八年级数学上册压轴题 期末复习试卷专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册压轴题 期末复习试卷专题练习(word 版
一、压轴题
1.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3
b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+=
=,()8223
y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.
①试确定y 与x 的关系式;
②在给定的坐标系xOy 中,画出①中的函数图象;
③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.
2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .
(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.
3.(1)在等边三角形ABC 中,
①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;
②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;
(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若
∠ACB=α,求∠BFE的大小.(用含α的代数式表示).
4.如图,在平面直角坐标系中,直线y=﹣3
4
x+m分别与x轴、y轴交于点B、A.其中B
点坐标为(12,0),直线y=3
8
x与直线AB相交于点C.
(1)求点A的坐标.
(2)求△BOC的面积.
(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.
①求d与t的函数解析式(写出自变量的取值范围).
②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H
(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t
的取值范围.
5.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).
(1)如图2,点B的坐标为(b,0).
①若b=﹣2,则点A,B的“相关矩形”的面积是;
②若点A,B的“相关矩形”的面积是8,则b的值为.
(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;
(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.
6.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分
∠EPK,求∠HPQ的度数.
7.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:
(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?
(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于
F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF
8.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .
(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;
(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;
(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC
的值.
9.如图,在平面直角坐标系中,直线334
y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .
(1)求证:AD BE =;
(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;
(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条
件的t 的值;若不存在,请说明理由.
10.(1)填空
①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;
②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.
(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.
11.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .
①求证:∠1=∠2;
②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;
(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABF
ACF S S 的值.
12.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .
(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;
(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;
(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)
【解析】
【分析】
(1)根据融合点的定义3a c x +=,3
b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;
②利用①的函数关系式解答;
③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.
【详解】
解:(1)x =-17233a c ++==,y =54333
b d ++==, 故点C 是点A 、B 的融合点;
(2)①由题意得:x=
4
33
a c t
++
=,y=
25
33
b d t
++
=,则3-4
t x
=,
则
()
23-45
2-1
3
x
y x
+
==;
②令x=0,y=-1;令y=0,x=1
2
,图象如下:
③当∠THD=90°时,
∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.
∴t=1
3
(t+4),
∴t=2,
∴点E(2,9);当∠TDH=90°时,
∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.
∴4=1
3
(4+t)
∴t=8,
∴点E(8,21);
当∠HTD=90°时,
由于EH与x轴不平行,故∠HTD不可能为90°;
故点E的坐标为:(2,9)或(8,21).
【点睛】
本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.
2.(1)见解析(2)(4,2)(3)(6,0)
【解析】
【分析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
【详解】
证明:∵∠ACB=90°,AD⊥l
∴∠ACB=∠ADC
∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
∴∠CAD=∠BCE,
∵∠ADC=∠CEB=90°,AC=BC
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
由已知得OM=ON,且∠OMN=90°
∴由(1)得MF=NG,OF=MG,
∵M(1,3)
∴MF=1,OF=3
∴MG=3,NG=1
∴FG=MF+MG=1+3=4,
∴OF﹣NG=3﹣1=2,
∴点N的坐标为(4,2),
(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,
对于直线y=﹣3x+3,由x=0得y=3
∴P(0,3),
∴OP=3
由y=0得x=1,
∴Q(1,0),OQ=1,
∵∠QPR=45°
∴∠PSQ=45°=∠QPS
∴PQ=SQ
∴由(1)得SH=OQ,QH=OP
∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1
∴S(4,1),
设直线PR为y=kx+b,则
3
41
b
k b
=
⎧
⎨
+=
⎩
,解得
1
k
2
b3
⎧
=-
⎪
⎨
⎪=
⎩
∴直线PR为y=﹣
1
2
x+3
由y=0得,x=6
∴R(6,0).
【点睛】
本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
3.(1)①60°;②60°;(2)∠BFE =α.
【解析】
【分析】
(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得
∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;
(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.
【详解】
(1)如图①中,
∵△ABC是等边三角形,
∴AC=CB,∠A=∠BCD=60°,
∵AE=CD,
∴△ACE≌△CBD,
∴∠ACE=∠CBD,
∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.
(2)如图②中,
∵△ABC是等边三角形,
∴AC=CB,∠A=∠BCD=60°,
∴∠CAE=∠BCD=′120°
∵AE=CD,
∴△ACE≌△CBD,
∴∠ACE=∠CBD=∠DCF,
∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.
故答案为60.
(3)如图③中,
∵点O是AC边的垂直平分线与BC的交点,
∴OC=OA,
∴∠EAC=∠DCB=α,
∵AC=BC,AE=CD,
∴△AEC≌△CDB,
∴∠E=∠D,
∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.
【点睛】
本题综合考查了三角形全等以及三角形外角和定理.
4.(1)点A坐标为(0,9);(2)△BOC的面积=18;(3)①当t<8时,d=﹣
9 8t+9,当t>8时,d=
9
8
t﹣9;②
1
2
≤t≤1或
76
17
≤t≤
80
17
.
【解析】
【分析】
(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;
(3)由题意列出不等式组,可求解.
