二次函数--利润问题-分段函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3(3.3)---利润问题-分段函数
一.【知识要点】
1.分段求最值,进行比较。
2.销售利润=(售价-成本价)×销售量.
3.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。
二.【经典例题】
1.九(13)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问该商品第几天时,当天销售利润最大,最大利润是多少?
22018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x…3456…
售价y1/元…12141618…
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?
3.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件. (1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围). (2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
4.为喜迎佳节,某食品公司推出一种新年礼盒,每盒成本为20元.在元旦节前30天进行销售后发现,该礼盒在这30天内的日销售量p (盒)与时间x (天)的关系如下表:
在这30天内,前20天每天的销售价格1
y (元/盒)与时间x (天)的函数关系式为11
254
y x =+(1≤x ≤20,且x 为整数),后10天每天的销售价格2y (元/盒)与时间x (天)的函数关系式为21
402
y x =-
+(21≤x ≤30,且x 为整数). (1)直接写出日销售量p (盒)与时间x (天)之间的关系式;
(2)请求出这30天中哪一天的日销售利润最大?最大日销售利润是多少?
(3)元旦放假期间,该公司采取降价促销策略.元旦节当天,销售价格(元/盒)比第30天的销售价格降低a%,而日销售量就比第30天提高了4a%,日销售利润比前30天中的最大日销售利润少380元,求a 的值.
三.【题库】
【A】
1.数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关
信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程,若前49天销售获得的最大日利润为5408元,求出m的值
时间x(天)1≤x<5050≤x≤90
售价(元/件)x+4090
每天销量(件)200﹣2x
【B】
1.我县云蒙湖被临沂市人民政府定位“饮用水水源地”,为净化水源,某水产养殖企业在净化水源的同时,为谋求养殖利润最大化,对历年市场行情和水产品养殖情况进行了调查.调
查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=﹣x+36,而
其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.“五•一”之前,月份出售这种品每千克的利润最大.
【C】
1.(本题满分11分)绵阳经开区“万达广场”开业在即,开发商准备
对一楼的40个商铺出租,小王和开发商约定:小王租赁的每个商
铺每个月的租金y(元/个.月)与租赁的商铺数量x(个)之间函
数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C ). (1)求y 与x 之间的函数关系式;
(2)已知开发商每个月对每个商铺的投入成本共280元,那么当小王租赁的商铺数量为多
少时,开发商在这次租赁中,每个月所获的利润w 最大?最大利润是多少?
【D 】
1.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商
销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x ≤50时. (1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系. (2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?
2.某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y (元)与周次x 之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为
, 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每
件获得利润最大?并求最大利润为多少?
3.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y 1(元/台)与采购数量x 1(台)满足y 1=﹣20x 1+1500(0<x 1≤20,x 1为整数);冰箱的采购单价y 2(元/台)与采购数量x 2(台)满足y 2=﹣10x 2+1300(0<x 2≤20,x 2为整数). (1)经商家与厂家协商,采购空调的数量不少于冰箱数量的
11
9
,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
q 40x
=+
12)8(8
1
2+--=x z
4.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)试确定y与x之间的函数关系式;
(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?
(3)若该商店试销这款排球所获得的利润不低于600元,
请确定销售单价x的取值范围.。