七年级下册数学期中模拟试卷及答案完整

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学期中模拟试卷及答案完整
一、选择题
1.116的平方根是() A .-14
B .14
C .14±
D .12± 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()
A .
B .
C .
D . 3.如果点P (1-2m ,m )的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列说法中正确的个数为( )
①过一点有且只有一条直线与已知直线垂直;
②两条直线被第三条直线所截,同位角相等;
③经过两点有一条直线,并且只有一条直线;
④在同一平面内,不重合的两条直线不是平行就是相交.
A .1个
B .2个
C .3个
D .4个
5.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )
A .35°
B .45°
C .50°
D .55°
6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )
A .28.72
B .0.2872
C .13.3
D .0.1333 7.如图,小明从A 处出发沿北偏东60︒方向行走至B 处,又沿北偏西20︒方向行走至C 处,则ABC ∠的度数是( )
A .100︒
B .90︒
C .80︒
D .70︒
8.如图,长方形BCDE 的各边分别平行于x 轴、y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第
2021次相遇地点的坐标是( )
A .()1,1--
B .()2,0
C .()1,1-
D .()1,1-
二、填空题
9.正方形木块的面积为25m ,则它的周长为____________m .
10.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________; 11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .
12.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.
13.如图,在ABC 中,1841B C ∠=︒∠=︒,,点D 是BC 的中点,点E 在AB 上,将BDE 沿DE 折叠,若点B 的落点B '在射线CA 上,则BA 与B D '所夹锐角的度数是________.
14.新定义一种运算,其法则为32a c a d bc b d =÷,则2
2
3x x x x
--=__________ 15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2
340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC
的面积相等,则点P 的坐标为________.
16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.
三、解答题
17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭
18.求下列各式中x 的值:
(1)24241x -=;
(2)()3
8127x -=.
19.如图,点D ,F 分别是BC 、AB 上的点,//DF AC ,FDE A ∠=∠.
(1)对//DE AB 说明理由,将下列解题过程补充完整.
解://DF AC (已知)
A ∴∠=________(________________________)
A FDE ∠=∠(已知)
FDE ∴∠=___________(________________________)
//DE AB ∴(______________________________)
(2)若AED ∠比BFD ∠大40︒,求BFD ∠的度数.
20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):
(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';
(2)过点A 画线段AD 使//AD BC 且AD BC =;
(3)图中AD 与C B ''的关系是______;
(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 21.阅读理解. ∵4<5<9,即2<5<3. ∴1<5﹣1<2

5﹣1的整数部分为1, ∴5﹣1的小数部分为5﹣2. 解决问题:已知a 是17﹣3的整数部分,b 是17﹣3的小数部分.
(1)求a ,b 的值;
(2)求(﹣a )3+(b +4)2的平方根,提示:(17)2=17.
22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 23.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .
(1)若20n =时,则BED ∠=___________;
(2)试求出BED ∠的度数(用含n 的代数式表示);
(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)
24.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=1
3
∠CAB,∠CDP=1
3
∠CDB,试问∠P与∠C、
∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】
解:因为
2
11
416⎛⎫
±=

⎝⎭

所以
1
16
的平方根是
1
4
±,
故选:C.
【点睛】
本题考查了平方根,熟练掌握平方根的定义是解题关键.
2.D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
解析:D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
D、是由基本图形平移得到的,故选此选项.
综上,本题选择D.
【点睛】
本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断. 3.B
【分析】
互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限.
【详解】
解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数
∴120m m -+=
解得m =1
∴1-2m =1-2×1=-1,m =1
∴点P 坐标为(-1,1)
∴点P 在第二象限
故选B .
【点睛】
本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.B
【分析】
根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决.
【详解】
解:①平面内,过一点有且只有一条直线与已知直线垂直,故①错误;
②两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故②错误;
③经过两点有一条直线,并且只有一条直线,故③正确;
④在同一平面内,不重合的两条直线不是平行就是相交,故④正确.
故选:B .
【点睛】
本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,可以判断各个选项中的说法是否正确.
5.A
【分析】
过点E 作EF ∥AB ,则EF ∥CD ,利用“两直线平行,内错角相等”可得出∠BAE =∠AEF 及∠C =∠CEF ,结合∠AEF +∠CEF =90°可得出∠BAE +∠C =90°,由邻补角互补可求出∠BAE 的度数,进而可求出∠C 的度数.
【详解】
解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵32.37,
∴33
32370= 2.3710=1.33310=13.3313.3
⨯⨯≈,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.A
【分析】
根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.
【详解】
AE BF,
解:由题意可得:∠A=60°,∠CBF=20°,//
AE BF,
∵//
∴∠A+∠ABF=180°,
∴∠ABF=180°﹣∠A
=180°﹣60°
=120°,
∴∠ABC=∠ABF﹣∠CBF
=120°﹣20°
=100°,
故选:A.
【点睛】
本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.
8.A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体
解析:A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体每次相遇时间间隔为
12
1
4
2
秒,
则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),
∵2021=3×673+2,
∴第2021次两个物体相遇位置为(-1,-1),
故选:A.
【点睛】
本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.
二、填空题
9.【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x=或x=−(舍),
即正方形的边长为m,
所以周长为4cm
故答案为:
解析:
【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x x=

