶液按拉乌尔定律或亨利定律修正的浓度时引入的系数; 无限稀活度系数r B 0是指稀溶液中溶质组分以纯物质为标准态下的活度系数; 无限稀活度系数r B 0大小意义是组元B 在服从亨利定律浓度段内以纯物质i 为标准态的活度系数是纯物质为标准态的活度与以假想纯物质为标准态的活度相互转换的转换系数 是计算元素标准溶解吉布斯能的计算参数一级活度相互作用系数e i j 是指以假想1%溶液为标准态,稀溶液中溶质组分i 的活度系数的lg f i 对溶质组分j 的ωj %偏导值,即:0)/lg ((%)→∂∂=A j i j i f e ωω; P106一级活度相互作用系数εi j 是指以纯物质为标准态,稀溶液中溶质组分i 的活度系数的lg r i 对溶质组分j 的x j 偏导值,即:0)/lg ((%)→∂∂=A j i j i x r ωε;P105标准溶解吉布斯自由能θB S G ∆是指纯物质溶液溶解于溶液中,并形成标准态溶液的吉布斯自由能变化值;溶液的超额函数是指实际溶液的偏摩尔量或摩尔量与假想其作为理想溶液时偏摩尔量或摩尔量的差值,用上标“ex ”表示;二、冶金原理三大内容重庆大学考题:冶金过程热力学、冶金过程动力学的区别冶金原理主要研究内容包括冶金过程热力学、冶金过程动力学、冶金溶液三大部分;冶金过程热力学研究在给定条件下,反应进行的可能性、方向和限度平衡,影响反应平衡因素如温度、浓度、压力、催化剂等,如何利用影响因素创造条件使反应沿着预期的方向进行,达到预期的限度;热力学不涉及反应速度、反应机理问题;冶金过程动力学的主要研究冶金反应的机理、速率、速率限制环节、速率影响因素,以及如何创造条件加速反应的进行;冶金溶液研究熔体的相平衡、结构及性质;三、拉乌尔定律、亨利定律内容及其表达式拉乌尔定律:“在一定温度和平衡状态下,溶液中溶剂的蒸气压等于纯溶剂的蒸气压乘以溶液中溶剂的摩尔分数;”其数学表达式为:式中,*A p 为纯溶剂A 的蒸气压;亨利定律:“在一定温度和平衡状态下,挥发性溶质在气相中的平衡分压与溶质在溶液中的摩尔分数成正比;”亨利定律数学表达式为:式中,)(x H k 为亨利系数;三、标准溶解吉布斯能计算式1纯物质为标准态时,B=B θ)(B m S G ∆=02假想纯物质为标准态时,B=B 0)(ln B B m S r RT G =∆θ 3假想1%溶液为标准态时,B=B B A B B m S M M RT r RT G 100ln ln 0)(+=∆θ 证明:对于B=B θ)(B m S G ∆=RTlnP B -RTln *B P P B 为溶液中组分B 的蒸气;*B P 为纯物质B 的饱和蒸气压1纯物质为标准态时,P B =*B P ,则:θ)(B m S G ∆=RTlnP B -RTln *B P = RTln *B P -RTln *B P =02假想纯物质为标准态时,由亨利定律可得P B =k H x ,则:θ)(B m S G ∆=RTlnP B -RTln *B P = RTlnk H x -RTln *B P =RTlnk H x /*B P =RTln 0B r3假想1%溶液为标准态时,由亨利定律可得P B =k H %,则:θ)(B m S G ∆=RTlnP B -RTln *B P = RTlnk H %-RTln *B P =RTlnk H %/*B P =RTln )100(0B BA r M M 第二章 冶金动力学基础名词解释基元反应速率限制环节化学扩散互扩散对流扩散扩散通量速度边界层浓度边界层或扩散边界层动力学中的稳定态均相形核异相形核1、基元反应:反应物分子相互碰撞直接转化为产物分子的反应;基元反应的反应级数与反应物计量数之和相等;P562、速率限制环节:反应过程由界面化学反应和扩散多环节组成的串联过程,其中速率最慢或阻力最大,对反应总速率影响很大的环节;P553、化学扩散互扩散:静止体系中,溶液中有浓度梯度存在时,发生的扩散,它是一种原子在其它种作为基体的原子中的相对扩散;P614、对流扩散:流动体系中出现的扩散,它是由分子扩散和液体的分子集团的整体运动,使其内的物质发生迁移;5、扩散通量:指组分在单位时间内,通过垂直于扩散方向单位截面积的物质的量;6、速度边界层:在流速较大的非均相体系气固、气液、液固等内,流体在相界面上流动时,液体与相界面出现摩擦阻力,在贴近相界面并出现很大速度梯度的流体薄层称为速度边界层;P677、浓度边界层或扩散边界层:在流速较大的非均相体系气固、气液、液固等内,流体在相界面上流动时,在贴近相界面并出现很大浓度梯度的流体薄层称为速度边界层;P688、动力学中的稳定态:反应过程由界面化学反应和扩散多环节组成的串联过程中,各环节与总反应速率相等,且不随时间而变化的状态;P799、均相形核:指在反应产物在均匀的相内发生的形核;10、异相形核:指在核在异相界面上形成时称为异相形核;第三章相图名词解释相图或状态图自由度相律稳定化合物同分化合物,或一致熔融化合物不稳定化合物异分化合物,或示一致熔融化合物二元共析共熔转变二元转熔包晶转变三元共析共熔转变三元转熔包晶转变相图的作用1、相图或状态图:在多相平衡体系中,表示物质相的状态与影响相态变化的温度、压力及组成等变量之间的几何图形,冶金过程的相图一般是“温度-组成”之相图;2、自由度:影响相态变化的温度、压力及组成等变量中在一定范围内可以任意独立改变而不致使相态发生变化的变量个数;3、相律:多相体系平衡的基本规律,描述的是凝聚相平衡体系中相数、独立组元数与自由度之间的关系;考虑到温度、压力两个变数时:f=C–φ+2,其中,f:自由度;C:独立组元数;φ:相数;对于凝聚系,可以不考虑体系压力时,f= C–φ+14、稳定化合物同分化合物,或一致熔融化合物:从固相到熔化温度的过程中,组成保持一致的化合物;5、不稳定化合物异分化合物,或示一致熔融化合物:从固相到熔化温度的过程中,组成不一致的化合物;6、二元共析共熔转变:体系降温至某温度时,自液相中同时析出两个固体的变化;7、二元转熔包晶转变:体系降温至某温度时,液相吸收一个固体生成另一个固体的变化;8、三元共析共熔转变:体系降温至某温度时,自液相中同时析出三个固体的变化;9、三元转熔包晶转变:体系降温至某温度时,液相吸收一个固体生成另外二个固体的变化,或液相吸收二个固体生成