八年级数学上册14.1.3 积的乘方

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作品编号:91855558874563331258

学校:元明壮市文银汉镇便家蚕小学*

教师:青稞酒*

班级:飞鸟参班*

14.1.3 积的乘方

一、新课导入

1.导入课题:

有一个正方体包装盒,棱长为4×102mm,要求它的体积有多大?你知道怎样列式吗?

2.学习目标:

(1)认识积的乘方的推导过程.

(2)知道积的乘方运算法则,并能熟练运用.

3.学习重、难点:

重点:积的乘方的运算法则.

难点:积的乘方的运算法则的推导和灵活运用.

二、分层学习

1.自学指导:

(1)自学内容:探究积的乘方的运算有什么规律.

(2)自学时间:5分钟.

(3)自学方法:参照下列提纲进行探究,并思考运算过程的依据,运算结果与算式之间有何规律.

(4)探究提纲:

①知识回顾:

幂的乘方,底数不变,指数相乘.(a2)3=a6,(a m)n=a mn.

(ab)2表示a与b的积的平方.

②看一看,填一填:

(ab)2=ab·ab=(a·a)·(b·b)=a(2)b(2);

(a2b3)2=(a2b3)·(a2b3)=(a2·a2)(b3·b3)=a(4)·b(6)

③想一想,说一说以上运算过程中运用到哪些运算律或运算法则?

乘法结合律和乘法交换律

④(ab)n=(ab)·(ab)·…·(ab)n个ab依据:幂的定义.

=(a·a·a·…a)(n)个a·(b·b·b·…b)(n)个b依据:乘法结合律和乘法交换律=a(n)b(n)依据:幂的定义.

即(ab)n=a n b n(n为正整数).用文字表述是:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

⑤试一试:(5a)2=25a2;(4b2)3=64b6.

2.自学:学生结合探究提纲进行自主探究.

3.助学:

(1)师助生:

①明了学情:了解不同层次学生的探究情况.

②差异指导:重点指导学生对(ab)n的运算结果的推导过程的依据的认识.

(2)生助生:学生之间相互交流帮助.

4.强化:

(1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用公式可以表达为:(ab)n=a n b n(n为正整数).用自己的理解

可以简化为:积的乘方等于乘方的积.

(2)计算:(ab)5=a5b5;(2a)3=8a3;(-xy)4=x4y4;

-(ab)3 =-a3b3;(2ab2)3=8a3b6.

(3)解决导入课题的计算:(4×102)3=6.4×107.

1.自学指导:

(1)自学内容:教材第97页例3.

(2)自学时间:5分钟.

(3)自学方法:思考计算的每一步的依据,对照运算法则进行对比验证.

(4)自学参考提纲:

①先说说例3中,哪些相当于公式(ab)n=a n b n中的a,b?

②仿例3,计算:(-2x3)4=16x12;(3

4x2y)3=27

64

x6y3.

③逆用公式(ab)n=a n b n,能完成下面的填空吗?试试看.

a3·b3=(ab)3;(-2)4a4=(2a)4; (-1

2)3a6b9=(-1

2

a2b3)3.

2.自学:学生可结合自学指导进行自学.

3.助学:

(1)师助生:

①明了学情:了解各小组不同层次学生学习例题时不清楚的地方.

②差异指导:对学困生重点指导例3中(2)、(4)题的符号规律.

(2)生助生:同桌间互相批改,并帮助分析纠错.

4.强化:

(1)总结:①积的每个因数(式)分别乘方时,要带上符号.

②积的乘方公式可以逆向使用,在逆向使用时要求指数相同.

(2)练习:①(-2x2)3=-8x6;②(-2ab2)3=-8a3b6;

③(xy2)2= x2·(y2)2 =x2y4;④48×0.258=1.

三、评价

1.学生的自我评价(围绕三维目标):各小组学生代表交谈自己的学习收获和学习体会.

2.教师对学生的评价:

(1)表现性评价:对学生的学习态度、方法、收效及不足进行点评.

(2)纸笔评价:课堂评价检测.

3.教师的自我评价(教学反思):

本课时教学可先由学生依据同底数幂的乘法、幂的乘方等法则的推导与应用自主探究出积的乘方法则,并应用于具体解题之中.教师注意引导学生发现幂的乘法法则、幂的乘方法则、积的乘方法则三个法则之间的异同,并利用具体问题指导学生解题时先观察分析问题特征,再合理选用法则.课堂中,可采用口答、动手做做等方式组织学生比赛,从中培养学生计算能力,教师依据具体情形予以点评指点,查漏补缺,使学生全方位从本质上理解知识.

一、基础巩固(每题10分,共70分)

1.(ab2)3=a3b6.

2.(-2x2y3)4 =16x8y12

3.(2×102)4写成科学记数法的形式为1.6×109.

4.计算(a m·a n)p =a mp+np.

5.计算(-0.5)16(-2)16=1.

6.下列运算正确的是(C )

A.x3+x3=x6

B.x·x5=x5

C.(xy)3=x3y3

D.x3·x3=2x6

7.已知a3b3= 8 ,求(-ab)6的值.

解:(-ab)6=a6b6=(a3b3)2=64.

二、综合应用(每题10分,共20分)

8.计算:0.1252015×82016

解:原式=0.1252015×82015×8

=(0.125×8)2015×8

=12015×8

=8.

9.解方程:3x+1·2x+1=62x-3

解:3x+1·2x+1=62x-3

即(3×2)x+1=62x-3

∴x+1=2x-3

x=4.

三、拓展延伸(10分)

,|b|n=3,求(ab)2n的值.

10.若|a|n= 1

2

解:(ab)2n=(|a|·|b|)2n

=|a|2n·|b|2n

=(|a|n)2·(|b|n)2

)2×32

=(1

2

.

=9

4

相关文档
最新文档