卫星接收机高频头知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、卫星接收机高频头知识
(1)LNB:Low NoiseBlockKownco nvert er 简称LNB,低杂讯降频器的意思。
,俗称高频头。
作用是把C波段频率范围3.4GHz——4.2GHz;Ku波段10.75GHz——12.75GHz卫星传送下来的微弱信号放大后再与其中的本振作用后输出卫星接收机所需要的950MHz---2150MHz中频信号,说白了就是信号的一个中转站。
(2)高频头内部结构:由4个单元组成, 低噪声前端放大----极化信号切换---再放大后送入本振电路混频---两级中频放大输出信号,供电一般为78xx系列三端稳压。
(3)本振频率:C段高频头本振频率一般为5150MHz, 本振5150MHz和5750MH z两种;Ku段本振较多,有9.75GHz、10.0GHz、10.6GHz、10.75GHz、11.25GHz、110.30GHz等。
了解本振频率很重要,因为卫星下行频率与本振混频后所产生的信号中频,必需在接收机输入频率950MHz----2150GH z之内。
否则收不到或者部分信号,通过查阅卫星下行频率,我们就很快知道应该选用什么本振的高频头。
C段输出中频=本振频率-下行频率;Ku段输出中频=下行频率-本振频率
(4)噪声系数:C波段高频头的质量标准是噪声系数,用N lang=EN-US >( K )表示如25°K 、17°K等。
都说数字越小越好;而Ku波段则用dB (分贝)表示如0.8dB、0.6dB等市面上已出现13°>k高频头,是否噪声糸数越低越好呢,笔者也在呐闷,为什么每每遇到收视不好的情况换上老嘉顿28°k高频头后会有意外惊喜?难道是各厂标称不一。
(5)增益(GAIN):常见LBN增益为60dB,数值偏高为好。
但不能太高,放大倍数过高容易使放大器工作不稳定高频自激,形成网纹干扰。
一般来讲,单输出窄带高频头比双极性宽带高频头有更高的增益,低噪声温度比高噪声温度的高频头对信号的接收有更高增益。
双极性LNB F
每颗卫星上通常拥有24个电视频道,为充分利用这些频道,以及避免相邻频道的相互干扰,通常将频道顺序按单、双分开,分别以不同极化方式的电磁波发射,即水平与垂直,因为卫星的带宽为27M Hz,但频道间隔为20MHz。
说明有部分频率重合了。
双极化高频头是一种不用伺服马达的与馈源一体化的。
从LNB 圆波导口看进去,您将看到两个互相垂直的探针,用来分别接收垂直极化和水平极化的信号。
LNBF 波导采用最先进的设计,使两个探针间的水平/垂直信号隔离度超过20dB 并获得超低系数噪声温度利用来自接收机的13/18V 两种可切换的供电电压来确定所需要的是水平极化信号还是垂直极化信号。
双本振高频头:普通的C波段双极化高频头一般只有一个本振频率5150MHZ。
当节目设置水平极化时,接收机向高频头馈送18V电压;垂直极化时,馈送13V电压。
高频头识别工作电压,使相应的极化探针工作。
所以高频头只能工作在一种极化方式,不是水平就是垂直。
而双本振高频头是两个单本振高频头组合而成,各自工作混合输出。
水平探针5150MHZ本振;垂直为5750MHZ本振。
两个本振频率相差600MHZ,足以使两种极化信号的中频频率拉开距离。
此接收机识别到的只是不同频率的信号。
极化设置无效。
所以使用双本振高频头时接收机的设置很重要:一般水平节目的本振设5150MH Z;垂直节目设5750MH Z。
水平节目设置一般与平常的设置没什从区别。
而垂直5750MHZ本振极化信号。
接收机中如本振仍为5150。
则下行频率要减去600;若设ahoma">5750,则下行频率应加上600。
二、高频头的安装
当地面卫星接收天线安装完毕之后,就可着手安装高频头LNB F ,具体步骤如下:(1)将LNBF插入馈源盘中央的大圆孔中(如图1所示);
(2)根据天线参数F/D值,将馈源盘凸缘端面对准L NB F 侧面的F/D 相应刻度上(如图2所示);
(3)使LNBF频端面上的“0”刻度垂直于水平面(如图3所示);
(4)将馈源盘凸缘侧面的制紧螺钉稍微拧紧;
(5)LNBF的I F输出电缆与接收机的LNBF输入端口连接好。
三、高频头位置的调整
(1)首先应检查馈源是否处于抛物面天线的中心,焦点是否正确,否则可以稍微调整馈源支撑杆:使之对准(以信号最大为准)。