另外一个固体的变化;二、相图的作用答:相图是表示凝聚相体系的组成和温度的相平衡关系;由相图可以确定氧化物在高温下相互反应、形成的不同相组分纯凝聚相、液溶体及固溶体、简单氧化物及复杂化合物、共晶体、包晶体、液相分层等和一些参数温度、组分浓度、相数等之间关系,以及各相在不同条件下温度、组成的相互转变关系,为选择某种性能的相成分提供依据;第四章冶金炉渣物理化学性质本章主要内容:熔渣的物理性质熔化温度、密度、粘度等、熔渣化学性质渣酸碱性,氧化还原性,容量性等、熔渣结构分子理论、离子理论、完全离子理论、正规离子理论等;一、名词解释熔体的熔化温度熔体的熔化性温度熔体的粘度熔体的表面张力熔体的界面张力熔体的润湿角熔渣碱度氧化物的光学碱度渣的过剩碱度熔渣的氧化性、还原性熔渣的容量性熔渣的硫容硫容量熔渣的磷容磷容量1、熔体的熔化温度:渣加热过程中刚好完全熔化时的温度,或液态渣冷却过程中刚析出固体时的温度,在相图中为液相线温度;2、熔体的熔化性温度:渣加热过程中至渣刚好能自由流动时的温度,或指在渣粘度-温度关系图中,渣粘度发生急剧变化时的温度;3、熔体的粘度:是指单位速度梯度下,作用于平行的两液层间单位面积的摩擦力;4、熔体的表面张力:凝聚相与气相之间形成的张力;熔体的界面张力:两凝聚相接触面之间形成的张力;5、熔体的润湿角:指熔体的界面张力与表面张力之间形成的夹角;6、熔渣碱度:熔渣中碱性氧化物质量分数之和与酸性氧化物质量分数之和之比值7、氧化物的光学碱度:指氧化物施放电子的能力与CaO施放电子能力之比;8、渣的过剩碱度:渣中碱性氧化物的总量与酸性氧化物消耗碱性氧化物的量差值;9、熔渣的氧化性、还原性:熔渣从与之相接触的金属液中吸收氧的能力称为熔渣的还原性;熔渣向与之相接触的金属液中提供氧的能力称为熔渣的氧化性;10、熔渣的容量性:指熔渣容纳或吸收对金属液有害的成分如S 、P 、H 、N 等的能力;11、熔渣的硫容硫容量:指气体硫在熔渣中溶解反应()222221)()(21O S O S g +=+--达平衡时,21)()(222S O S s P P C ⋅=-ω,即气体中S 2在熔渣溶解度反应达平衡时,熔渣中S 2-的浓度与21)(22S O P P 乘积12、熔渣的磷容磷容量:指磷在渣中的溶解反应1/2P 2g +3/2O 2-+5/4O 2= PO 43-达到平衡时的4/52/122-34-34=O P PO PO P P ωC第五、六章 化合物的形成-分解及碳、氢的燃烧反应一、名词解释氧势 硫势 硫化物的硫势 氯势 氯化物的氯势 碳化物的碳势 氧化物的分解压碳酸盐的分解压 碳酸盐分解开始温度 碳酸盐沸腾分解温度 直接还原 间接还原 浮士体1、氧势:含有O2的体系,氧的相对化学势,即222ln O O O O P RT =-=θμμπ称为体系的氧势; 氧化物的氧势:氧化物生成反应:2x/yMS+O2=x/yMxOyS 达平衡时,平衡气相中氧的氧势2ln O P RT 称为氧化物的氧势;2、硫势:含有S2的体系,硫的相对化学势,即222ln S S S S P RT =-=θμμπ称为体系的硫势; 硫化物的硫势:硫化物生成反应:2x/yMS+S2=x/yMxSyS 达平衡时,平衡气相中硫的硫势2ln S P RT 称为硫化物的硫势;3、氯势:含有Cl2的体系,氯的相对化学势,即222ln Cl Cl Cl Cl P RT =-=θμμπ称为体系的氯势;氯化物的氯势:氯化物生成反应:2x/yMS+Cl2=x/yMxClyS 达平衡时,平衡气相中氯的氯势2ln Cl P RT 称为硫化物的硫势;4、碳化物的碳势:碳化物生成反应:2x/yMS+C=x/yMxCyS 达平衡时,C a RT ln 称为碳化物的碳势5、氧化物的分解压:氧化物MO 分解反应2MOS=2MS+O2达平衡时,产生的氧气压力称为氧化物MO 的分解压,一般用)(2MO O P 表示;6、碳酸盐的分解压:碳酸盐MeCO3分解反应MeCO3S=MeOS+CO2达平衡时,产生的CO2压力称为碳酸盐MeCO3的分解压,一般用)(32MeCO O P 表示;7、碳酸盐分解开始温度:碳酸盐MeCO3分解压与环境气相中CO2分压相等时的温度称为碳酸盐分解开始温度;8、碳酸盐沸腾分解温度:碳酸盐MeCO3分解压与环境气相总压相等时的温度称为碳酸盐沸腾分解温度9直接还原是指采用固体碳作还原剂还原氧化物,产生CO 的反应;10间接还原是指采用CO 或H2作还原剂还原氧化物,产生CO2或H2O 的反应; 11浮士体:纯氧化亚铁FeO 的理论含氧量为 %,但实际存在的却是含氧量变动在~%的非化学计量氧化亚铁相,这种固溶体称为浮氏体W üstite第七章 —重点内容与练习一、名词解释氧化熔氧化精炼 直接氧化 间接氧化 脱氧 沉淀脱氧 扩散脱氧 真空脱氧 氧化过程中元素M 氧化的分配比 元素选择性氧化1、氧化熔氧化精炼:指在氧化剂作用下,使粗金属中的过多即超过允许含量的元素及杂质通过氧化作用分离除去的过程;2、直接氧化:金属液中溶解的元素M 被吹入金属液中O2氧化;3、间接氧化:金属液中溶解的元素M 被主金属A 氧化产物溶解于金属液中的氧所氧化;4、脱氧:指向钢液中加入与氧亲和力比铁大的元素脱氧剂,使溶解于钢液中的氧转变为不溶解于钢液中的氧化物,自钢液中排出的过程;5、沉淀脱氧:将脱氧剂如MnFe 、SiFe 、Al 等加入钢液中,与O 作用生成在钢中不溶解的氧化物,上浮至渣中,从而达到脱氧的目的;6、扩散脱氧:将脱氧剂如SiFe 粉、SiCa 粉等加入炉内,置于熔渣中,将熔渣中的FeO 还原,降低渣中FeO 含量,从而使钢液中氧向渣中扩散,降低钢液中的含氧量;7、真空脱氧:将盛装钢液的装置置于真空室中,抽真空,降低PCO,使反应 C+ O= CO 继续向右进行,从而降低钢液的含氧量;8、氧化过程中元素M 氧化的分配比分配常数LM :氧化过程中,反应xM+yFeO=MxOy+yFe 反应达平衡时,M 在渣中浓度与在金属液中浓度比][)(M x O M y x x 称为元素M 在渣-金属液之间的分配比,一般用LM 表示9、元素选择性氧化:当熔池中有多种元素共存时,通过控制温度及体系压力的方法,可控制金属熔体中元素的氧化,达到保留某些元素或者氧化富集某些元素的目的,这种方法称为选择性氧化;。