所以周长为
故答案为:
【点睛】
本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.
10.1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题
解析:1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点()11A m n +-,
与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,
解得:2m =,1n =-,
∴20192019()(21)1m n +=-=.
故答案为:1.
【点睛】
本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
11.α=β
【详解】
试题解析:
当BF ∥DP 时,
即:
整理得:
故答案为
解析:α=β
【详解】
试题解析:360.ABC ADC A C ∠+∠+∠+∠=
360.ABC ADC CBM CDN ∠+∠+∠+∠=
.CBM CDN A C αβ∴∠+∠=∠+∠=+
当BF ∥DP 时,
()1,2
C PDC FBC CDN CBM ∠=∠+∠=∠+∠ 即:()1,2
βαβ=+ 整理得:.αβ=
故答案为.αβ=
12.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB ∥CD ,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB ∥CD ,如图
∴∠GEC =∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED +∠GEC =180゜
∴∠2=11(180)(180108)3622
GEC ︒-∠=⨯︒-︒=︒ 故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 13..
【分析】
根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.
【详解】
如下图,连接DE ,与
解析:80︒.
【分析】
根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得BD B D '=, DC DB '=,由等腰三角形性质以及三角形外角定理求得BDB '∠度数,在BOD 中根据内角和即可求得BA 与B D '所夹锐角的度数.
【详解】
如下图,连接DE ,BA 与B D '相交于点O ,
将 △BDE 沿 DE 折叠,
BDE B DE '∴△≌△,
BD B D '∴=,
又∵D 为BC 的中点,BD DC =,
BD B D '∴=,
41DB C C '∴==︒∠∠,
BDB DB C C =''∴=+︒∠∠∠82,
18080BOD B BDB '∴=︒--=︒∠∠∠,
即BA 与B D '所夹锐角的度数是80︒.
故答案为:80︒.
【点睛】
本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.
14.【分析】
按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.
【详解】
故答案为:
【点睛】
本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解
解析:3x
【分析】
按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.
【详解】
2
22322333()()x x x x x x x x x
--=-⋅÷-⋅= 故答案为:3x
【点睛】
本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.
15.(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】
解:∵,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积
解析:(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.
【详解】
解:∵()2
340
a b
-+-=,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积=1
2
×6×4=12,
四边形ABOP的面积=△AOP的面积+△AOB的面积=1
2×3×(-m)+1
2
×3×4=6-
3
2
m,
由题意得,6-3
2
m=12,
解得,m=-4,
∴点P的坐标为(-4,1),
故答案为:(-4,1).
【点睛】
本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.
16.(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-
解析:(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点2022
A的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,
可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,
横坐标每一次循环增加4
∵2021÷8=252…5,
∴2021A 的坐标为(252×4+2,-1),
∴点2021A 的坐标是是(1010,-1).
故答案为:(1010,-1).
【点睛】
本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.
三、解答题
17.(1)-1;(2)-1
【分析】
(1)根据乘方及二次根式的化简即可求解;
(2)根据乘法的分配率计算即可.
【详解】
(1)
(2)
【点睛】
本题考查的是实数的运算,掌握运算法则及乘法的分配率是
解析:(1)-1;(2)-1
【分析】
(1)根据乘方及二次根式的化简即可求解;
(2)根据乘法的分配率计算即可.
【详解】
(1)()4
12-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭
【点睛】
本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.
18.(1);(2)
【分析】
(1)先移项,然后运用直接开平方法,即可求出的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)
∴,
∴,
∴;
(2),
∴,
∴,
解析:(1)52
x =±;(2)52x = 【分析】
(1)先移项,然后运用直接开平方法,即可求出x 的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)24241x -=
∴2425x =, ∴2254
x =, ∴52
x =±; (2)()38127x -=,
∴()32718
x -=, ∴312x -=
, ∴52
x =; 【点睛】
本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题.
19.(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可
解析:(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可;
(2)根据平行线的性质得出∠A +∠AED =180°,∠A =∠BFD ,再求出∠AED ﹣∠A =40°,即可求出答案.
【详解】
(1)证明:∵DF //AC (已知),
∴∠A =∠BFD (两直线平行,同位角相等),
∵∠A =∠FDE (已知),
∴∠FDE =∠BFD (等量代换),
∴DE //AB (内错角相等,两直线平行);
故答案为:∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;
(2)解:∵DF //AC ,
∴∠A =∠BFD ,
∵∠AED 比∠BFD 大40°,
∴∠AED ﹣∠BFD =40°,
∴∠AED ﹣∠A =40°,
∴∠AED =40°+∠A ,
∵DE //AB ,
∴∠A +∠AED =180°,
∴∠A +40°+∠A =180°,
∴∠A =70°,
∴∠BFD =70°.
【点睛】
本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
20.(1)见解析;(2)见解析;(3),AD ∥;(4)
【分析】
(1)根据平移的性质,按要求作图即可;
(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;
(3)由平移的性质可得,∥BC ,,从而可以
解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)
154
【分析】
(1)根据平移的性质,按要求作图即可;
(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;
(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.
【详解】
解:(1)如图所示,即为所求:
(2)如图所示,即为所求:
(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';
故答案为:AD B C ''=,AD ∥B C '';
(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,
如图所示:∵AD ∥BC , ∴1115==3134=222
BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22
CE BH , ∴154BH =
, ∴点H 是直线CE 上一动点线段BH 的最小值为
154. 故答案为:154

【点睛】
本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1)a =1,b =﹣4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴,
∴4<5,
∴1<﹣3<2,

解析:(1)a=1,b4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴<
∴4<5,
∴1﹣3<2,
∴a=1,b4;
(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,
∴(﹣a)
3+(b+4)2的平方根是:±4.
【点睛】
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出45是解题关键.
22.符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b
解析:符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b=7350,
∴b=70,或b=-70(舍去),
即宽为70米,长为1.5×70=105米,
∵100≤105≤110,64≤70≤75,
∴符合国际标准球场的长宽标准.
【点睛】
本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解
解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=1
2∠ABC=n°,∠CDG=1
2
∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=1
2∠ABC=n°,∠CDG=1
2
∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=1
2∠ABC=n°,∠CDE=1
2
∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角
之间关系是解题关键.
24.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.。

相关文档
最新文档