(2)检查LNBF侧面的F/D刻度是否按天线所给参数F/D 对准,为此可略微前后调整,使信号显示最大。
(3)卫星发射的电视信号:只有在卫星所在经度的子午线上,其极化方向才完全是水平或垂直的,而在其他地区接收时,会略有偏差,在实际接收的情况下,应稍微旋转动LNBF的方向,以使信号最大,这时LNBF顶端面上的刻度“0”可能不完全是垂直于水平面。
四、高频头的防护措施:
(1)防水:常见方法一般两种;一种是用塑料袋包住扎好;另外一种较好办法是选一个
1.2升雪碧塑料瓶剪去一半直接罩住高频头,很实在管用。
(2)防露,F头封口泥一般随高频头配送,没有的话可用玻璃代替<A N>。
去掉高频头导波口的塑料盖,选用2厘米厚包装箱泡沫一块,切个稍比导波口大一点的圆圈塞进导波口即可
(3)本振偏移:LNB本振频率偏移故障不多见。
接收机有较好的下行频率校正功能,当LNB 本振频率偏移,使输入的下行频率与本振频率的比对值有误差,或者本振频率没有偏移,而输入下行频率不准确,机器会自动修改数据,一定范围内调校到最佳值,当然在机器的容错范围内也能正常工作。
假如偏移过大,一般通过多次、多组下行频率修改输入解决。
有经验的还可以打开高频头盖子找到铝盖本振部份调整。
高频头选购与应用:可以肯定的一点就是,价格与性能永远成正比。
现在许多标称17°K 的高频头才卖二十多元,只宜家庭普通接收使用。
要应用一锅多星接收建议选用品牌高频头,能和单极化老牌高频头配合使用更好。
因为偏焦接收信号常常刚过坎门或不多充裕,单极化老牌高频头更能显现它的性能来,可谓立杆见影。
下行频率与高频头的关系
网上经常有星友问到:收某某卫星电视需要用什么高频头,为什么单本振高频头能收的频道,双本振收不到等问题。
这些问题都是因为没有搞清楚下行频率、高频头本振及接收机三者之间的关系所造成的。
目前市面上的卫星数字接收机的工作频率多为950-2150Mh z,有些机型是950-2050Mh z,因此高频头接收的卫星信号经转换后的频率必须是在这个范围内。
那高频头是如何转换的呢?很简单,就是一个减法运算,不过KU波段与C波段算法有所不同。
对于KU波段是用下行频率减去本卫星电视振频率,两者之差就是转换后的频率,必须落在接收机的工作频率范围之内。
例如,用PBI-1040高频头接收76.5度星的12730一组,其本振卫星电视频率为11300,输出频率为12730-11300=1430,落在了接收机工作频率950-2150的区间内,可以接受到节目。
但用来接收113度星就不行了。
113度星主要一组节目的下行频率是11132,那么11132-11300=-168,超出了接收机的工作范围。
通常接收113度星采用双本振高频头,因为其低本振9750可以满足要求,而9750单本振高频头市面上很少见。
反过来,用双本振高频头收76.5的12730一组就会出现问题,其高本振一般为10600,12730-10600= 2130,有些机器收不到。
C波段与KU波段的算法正好相反,是用卫星电视高频头本振减去下行频率。
由于C
波段高频头本振多为5150Mhz,比较固定,星友这方面的问题很少,不再罗嗦。
我想你要是看了本贴,不会再问以上的问题了吧。
卫星接收天线调整参数
卫星广播电视从模拟到数字,从C波段到K u波段,从传输到直播的发展非常迅速,我国有线电视的信源多数来自于卫星。
利用卫星传送技术进行覆盖是我国广播电视传输的一个重要组成部分,如村村通广播电视工程中利用卫星信号进行覆盖的就占了很大的比例。
为此,卫星接收是广电机构技术人员所必须掌握的一门技术。
要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。
1、方位角
从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。
从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。
我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。
所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线,卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。
如亚太6号卫星的星下点是位于赤道上的东经134度的位置,我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。