冶金原理的概念

冶金原理的概念

冶金原理的概念冶金原理是指研究金属材料的制备、加工及性能形成规律的科学理论。

其多种学科交叉和互相渗透,包括物理学、化学、热力学、动力学、材料科学等诸多学科知识。

冶金原理旨在深入探究金属材料的基本结构、组织与性能之间的相互关系,为相关材料的加工和应用提供科学依据与物理基础。

冶金原理的学科特点总体上具有两个层次,一是具有相对雄厚的基础理论,并穿插于多个学科,如化学、热力学、力学等进行研究;而二是具有强烈的应用性,在金属材料各领域中有重要的应用价值。

冶金原理在金属材料的制备方面涉及多个方面,包括原料选择、熔炼、合金化、过程控制等。

其中熔炼是最为重要的步骤之一。

熔炼涉及到化学反应、热力学和动力学过程,如供能、加热、传热、反应动力学、传质和相变等。

另外,熔金过程中的密封、保护和稳定生产也是冶金原理必须考虑的问题。

冶金原理在金属材料的加工方面,同样涉及多个方面,包括塑性变形、热处理、表面处理等。

其中重要的方面是塑性变形。

塑性变形是指质点在外力作用下发生的变形,是金属物理学和机械学研究的关键问题之一。

冶金原理中的塑性变形理论可以用于控制金属材料中的晶粒与尺寸等变形相关的因素。

冶金原理在金属材料的性能形成方面,主要包括热力学、动力学、组织与结构、晶体界面等多个方面。

金属材料的性能常常是通过其组织与微观结构所决定的,如晶体轻松度、形变硬化及硬度、塑性、韧性、抗疲劳性、耐腐蚀性及磨损性等,均是冶金原理中所探讨的具体内容。

冶金原理的其他应用领域还包括材料分析和检测、有限元分析和模拟等,同时也涉及基于材料组织结构的工程基本材料设计等方面。

总之,冶金原理是研究金属材料制备、加工和性能形成规律的科学体系,它广泛应用于冶金、机械、汽车、电子、航天、石油化工等产业,对产业发展和现代经济的发展都有很重要的意义。

冶金专业的知识点总结

冶金专业的知识点总结

冶金专业的知识点总结1. 冶金原理冶金原理是冶金学的基础,包括材料的结构和性能、金属材料的晶体学、相变规律和固溶体理论等内容。

通过研究冶金原理可以了解材料的组织结构和性能,为材料的改性、加工和应用提供理论基础。

2. 冶金矿物学冶金矿物学是研究矿石和矿石中的矿物成分、物理性质、化学性质及其对冶金过程的影响的学科。

它是冶金学的基础,对于冶金工艺的选择、优化和改进具有重要的指导意义。

3. 冶金冶炼冶金冶炼是将矿石中的有用金属提取出来的过程,包括熔炼、浸出、氧化焙烧、化学反应等多种冶金工艺。

冶炼技术的发展和改进对于提高金属回收率、降低生产成本、减少环境污染具有重要意义。

4. 冶金提纯冶金提纯是对金属进行提纯处理,去除杂质,改善金属的纯度和性能。

提纯方法包括火法、湿法、电解、蒸馏等多种技术,不同的金属和不同的杂质适用不同的提纯方法。

5. 冶金合金合金是由两种或两种以上的金属或者非金属加工而成,具有优良的性能,可以满足特定的使用要求。

冶金合金包括结构合金、功能合金、特种合金等多种类型,广泛应用于航空、航天、电子、医疗、汽车等领域。

6. 冶金材料冶金材料是指由金属和非金属组成的各种工程材料,包括金属材料、非金属材料、复合材料等。

冶金材料的性能与组织结构密切相关,通过合理的材料设计和加工工艺可以获得优良的材料性能。

7. 冶金热加工热加工是通过变形加工来改变金属材料的形态和性能的技术,包括锻造、轧制、挤压、锻打等多种工艺。

热加工是冶金材料加工的重要方法,可以提高材料的塑性、韧性和强度。

8. 冶金化学冶金化学是研究金属及非金属材料的化学性质与变化规律的学科,包括金属氧化还原反应、金属的挥发性、金属的溶解度等内容。

冶金化学对于理解金属材料的性能和应用具有重要作用。

9. 冶金工艺冶金工艺是针对特定金属材料的生产过程,包括冶金装备、工艺流程、生产管理等内容。

冶金工艺的发展和改进对于提高生产效率、降低生产成本、提高产品质量和市场竞争力具有重要意义。

有色冶金的原理

有色冶金的原理

有色冶金的原理有色冶金是指对非铁金属的冶炼和加工过程。

非铁金属包括铜、铝、镁、锌、铅、锡、镍、钴、钛等。

有色冶金的原理主要包括矿石选矿、冶炼和加工三个方面。

首先是矿石选矿。

矿石选矿是指从矿石中分离出有用金属的过程。

矿石是指含有有用金属的矿物石块。

矿石选矿的原理是根据矿石中有用金属的性质和矿石的物理、化学特性,采用物理和化学方法对矿石进行分离和提纯。

常用的矿石选矿方法包括重选、浮选、磁选、电选等。

重选是根据矿石中有用金属的密度差异进行分离,浮选是利用矿石和水的相对密度差异进行分离,磁选是利用矿石中有用金属的磁性进行分离,电选是利用矿石中有用金属的导电性进行分离。

其次是冶炼。

冶炼是指将选矿得到的金属矿石经过一系列物理和化学处理,将有用金属从矿石中提取出来的过程。

冶炼的原理是根据金属的物理、化学性质和矿石的组成,采用高温熔炼、还原、氧化等方法将金属从矿石中分离出来。

常用的冶炼方法包括火法冶炼、湿法冶炼和电解法冶炼。

火法冶炼是利用高温将金属矿石熔化,然后通过物理和化学反应将金属从矿石中分离出来。

湿法冶炼是利用溶液中的化学反应将金属从矿石中分离出来。

电解法冶炼是利用电解原理将金属从溶液中析出。

最后是加工。

加工是指将冶炼得到的金属进行进一步的物理和化学处理,使其达到所需的形状、性能和用途的过程。

加工的原理是根据金属的物理、化学性质和加工工艺的要求,采用锻造、轧制、拉伸、挤压、焊接等方法对金属进行加工。

锻造是利用金属的可塑性和可锻性,在高温下对金属进行塑性变形。

轧制是利用金属的可塑性和可延展性,在辊道上对金属进行塑性变形。

拉伸是利用金属的可塑性和可延展性,在拉伸机上对金属进行拉伸变形。

挤压是利用金属的可塑性和可挤压性,在挤压机上对金属进行挤压变形。

焊接是利用金属的熔化和凝固特性,将两个或多个金属件通过熔化和凝固连接在一起。

总之,有色冶金的原理主要包括矿石选矿、冶炼和加工三个方面。

矿石选矿是将矿石中的有用金属分离出来;冶炼是将金属从矿石中提取出来;加工是对冶炼得到的金属进行进一步的物理和化学处理。

冶金原理

冶金原理
6.菲克第一定律:扩散通量与其浓度成比。
7.菲克第二定律:浓度随时间的变化与浓度的二阶导数之比。
8.稳定态原理:(1)稳定态是自然界发生过程的普通现象。(2)多相体系内界面反应与热能和物质的转移也是配合进行,具有耦合性质的。
9.整个化学过程由扩散(1)界面反应,扩散(2)三个环节串联而成。
10.反应经历三个时期,(1)诱导期(2)自动催化期(3)反应界面缩小期。
13.服从亨利定律的溶液为稀溶液。
14.在处理冶金反应的平衡常数时需要注意组分活度的某些特点:①在冶金过程中,作为溶剂的铁,如果其中元素的溶解量不高,而铁的浓度很高时,则 可视为W(Fe)=100% X(Fe)=1,以纯物质为标准态时:W(Fe)=X(Fe)=1而r(Fe)=1;因此平衡常数中就不包括铁的活度。②形成饱和溶液的组很B以 纯物质为标准态时其aB=1.③如果溶液属于稀溶液则可以浓度代替活度(Kh为标准态)。④溶液中组分的活度常选用纯物质标准态,这是因为其浓度都比 较高。
41.把熔渣具有容纳或溶解有害物质的能力称之为炉渣的容量性。
42.固态渣完全转变为均匀液相或冷却时液态渣开始析出古相的温度。
43.加入后能使炉渣熔点降低的物质称为助熔剂。
44.CaF2在调整黏度上有显著的作用。
45.目前,冶炼条件下碱性渣比酸性渣粘度小。
46.碱性渣冷却时能拉成卡丝,断面是玻璃状,又因其凝固过程的温度范围较宽,所以称为卡渣或稳定性渣。
30.炉渣可分类:①以矿石或精矿为原料进行还原熔炼,得到粗金属的同时,未被还原的氧化物和加入的溶剂进行的炉渣,称为冶炼渣或还原渣。②精炼 粗金属;由其中元素氧化物组成的炉渣,称为精炼渣或氧化渣。③原料中的某种有用成份富集于炉渣中,以利于下道工序将它回收的炉渣,称为富集 渣。④按渣所起的作用,而采用各种造渣材料预先配制的渣称合成渣。

冶金原理课后答案

冶金原理课后答案

冶金原理课后答案冶金原理是冶金工程专业的重要课程,它是学生们打好冶金基础知识的关键。

在学习过程中,课后习题是检验学生对知识掌握程度的重要方式。

下面是冶金原理课后习题的答案,希望对大家的学习有所帮助。

1. 什么是冶金原理?冶金原理是指通过对金属物理、化学性质和金属材料的制备、加工等方面的研究,来揭示金属材料的内在规律和特性的科学原理。

冶金原理是冶金工程专业的基础课程,它的学习对于后续的专业课程学习具有重要的指导作用。

2. 冶金原理的研究对象有哪些?冶金原理的研究对象主要包括金属的结构、性能、制备工艺、加工工艺等方面。

通过对金属的晶体结构、相变规律、热处理工艺等进行研究,可以揭示金属材料的内在规律和特性,为金属材料的应用提供理论基础。

3. 冶金原理课程的学习意义是什么?冶金原理课程的学习可以帮助学生建立对金属材料的基本认识,理解金属材料的物理、化学性质和加工工艺,为后续的专业课程学习奠定良好的基础。