卫星天线的方位角计算公式是:A=arctg{tg(ψs-ψg)/sinθ}----------(1)
公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。
图1是卫星的方位角示意图。
方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。
即可完成方位角的调整。
2、仰角
仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。
仰角的计算公式是:。
仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。
方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。
3、极化角
国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。
地面接收天线极化的定义是以卫星接收点的地平面为基准,天线馈源(或极化器)矩形波导口窄边平行于地平面,则电场矢量平行于地平面,定义为水平极化;反之馈源矩形波导口窄边垂直于地平面定义为垂直极化如图3所示。
地面接收天线与卫星辐射电磁波必须满足极化匹配的条件,即水平-水平,垂直-垂直。
假定卫星波束中心与卫星同经度,那么与星下点同经度(但纬度不同)的非星下点接收天线能很好地与卫星辐射电磁波匹配,而与星下点不同经度的非星下点接收天线的极化必须旋转一个角度(即极化角,这个极化角也等于星下点的接收天线所在的地平面与非星下点的接收天线所在的地平面之间的交角)才能与卫星电波相匹配。
如图4所示
地面接收天线的极化角P可用下式计算:
P = arctg[sin(ψs-ψg)/tgθ] ------------------------------- (3)
从公式可以看出极化角是卫星与接收站经度差及接收站纬度的函数。
相同经度的接收站,p值为0;相同纬度的地球站,经度差越大,p绝对越值大,这从直观上也容易理解。
如果波束中心与星下点的经度不同,以上式计算将存在误差,但公式(1)可作为接收站极化调整的理论基础依据。
如果卫星波束中心与卫星经度不同甚至相差较大,那么只需将公式(3)中的卫星经度ψs换成波束中心的经度ψc就可以了。
当然计算结果也只是一个理论值,实际的极化角由具体调整来确定。
P = arctg [sin (ψc -ψg ) / tgθ] (4) ψc:波束中心的经度。
一般实际的极化角在公式3和4两个计算结果之间,更接近公式(3)的计算结果
3-1、极化调整
3-1-1 极化干扰分析
卫星电视系统产生极化不匹配主要原因是接收站天线极化匹配不良(极化角调整不准)。
单极化系统,极化不匹配会产生极化损耗使接收信号降低。
为此不同的转发器之对于双极化系统,多个转发器所使用的下行频率可能是有相同的,
间的信号是依靠不同的极化进行隔离的,所以极化如不匹配不仅产生极化损耗,还会产生
两个极化系统之间的同频正交极化干扰,这种一个极化系统的信号对另一个极化系统信号
的干扰体现为噪声的增加,使接收信号载噪比大大降低,严重时有明显干扰,甚至无法收看。
下面来分析一下这种极化干扰的产生原因,以亚洲卫星二号为例,见图3所示。
从图中可看出,3A转发器和3B转发器所使用的下行频率有部分是相同的。
亚洲卫星二号的3B转发器有5个SCP C数字电视载波,每个载波输出功率回退3dB(转发器辐射总功率的0.707倍),下行极化方式是水平极化,用ELRP‖表示其地面信号的电场强度(或电平);3A转发器只有一个MC PC(香港STAR TV)数字电视载波,无输出功率回退,下行极化方式是垂直极化,用EIRP⊥表示其地面信号的电场强度(或电平)。
则得到下式:EIRP⊥= EIRP‖+ 3dB
EIRP⊥/ EIRP‖=1/0.707=1.414
所以有E⊥≈1.414E‖
假定使用单极化接收天线,准备接收水平极化的“江西卫视”,而馈源未作调整,极化匹配处于标准的水平极化状态,接收地点是南昌,根据计算极化角P1=-28°。
从图4的极化干扰分析中得知,卫星水平极化波耦合到馈源水平极化端口的主极化分量为E‖_0=E‖cosp1,卫星垂直极化波偶合到馈源水平极化端口的反极化分量为E⊥_0=E⊥cos(90-p1)。
忽略所有其它噪声的干扰,则水平极化的载噪比是:
(C/N) = 20lg|(E‖cosP1) / [E⊥cos(90-P1)]|
= 20lg|E‖cos(-28) / [1.414E‖cos(90+28)]|=2.5db
显然此数值明显低于数字卫星接收机的门限,也就是说上述状态下根本收不到“江西卫视”节目。
3-2 极化角的调整
调整极化角之前,先计算理论值,其值有三种情况:P>0,P=0, P<0,对应的极化角调整方向是,当P=0时,接收站与卫星同经度,其极化为理想的水平(或垂直)极化;当P>0,此时接收天线的方位角是南偏东,前馈天线馈源顺时针旋转(站在天线的前),后馈天线逆时针旋转(站在天线的后);当P<0,此时接收天线的方位角是南偏西,前馈天线馈源逆
时针旋转,后馈天线顺时针旋转。
在实际的极化角调整中,可分二步走:
a、粗调:先按计算所得的仰角、方位角和极化角调整天线指向及馈源旋转角度,使仰角、方位角最佳并锁定天线指向。
b、细调:用频谱仪分析仪、AGC电压或卫星接收机中的信号强度指示条等方法精确调整。
由于频谱仪价格高,所以在实际操作中都使用方便简单的A GC电压法和卫星接收机中的信号强度指示条法。
3-2-1 AGC电压调整法
AGC(自动增益控制)电压调整法是利用卫星接收机输出的A GC电压来调整接收天线的极化匹配。
该法无需昂贵仪器,只要带有AG C电压输出的卫星接收机和万用表即可,适合普通用户。
调整步骤如下:设高频头为单极化(水平极化)的。
首先把天线馈源(或极化器)矩形波导口窄边平行于地平面,并将接收机设置相应的频道和参数,使之能收到电视信号(水平极化的信号),缓慢旋转馈源,旋转的方向和角度以计算值P为基准,找到AGC电压的最大点,此即为极化最佳匹配位置,锁定馈源,极化调整即告结束。
极化调整好以后,图像清淅、稳定、无干扰,声音悦耳、无噪声,某一端口只能接收极化匹配不好的系统最常见现象是:图像噪波多,出现大面积色块画面时某种极化的节目。
更明显,有不稳定的短白线干扰,或两种不同极化的节目在一个端口上均能收到。
A GC电压调整法一般用在模拟卫星电视的场合。
3-2-2 信号强度调整法
当接收数字卫星电视,因为数字卫星接收机绝大多数没有A GC电压输出端口,所以AGC电压调整法受到限制。
信号强度调整法是利用卫星接收机自带的信号检测功能来完成,无需任何仪器。
自带的信号检测功能的接收机,当进入安装调试功能界面时,会显示两条指示条。
一条称为信号强度指示条,其值用%来表示,另一条称为信号质量指示条(称为C/N指示条更贴切些),其值也是用%来表示。
信号强度指示条用来表示接收机与馈源链路的好坏情况,与是否接收到信号无关,此
信号质量指示条使用来指示条可用来检测接收机与馈源的连接是否正常和馈源是否有故障。
表示接收到的信号的好坏,它是作天线调试的主要参考依据。
信号质量指示条根据信号的强弱分别用红色、黄色、绿色表示,随着信号的逐步增强,除指示条的值不断变大外,指示条颜色也从红到黄再到绿变化,当指示条的颜色为黄色时表示接收机以锁定信号,即信号电平已达门限值,当颜色变绿时,表示已能顺利地解码出图像。
信号强度调整法也属于峰值法。
其步骤如下:
首先正确连接馈源-接收机,并使接收机进入天线安装调试状态,此时监视器上有一定的信号强度指示,这一指示值反映了馈源-接收机物理链路的损耗大小。
按接收节目的参数设置接收机,然后缓慢旋转馈源,旋转的方向和角度以计算值P为基准,使信号质量的指示条达到最大值和颜色为绿色后锁定馈源,此时极化匹配调整即告完成。
接收界面如图7。
4、高频头相关问题
卫星接收天线高频头有五种,分别是:
①单极化、单本振、单输出高频头;
②双极化、单本振、单输出高频头;
③双极化、单本振、双输出高频头;
④双极化、双本振、单输出高频头;
⑤双极化、双本振、双输出高频头。
单极化高频头只有一根探针(垂直或水平),这种高频头只能接收一个极化方向的信号,如果要接收另一极化方向的信号,就要旋转高频头进行调整。
双极化高频头有两根互为正交的探针(一个垂直探针,一个水平探针),可同时接收垂直极化信号和水平极化信号。
早前出品的C波段高频头,只有一根探针,它以高频头矩型接口的宽边和地面平行时为典型状态,作为极化角的“0”度,这时在接收垂直极化信号状态,要接收水平极化信号,就需要转动高频头,使矩形接口的宽边和地面垂直(如图3)。
如果要接收圆极化波,就需转动波导管,使其中的介质片呈向左的45度角或向右的45度角。
图8是一种双极化、双本振、单输出的C波段高频头,这种高频头里面有两个降频器同时工作,一个工作在垂直极化,一个工作在水平极化。