同时,通过学习冶金原理,可以培养学生的分析和解决问题的能力,提高他们的科学素养和创新能力。

4. 冶金原理课后习题答案。

(1)问,什么是金属的晶体结构?它对金属材料的性能有什么影响?答,金属的晶体结构是指金属原子在空间中的排列方式,主要有面心立方、体心立方和密堆积等结构。

晶体结构对金属材料的性能有重要影响,它决定了金属的硬度、塑性、导电性、热导性等性能。

(2)问,金属的相变规律是什么?举例说明。

答,金属的相变规律是指金属在不同温度下发生晶体结构或组织形态的变化规律。

例如,铁在950°C以下为α铁,950°C以上为γ铁,这是铁的相变规律之一。

(3)问,金属材料的热处理工艺有哪些?它们的作用是什么?答,金属材料的热处理工艺包括退火、正火、淬火、回火等。

它们的作用是通过控制金属材料的加热、保温和冷却过程,改变金属的组织结构和性能,以达到提高金属材料的硬度、强度和韧性的目的。

5. 总结。

通过对冶金原理课后习题的答案解析,我们可以更好地理解冶金原理课程的重要性和学习意义,掌握金属材料的基本知识和相关原理。

冶金原理李洪桂

冶金原理李洪桂

冶金原理李洪桂冶金原理是冶金学科的基础理论,它是指导冶金工程实践的理论基础。

冶金原理的研究对象是金属和非金属材料的冶金过程及其规律。

冶金原理的研究内容包括金属和非金属材料的结构、性能、加工工艺、热力学、动力学等方面。

冶金原理的研究方法主要是实验研究和理论分析相结合。

冶金原理的研究成果主要体现在冶金工程实践中,为冶金工程实践提供科学依据。

冶金原理的研究对象包括金属和非金属材料的结构、性能、加工工艺、热力学、动力学等方面。

金属材料是指具有金属结构的材料,包括铁、铜、铝、镁等金属及其合金。

非金属材料是指除金属材料以外的材料,包括陶瓷、聚合物、复合材料等。

金属和非金属材料的结构和性能是冶金原理研究的重点内容,它们直接影响着材料的加工工艺和使用性能。

冶金原理研究材料的结构和性能,旨在揭示材料的内在规律,为材料的设计、加工和应用提供科学依据。

冶金原理的研究方法主要是实验研究和理论分析相结合。

实验研究是冶金原理研究的基本手段,通过实验可以获得大量的数据和信息,验证理论模型和假设。

理论分析是冶金原理研究的重要手段,通过理论分析可以建立模型和假设,揭示物质的内在规律。

实验研究和理论分析相结合,可以更全面地理解材料的结构和性能,揭示材料的加工工艺和使用性能的规律。

冶金原理的研究成果主要体现在冶金工程实践中,为冶金工程实践提供科学依据。

冶金工程是利用物理、化学、材料学等科学原理和技术手段,对矿石、矿物和金属材料进行选矿、冶炼、精炼、合金、铸造、热处理、表面处理、材料加工等工艺过程的综合技术体系。

冶金原理的研究成果可以指导冶金工程实践,提高冶金工程的生产效率和产品质量,促进冶金工程的技术进步和产业发展。

总之,冶金原理是冶金学科的基础理论,它是指导冶金工程实践的理论基础。

冶金原理的研究对象包括金属和非金属材料的结构、性能、加工工艺、热力学、动力学等方面。

冶金原理的研究方法主要是实验研究和理论分析相结合。

冶金原理的研究成果主要体现在冶金工程实践中,为冶金工程实践提供科学依据。

教你快速掌握冶金原理

教你快速掌握冶金原理

教你快速掌握冶金原理1. 什么是冶金原理冶金原理是研究金属和非金属材料的制备、加工、性能和应用规律的科学,是冶金学的基础和核心内容。

掌握冶金原理是从事冶金工程和材料科学研究的基本要求,对于了解金属材料的性能、改善材料的性能以及开发新材料具有重要意义。

2. 冶金原理的基本概念2.1 金属结构金属的结构是由原子构成的,原子之间通过金属键相互连接,形成了金属的晶体结构。

金属晶体可以分为单质型和化合物金属型两种,单质型金属是由同种金属原子组成的晶体,化合物金属是由不同种金属原子组成的晶体。

2.2 金属相变金属在不同温度和压力下会发生相变,常见的金属相变包括固-液相变、固-固相变和固-气相变。

相变对于金属材料的制备和性能具有重要影响,了解金属的相变规律有助于优化金属材料的加工过程和性能。

2.3 金属合金金属合金是由两种或多种金属元素组成的材料,合金的组成和比例对于合金的性能具有重要影响。

常见的金属合金包括钢、铝合金、镁合金等,不同金属元素的添加可以改变合金的硬度、强度、耐腐蚀性等性能。

3. 冶金原理的应用3.1 冶金工艺冶金原理是冶金工艺设计的理论基础,通过对冶金原理的研究,可以制定出高效、经济的冶金工艺方案。

冶金工艺包括矿石初步处理、冶炼、精炼、铸造、热处理等环节,每个环节都涉及到冶金原理的应用和运用。

3.2 材料开发冶金原理对于材料开发和研究也具有重要作用。

通过对不同材料的冶金原理与性能的关系进行研究,可以开发出具有优异性能的新材料。

例如,通过合金设计和热处理等技术手段,可以提高材料的强度、硬度、耐蚀性等性能。

4. 如何快速掌握冶金原理4.1 学习冶金学基础知识要快速掌握冶金原理,首先需要学习冶金学的基础知识。

包括金属结构与性能、相变规律、合金设计、冶金工艺等方面的知识。

可以通过参考教材和学习资料,系统学习冶金学的基本概念和原理。

4.2 实践与实验除了理论学习,实践与实验也是掌握冶金原理的重要途径。

通过参与实验、实践项目或者工作实践,在实际操作中应用冶金原理,加深对冶金原理的理解和掌握。

冶金原理课件中南大学

冶金原理课件中南大学
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。
化 学 组 成 / %(质量)
铝电解的电解质 镁电解的电解质
(电解氯化镁)
镁电解的电解质 (电解光卤石)
锂电解的电解质 铝电解精炼的电解质
(氟氯化物体系)
铝电解精炼的电解质 (纯氟化物体系)
镁熔剂精炼熔剂
Na3AlF6 82~90,AlF3 5~6,Al2O3 3~7,添加剂 (CaF2、MgF2 或 LiF) 3~5 MgCl2 10,CaCl2 30~40,NaCl 50~60,KCl 10~6
▪ 其它的碱金属、碱土金属,钛、铌、钽等高熔点金属以
及某些重金属(如铅)的熔盐电解法生产
▪ 利用熔盐电解法制取合金或化合物
如铝锂合金、铅钙合金、稀土铝合金、WC、TiB2等
熔盐的冶金应用(二)
▪ 某些氧化物料(如TiO2、MgO)的熔盐氯化
◇ 适合处理CaO、MgO含量高的高钛渣或金红石 ◇ 流程短、原料适应性强、设备生产率高、产物杂质含量低。

《冶金原理》1

《冶金原理》1

√1、炉渣的氧化性:炉渣氧化性是指炉渣向与之接触的金属液供氧的能力。

√2、MeO分解压:MeO分解压是指一定条件下,分解反应2MeO(S)=2Me(S)+O2达到平衡时,产生的O2的压力。

3、氧化熔炼:氧化熔炼是指利用还原剂从矿石中除去氧获得的粗金属,在氧化剂作用下,使粗金属中的过多的元素及杂质通过氧化作用分离除去的过程。

√4、MS的硫势:MS的硫势是指2x/y M(S)+S2=2/y M x S y(S)达到平衡时,平衡气相中的S2压力P S2的RTlnP S2。

√什么是火法冶金、提取冶金:火法冶金是在高温下,从原料中(主要为矿石)提取有用金属或化合物的过程;提取冶金又叫化学冶金,是利用电能从矿石中提取有用金属或化合物的过程。

√冶金原理主要研究的内容是:1冶金过程热力学(反应进行的可能性、反应限度、各因素对反应的影响);冶金过程动力学(反应进行的机理、反应速率限制环节、各种参数对反应速率的影响);冶金溶液,分为冶金熔体和水溶液(溶液的结构、物理化学性质、相平衡条件)√活度(或称有效浓度):使实际溶液中组分蒸气压服从拉乌尔或亨利定律校正的浓度。

浓度校正的系数称为活度系数。

√纯物质标准态:以拉乌尔定律为基础,纯物质状态的标准状态。

√假想纯物质标准:指溶液中的分蒸汽压服从亨利定律的假想纯物质状态的标准状态。

√假想1%标准状态:以溶液中的组分质量百分浓度为1%,蒸汽压服从亨利定律的假想状态的标准状态。

以碳完全燃烧为例,说明多相反应的组成环节:○1氧气扩散通过气象边界层进入固体产物层○2氧气与未反应的碳表面发生反应○3二氧化碳经气体边界层扩散出来。

温度对反应速率常数的影响公式(阿仑乌斯公式):温度升高,反应速率增大;活化能大的反应,温度提高,反应增加显著;阿仑尼乌斯公式: 活化能小的反应,温度提高,反应增加缓慢。

RTEAek/a-=√双膜理论内容:在物性不同或流速有差别的两个不同液相中,相界面的两侧存在着表征传质阻力的边界层。

冶金的原理

冶金的原理

冶金的原理
冶金的原理是通过物质的熔炼和热处理等工艺,将金属矿石中的金属元素提取出来,并通过改变其化学成分和物理性质,进而获得所需的金属材料。

冶金的主要原理包括矿石选别、矿石还原和提纯、金属合金化以及热处理等过程。

首先,矿石选别是根据矿石的成分和质量特点将其分离和分类处理,以提取目标金属。

其次,矿石还原和提纯是通过化学反应、物理分离等方法,将金属元素从矿石中分离出来,减少杂质含量,达到提纯的目的。

提取的金属元素常常需要进行合金化处理,即将其与其他金属或非金属元素混合,以改善金属的性能和机械性能,使其适应不同的工艺要求。

合金的形成常常需要控制合金元素的比例和添加方式,以达到所需的物理和化学性能。

最后,热处理在冶金工艺中起到重要的作用,通过控制金属材料的加热和冷却过程,改变其晶粒结构和组织,从而调整材料的力学性能(如硬度、韧性等)和组织性能(如晶粒大小、相变等)。

综上所述,冶金的原理涉及矿石选别、还原和提纯、金属合金化以及热处理等过程,旨在提取金属元素、改善其性能和实现特定的结构。

通过这些原理,可以生产出各种不同的金属材料,广泛应用于工业制造、建筑、交通运输、电子等领域。

冶金原理

冶金原理

1、分配定律:分配定律表示在一定温度下不相混合的两接触相达到平衡时,组分在两相中的活度(或浓度)比是常数。

表示为:αB(Ⅰ)/αB(Ⅱ)=L B或C B(Ⅰ)/C B(Ⅱ)=L B2、什么是气体在钢中的溶解度?钢中溶解的气体是指氢和氧,通常把一定温度下与100KPa的气相平衡的溶解于钢中的氢和氧含量称为气体在钢中的溶解度。

3、选择性氧化:对于金属熔体,用控制温度及体系压力的方法,控制熔体中元素的氧化,达到保留某些元素或者氧化富集某些元素的相的。

4、黏度:是指熔渣内部相对运动时各层之间的内摩擦力。

5、炉渣:炉渣是火法冶金中形成的此氧化物为主要成分的多组分熔体。

它是金属提炼和精炼过程中,除金属熔体以外的另一产物。

分类:冶炼渣(还原渣)、精炼渣(氧化渣)、富集渣、合成渣。

6、共晶反应:在一定的温度下,由一定成分的液相同时结晶出两个成分一定的固相的转变过程。

7、共析反应:在一定温度下,由一定成分的固相同时析出两个成分一定的固相的转变过程。

8、包晶反应:一个液相和一个固相在恒温下生成另一个固相的转变。

9、火法冶金:利用高温从矿石或金属废料中提取金属或化合物的冶金过程。

10、湿法冶金:是金属矿物原料在酸性介质或碱性介质的水溶液进行化学处理或有机溶剂萃取分离杂质,提取金属及其化合物的过程。

11、洁净钢:指对钢中非金属夹杂物(主要是氧化物和硫化物)进行严格控制的钢种,即要求钢中氧和硫的总量低,夹杂物的数量少、尺寸小。

分布均匀,脆性类夹杂物少且形状分布合适。

12、熔体:是冶金过程高温下呈熔融态的物质的总称,包括金属熔体、熔渣、熔盐。

14、活度:实际溶液的蒸汽压与不同物质同状态下标准压力之比。

15、活度系数:活度的修正系数,它表示实际溶液对选作标准溶液偏差的方向及程度。

16、氧化熔炼:利用还原剂从矿石中除去氧获得的粗金属,需要进一步在氧化剂的作用下,使粗金属中超过产品金属允许含量的元素及杂质量通过氧化作用分离除去的方法。

冶金的化学原理及应用教案

冶金的化学原理及应用教案

冶金的化学原理及应用教案一、引言在金属材料的生产、加工与利用过程中,冶金是一项非常重要的学科。

本教案将介绍冶金的化学原理及其在实际应用中的重要性。

二、冶金的基本概念1.冶金的定义:冶金是研究金属工艺、金属物理、金属与非金属材料相互作用等一系列学科的统称。

2.冶金的发展历史:从古代冶铜冶铁开始,经过几千年的发展,冶金已经成为现代工业的重要组成部分。

三、金属的化学原理1.金属与酸的反应:金属通常与酸反应生成盐和气体。

例如,铁与盐酸反应生成氢气和氯化铁。

2.金属的氧化反应:金属通常与氧气反应生成金属氧化物。

例如,铁与氧气反应生成氧化铁。

3.金属的还原反应:金属通常可以被还原剂还原,恢复到原来的金属状态。

例如,氢气可以将氧化铁还原为铁。

四、冶金的应用1.金属材料的提取:通过冶金技术,可以从矿石中提取出金属,如铜、铁、铝等。

2.金属的加工:冶金技术可以将金属加热、锻造、淬火等,使其获得不同的性能和形状。

3.金属的合金化:通过将金属与其他元素进行合金化处理,可以获得具有更好性能的合金材料。

4.材料的改性:冶金技术可以改变金属材料的性能,如增加硬度、提高耐蚀性等。

5.金属的再利用:通过冶金技术,可以对废旧金属进行回收再利用,减少资源浪费。

五、教学方法与学习建议1.多媒体教学法:可以通过投影仪、电脑等多媒体设备展示冶金的实际应用和案例,激发学生的学习兴趣。

2.实践教学法:可以组织学生参观冶金工厂,了解真实的冶金生产过程,增加实际操作的经验。

3.组织讨论:可以选取一些与冶金相关的问题,组织学生进行小组讨论,激发学生思考和合作能力。

4.提供案例:可以选取一些冶金产业中的成功案例,让学生分析其成功原因和经验教训。

六、教学评估与反馈为了评估学生对冶金化学原理及应用的掌握程度,可以采用以下评估方法: 1. 书面测试:出一些选择题、填空题和简答题,考察学生对冶金的基本概念和原理的理解。