本振也分为垂直极化本振和水平极化本振,因为使用不同的本振频率所以输出的中频也不同,混合后互不干扰,通常定义为垂直使用高本振即5750MHZ,水平使用低本振5150MHZ。
C波段频率为3600——4200MH Z。
因此水平极化节目的中频是950——1550MH Z垂直极化节目的中频是1550——2150M H Z,两种中频信号通过混合器合成一路信号输出。
再通过功分器分成若干路给多台接收机收看,每台接收机只需通过选择不同的本振(如将垂直极化节目的本振频率设定为5750M,水平极化节目设置为5150M)就可以收到不同极化的节目。
打开双极化高频头前面的盖子向里望去,有两根短探针,这就是天线的振子,和地面垂直的那根探针是垂直极化振子,和地面平行的那根探针是水平极化振子。
双极化高频头中的两根探针是互为90度排列的,一般是垂直振子在时钟面六点的位置上;水平振子在时钟面三点的位置上,这时是双极化高频头极化角“0”度位置。
而单极化高频头中的一根振子,垂直在时钟面六点的位置上时是垂直极化角的“0”度,同样,单极化高频头中的一根振子,水平在时钟面三点的位置上时是水平极化角的“0”度。
图9是双极化高频头的振子位置图。
对于双极化、单本振、单输出的高频头,这种高频头内设计了一个13V/18V的转换开关,当接收机通过同轴电缆向高频头提供18V的电压时,这个转换开关就让水平极化的信号通过,而当接收机向高频头提供13V的电压时,这个转换开关就让垂直极化的信号通过。
具备这种功能的接收机,它的界面上都有一个“极化”选择的选项,这种高频头在某一时刻只能输出一个极化的信号。
对于双极化、双本振、双输出的高频头,高频头的两个输出端各自输出不同的极化信号,两个输出端要外接一个二选一的转换开关,此开关的接通状态是由接收机的0/22KHZ系统控制的,接收机通过对选择开关的控制,从而达到选择某一极化信号的目的。
对于双极化、单本振、双输出高频头,其每个输出端口均可输出水平、垂直极化节目,供两台接收机使用,在每台接收机中均可任意收看水平、垂直节目,不会对另一台接收机产生干扰,这种高频头不需要开关控制。
带有0/22K开关功能的接收机,其22KHZ的开关脉冲是叠加在供电直流电源上的,当接收机设置为22K关时,接收机无22KJZ开关脉冲信号输出,22K选择开关处于常闭端导通状态。
当接收机设置为22K开时,接收机有22KHZ的方波模拟脉冲信号输出,经22K开关内部整流电路的整流后得到直流电压驱使22K选择开关由常闭端导通切换为常开端导通,从而达到切换的目的。
从这也可以看处,22K开关只能完成二选一的开关转换,这和13V/18V转换开关功能是一样的。
DiSEqC(英文为Dig italSatell ite Equipm ent Contro l,直译为:数字卫星设备控制)有1.0、1.1、1.2、2.0等版本标准,它是利用数字卫星电视接收机发出控制指令给相应的设备,如切换开关、切换器、天线驱动设备、高频头等,来控制这些设备的工作状态。
其工作过程是数字卫星接收机内部在同步时钟脉冲配合下,DiSEqC控制信号是以不连续数字信号形式
调制在22KHZ及高频头电源上,再通过与高频头相连的同轴电缆线传送到相关的设备上。
DiSEqC1.0常用于对多入一出中频切换器的控制(多星接收),DiSEqC1.1是1.0的扩充版本,DiSEqC1.2则加入驱动并控制推动杆或极轴座的功能;DiSEqC2.0具有和受控设备进行双向交互的功能,受控设备的工作状态和相关参数可回传给接收机,为此接收机可实现对受控设备进行更精确更智能化的控制。
近年,很多卫星接收爱好者都在进行一锅多星或多锅一机的接收试验,显然在这种情况下,13V/18V或0/22K开关的控制量是不够的,为此可使用D isEqc控制方式的多选一开关,把这三种形式的开关混合使用就可搭建出一锅多星或多锅一机的接收平台。
图10是12星一机的接收连线图。
开关控制信号组成结构是:DisEqc信号→调制于22K HZ→22KHZ叠加在高频头供电直流电压上。
其工作过程是:首先接收机发送受Dis Eqc 信号调制的22KHZ信号到四选一开关进行初选,然后接收机再发送没加调制的22K HZ信号进行再选择,由于此时 22KHZ上没有Dis Eqc信号,所以不影响四选一开关,最后通过对供电电压的选择来确定要接收的卫星。
通过这样的组合选择,从而完成在12颗卫星中任选接收其中一颗卫星的过程。