2. 实验报告:要求学生进行一些简单的实验,并撰写实验报告,评估学生的实验操作能力和数据分析能力。

钢铁冶金原理

钢铁冶金原理

钢铁冶金原理钢铁冶金是指通过高温熔炼和冶炼的方式,将铁矿石中的铁元素提取出来,加入适量的碳和其他合金元素,经过一系列的炼铁和炼钢工艺,最终制备出各种不同性能和用途的钢铁材料。

钢铁作为工业生产和建筑领域中最重要的材料之一,其冶金原理对于材料工程领域具有重要的意义。

首先,钢铁冶金的基本原理是将铁矿石进行熔炼,将其中的铁元素提取出来。

铁矿石中主要含有Fe2O3和Fe3O4等化合物,通过高温还原反应,将铁元素还原出来。

在这一过程中,需要考虑熔炼温度、还原剂的选择以及矿石的成分和性质等因素。

通过控制这些因素,可以有效地提高铁的提取率和产品的质量。

其次,炼铁和炼钢是钢铁冶金过程中的关键环节。

在炼铁过程中,需要将提取出来的铁水进行精炼,去除其中的杂质和非金属元素,同时控制合金元素的加入,以获得所需的钢铁材料。

而在炼钢过程中,需要对精炼后的铁水进行进一步的精炼和调质,以获得不同性能和用途的钢铁产品。

这一过程中需要考虑温度、压力、氧化还原条件等因素,以确保产品的质量和性能。

此外,钢铁冶金过程中还需要考虑能源消耗和环境保护等因素。

炼铁和炼钢过程中需要大量的能源供应,同时也会产生大量的废气、废水和固体废物。

因此,在钢铁冶金过程中,需要考虑能源的高效利用和废物的处理和资源化利用,以减少对环境的影响,实现可持续发展。

综上所述,钢铁冶金原理涉及了多个方面的知识和技术,包括物理化学、材料工程、能源科学和环境保护等领域。

通过深入研究钢铁冶金原理,可以不断改进和优化生产工艺,提高钢铁产品的质量和性能,同时减少能源消耗和环境污染,为工业生产和社会发展做出贡献。

因此,钢铁冶金原理的研究具有重要的理论和实际意义,对于推动材料工程领域的发展具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低压气体的等温定律的表达式为(A)。

2、单选题:低压气体的等压定律的表达式为(B)。

3、单选题:低压气体的等容定律的表达式为( C)。

4、单选题:低压气体的阿伏加德罗定律的表达式为(C )。

5、单选题:某一定量气体,100kPa时的体积是50L, 在298K下,当压强增大到200kPa时,则其体积为( C )。

6、判断题:表达式pV=K1表示的是低压气体的等温定律。

(A )正确答案:A7、判断题:某一定量气体,保持100kPa压强不变,若25℃时的体积是50L,根据盖吕萨克定律,当温度升高到50℃时,其体积为100L。

正确答案:B8、判断题:表达式p1V1= p2V2表示的是低压气体的等容定律。

()正确答案:B9、单选题:50m3的CO2,保持压强为101.325kPa不变,从室温加热到1300℃,则其体积为(C)。

1molH2的体积的22.4L。

正确答案:B11、单选题:如果已知一定温度和压强条件下2mol CO2体积是0.05 m3,则 100kg这样的 CO2的体积是(D)。

12、判断题:正确答案:A13、单选题:1.0kgCO,1000℃,101.325kPa下体积是(D )。

14、判断题:正确答案:B15、单选题:某气体在25℃,150kPa下的摩尔体积是(B )。

16、判断题:正确答案:B17、单选题:1.2kg碳在充足的氧气中燃烧,假定温度为1273Κ,压力为101.325kPa,生成的CO2的体积为( A)。

18、单选题:温度为8O℃体积为4O、压力为120kPa的CO2的质量为(A )。

19、单选题:某气体在20℃、100kPa下的体积为50d,若将该气体变到200kPa、80℃状态下时其体积为(B )。

正确答案:B20、单选题:在恒压下,为了将烧瓶中298K的空气赶出1/5,则需将烧瓶加热到(C )。

21、单选题:今有293K、30kPa的氢气气10L和293K、15kPa的氮气40L,将这两种气体同时装入30L的容器中,温度仍为293Κ,则混合气体的总压力(B )。

22、判断题:在阿伏加德罗定律表达式V= nVm中,Vm的大小取决于气体温度和压强,与气体种类无关。

()正确答案:A23、判断题:在阿伏加德罗定律表达式V= nVm中,Vm的大小是常数。

()正确答案:B24、判断题:在阿伏加德罗定律表达式V= nVm中,Vm的大小与气体种类无关。

()正确答案:B25、判断题:在阿伏加德罗定律表达式V= nVm中,Vm的大小取决于气体种类。

()正确答案:B26、判断题:在阿伏加德罗定律表达式V= nVm中,Vm的大小取决于气体温度和压强。

()正确答案:A27、单选题:已知空气中N2、O2和Ar的体积分数分别为78%、21%和1%,试计算在0℃,101.325kPa下空气中O2的分压是( B )。

1、判断题:在同一温度下,某气体组分B单独存在且占有与混合气体相同体积时,所具有的压强称为该气体的分压强。

()正确答案:A2、判断题:低压下气体混合物的总压强等于组成混合物的各种气体分压强之和。

()正确答案:A3、判断题:低压下气体混合物中,某一组分的分压等于其在混合物中的摩尔分数与混合气体、总压的乘积。

()正确答案:A4、判断题:低压下气体混合物中,某一组分的分压与其在混合物中的摩尔分数成正比。

()正确答案:A5、判断题:低压下气体分压定律混合物的总体积等于各组分的分体积之和。

()正确答案:B6、判断题:低压下气体混合物的总体积等于各组分的分体积之和。

()正确答案:A7、判断题:低压下气体混合物中,某一组分的分体积等于其在混合物中的体积分数与混合气体总积的乘积。

()正确答案:A8、单选题:一个容器中有6g氢和28g氮两种气体,则容器中氢气的摩尔分数是()。

(原子量 H—1,N—14)正确答案:C9、单选题:某混合物中,含CaO60%,SiO240%,则该某混合物中CaO的摩尔分数是()。

(原子量 H—1,N—14)正确答案:D10、单选题:一个容器中有6g氢和28g氮两种气体,则容器中氢气的体积分数是()。

(原子量 H—1,N—14)正确答案:C11、单选题:已知空气的总压力是101.325kPa其中N2、O2和Ar的分压分别为79033.5Pa、21278.25Pa和1013.25Pa,则容器中氮气的体积分数是()。

正确答案:D1、判断题:理想气体能遵守低压气体定律。

()正确答案:A2、判断题:理想气体也只能在低压条件下才能遵守低压气体定律。

()正确答案:B3、判断题:在高温低压下可以将真实气体看作理想气体。

()正确答案:A1、判断题:系统与环境间可以有物质交换与能量传递。

()正确答案:A2、判断题:系统与环境间可以有物质交换但不能有能量传递。

()正确答案:B3、判断题:系统与环境间可以有能量传递但不能有物质交换。

()正确答案:B4、判断题:系统与环境间一定有物质交换与能量传递。

()正确答案:B5、判断题:系统由某一状态变化到另一状态,其状态函数的变化只取决于始态和终态,而与变化的途径无关。

()正确答案:A6、判断题:系统由某一状态变化到另一状态,其状态函数的变化与变化的途径有关。

()正确答案:B1、判断题:热力学上规定:在某一个过程中,若系统从环境中吸收热Q值为正;反之系统向环境中散热, Q值为负。

()正确答案:A2、判断题:热是系统本身的性质,它是状态函数。

()正确答案:B3、判断题:在完成一个过程时,系统与环境之间交换的能量——热,可写成“ΔQ”。

()正确答案:B4、单选题:设某给定气体的始态为V1=2Odm3, p1=303kPa,在温度不变的情况下,外压从303kPa突然降到101kPa;进行膨胀至60dm3,则气体所做的功是()。

正确答案:C5、单选题:设某给定气体的始态为V1=2Odm3, p1=303kPa,在温度不变的情况下,外压从303kPa突然降到101kPa;进行膨胀至60dm3,则气体吸热()。

正确答案:C6、单选题:设某给定气体的始态为V1=1Odm3, p1=300kPa,在温度不变的情况下,外压从300kPa突然降到100kPa;进行膨胀至30dm3,则气体热力学能的变量是()。

正确答案:A7、单选题:设某给定气体的始态为V1=6Odm3, p1=100kPa,在温度不变的情况下,外压从100kPa突然升到300kPa;进行压缩至20dm3,则气体所做的功是()。

正确答案:B8、单选题:设某给定气体的始态为V1=6Odm3, p1=100kPa,在温度不变的情况下,外压从100kPa突然升到300kPa;进行压缩至20dm3,则气体吸热()。

正确答案:B9、单选题:在100kPa的压力下,当金属与酸作用时,放出4.4L的氢气,系统所作的功是()。

正确答案:B10、单选题:设某给定气体的始态为V1=6Odm3, p1=100kPa,在温度不变的情况下,向真空进行膨胀,则气体所做的功是()。

正确答案:A11、判断题:描述热力学第一定律可以用数学表达式表示为ΔU=Q-W。

()正确答案:A12、判断题:描述热力学第一定律可以用数学表达式表示为ΔU=Q+W。

()正确答案:B13、判断题:描述热力学第一定律的数学表达式的微分式可表示为dU=dQ-dW ()。

正确答案:B14、单选题:有一系统,在某一过程中放出热量25J,对外做功20J,则其热力学能量变化量为()。

正确答案:B15、单选题:有一系统,在某一过程中放出热量25J,外界对系统做功20J,则其热力学能量变化量为()。

正确答案:D16、单选题:有一系统,在某一过程中吸收热量25J,对外做功20J,则其热力学能量变化量为()。

正确答案: C17、单选题:有一系统,在某一过程中吸收热量25J,外界对系统做功20J,则其热力学能量变化量为()。

正确答案:A18、单选题:在101325Pa的压力下,当金属与酸作用时,放出4.4L的氢气,系统所作的体积功为()。

正确答案:D19、单选题:某理想气体在恒定外压(93.3kPa)下膨胀,其体积从50dm变到l0Odm,同时吸收6.5kJ的热量,其热力学能变化了()。

正确答案:C20、单选题:某理想气体在恒定外压(93.3kPa)下膨胀,其体积从50dm变到l0Odm的过程中,其热力学能增加了1835J,则在此过程中系统吸收的热量为()。

正确答案:A21、单选题:3mo1理想气体在300K和1013kPa的条件下等温缓慢地膨胀到506.5kPa,系统所做的功为()。

(已知ln2=0.693)正确答案:A22、单选题:3mo1理想气体在300K和1013kPa的条件下等温缓慢地膨胀到506.5kPa,系统吸收的热为()。

(已知ln2=0.693)正确答案:C23、单选题:3mo1理想气体在300K和1013kPa的条件下等温缓慢地膨胀到506.5kPa,系统的热力学能变化了()。

(已知ln2=0.693)正确答案:D24、单选题:1mol理想气体373K做如下3种等温膨胀,V1=25L,V2=100L。

(1)外压恒定且等于p2;(2)外压先恒定为p’膨胀到V,V=50L再恒定为p2膨胀到V2;(3)在p - p外=d p时膨胀到p2。

则w1、w2、w3 有如下关系()。

正确答案:D25、单选题:2mol理想气体298K做如下3种等温压缩,V-1=100L,V2=25L。

(1)外压恒定且等于p2;(2)外压先恒定为p’压缩到V,V=50L再恒定为p2压缩到V 2;(3)在p外- p=d p时压缩到p2。

则w1、w2、w3 有如下关系()。

正确答案:D、判断题:系统在不做非体积功的条件下,等容过程热等于系统热力学能的变化量。

()正确答案:A2、判断题:系统在不做非体积功的条件下,等容过程热等于系统的焓变量。

()正确答案:B3、判断题:系统在不做非体积功的条件下,等压过程热等于系统焓变量。

()正确答案:A4、判断题:系统在不做非体积功的条件下,等压过程热等于系统热力学能的变化量。

()正确答案:B5、判断题:由焓的定义式H = U+PV可知,焓是系统的状态函数,且当系统发生任何一个过程后,就有相对应的焓变化量ΔH=H2-H1。

()正确答案:A6、判断题:因为Q P=ΔH,所以,焓H不是状态函数。

7、单选题:1mol理想气体,在300K时,自101kPa等温缓慢地压缩到1010kPa,则系统做功为()(已知ln10=2.303)。

正确答案:B8、单选题:1mol理想气体,在300K时,自101kPa等温缓慢地压缩到1010kPa,则系统热力学能的变化量为()。

(已知ln10=2.303)正确答案:D9、单选题:1mol理想气体,在300K时,自101kPa等温缓慢地压缩到1010kPa,则系统的Q为()。

相关文档
最新文档