【详解】
解:(1)∵直线y=﹣3
4
x+m与y轴交于点B(12,0),
∴0=﹣3
4
×12+m,
∴m=9,
∴直线AB的解析式为:y=﹣3
4
x+9,
当x=0时,y=9,
∴点A坐标为(0,9);
(
2)由题意可得:
3
8
3
9
4
y x
y x
⎧
=
⎪⎪
⎨
⎪=+
⎪⎩
,
解得:
8
3 x
y
=
⎧
⎨
=
⎩
,
∴点C(8,3),
∴△BOC的面积=1
2
×12×3=18;
(3)①如图,
∵点D的横坐标为t,
∴点D(t,﹣3
4
t+9),点E(t,
3
8
t),
当t<8时,d=﹣3
4
t+9﹣
3
8
t=﹣
9
8
t+9,
当t>8时,d=3
8
t+
3
4
t﹣9=
9
8
t﹣9;
②∵以点H(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,
∴1
2
≤t≤1或
91
9
82
9
91
8
t t
t t
⎧
-+≤-
⎪⎪
⎨
⎪-+≥-
⎪⎩
,
∴1
2
≤t≤1或
76
17
≤t≤
80
17
.
【点睛】
本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.
5.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取
值范围为﹣3≤m≤﹣2m≤3.
【解析】
【分析】
(1)①由矩形的性质即可得出结果;
②由矩形的性质即可得出结果;
(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;
(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=1
2
DE=
1,EF=DF=DE=2,得出OF OD
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则
点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣
≤m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣
≤m≤1;即可得出结论.
【详解】
解:(1)①∵b=﹣2,
∴点B的坐标为(﹣2,0),如图2﹣1所示:
∵点A的坐标为(1,2),
∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,
故答案为:6;
②如图2﹣2所示:
由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,
∴|b﹣1|=4,
∴b=5或b=﹣3,
故答案为:5或﹣3;
(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,
∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,
∴正方形AGCH的边长为3,
当点C在直线x=1右侧时,如图3﹣1所示:
CG=3,
则C(4,﹣1),
设直线AC的表达式为:y=kx+a,
则
2
14
k a
k a
=+
⎧
⎨
-=+
⎩
,
解得;
1
3
k
a
=-
⎧
⎨
=
⎩
,
∴直线AC的表达式为:y=﹣x+3;
当点C在直线x=1左侧时,如图3﹣2所示:CG=3,
则C(﹣2,﹣1),
设直线AC的表达式为:y=k′x+b,
则
2
12
k b
k b
=+
⎧
⎨
-=-+
'
'
⎩
,
解得:
k1 b1
=
⎧
⎨
=
'
⎩
,
∴直线AC的表达式为:y=x+1,
综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;
(3)∵点M的坐标为(m,2),
∴点M在直线y=2上,
∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),
∴OD=OE=1
2
DE=1,EF=DF=DE=2,
∴OF=3OD=3,
分两种情况:如图4所示:
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(﹣2+3,2)或(2﹣3,2);
∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(2﹣3,2)或(﹣2+3,2);
∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;
综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.
【点睛】
此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.
6.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.
【解析】
【分析】
(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;
(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得
90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知
1452
QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.
【详解】
(1)AB ∥CD ,
理由如下:
∵∠1与∠2互补,
∴∠1+∠2=180°,
又∵∠1=∠AEF ,∠2=∠CFE ,
∴∠AEF +∠CFE =180°,
∴AB ∥CD ;
(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.
又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902
FEP EFP BEF EFD ︒∠+∠=
∠+∠= ∴∠EPF =90°,即EG ⊥PF .
∵GH ⊥EG ,
∴PF ∥GH ;
(3)∵∠PHK =∠HPK ,
∴∠PKG =2∠HPK .
又∵GH ⊥EG ,
∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,
∴∠EPK =180°﹣∠KPG =90°+2∠HPK .
∵PQ 平分∠EPK , ∴1452
QPK EPK HPK ︒∠=
∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.
答:∠HPQ 的度数为45°.
【点睛】 本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.
7.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;
(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出
∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.
【详解】
(1)解:CD 和BE 始终相等,理由如下:
如图1,AB=BC=CA ,两只蜗牛速度相同,且同时出发,
∴CE=AD ,∠A=∠BCE=60°
在△ACD 与△CBE 中,
AC=CB ,∠A=∠BCE ,AD=CE
∴△ACD ≌△CBE (SAS ),
∴CD=BE ,即CD 和BE 始终相等;
(2)证明:根据题意得:CE=AD ,
∵AB=AC ,
∴AE=BD ,
∴△ABC 是等边三角形,
∴AB=BC ,∠BAC=∠ACB=60°,
∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,
∴∠EAB=∠DBC ,
在△BCD 和△ABE 中,
BC=AB ,∠DBC=∠EAB ,BD=AE
∴△BCD ≌△ABE (SAS ),
∴∠BCD=∠ABE
∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,
∴∠CQE=180°-∠DQB=60°,即CQE=60°;
(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:
如图,过点D 作DG ∥BC 交AC 于点G ,
∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,
∴△ADG 为等边三角形,
∴AD=DG=CE ,
在△DGF 和△ECF 中,
∠GFD=∠CFE ,∠GDF=∠E ,DG=EC
∴△DGF ≌△EDF (AAS ),
∴DF=EF.
【点睛】
本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.
8.(1)见详解,(2)2BD CF ,证明见详解,(3)23
.
【解析】
【分析】
(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;
(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;
【详解】
(1)证明:如图1中,
BE AD ⊥于E ,
90AEF BCF ∴∠=∠=︒,
AFE CFB ∠=∠,
DAC CBF ∴∠=∠,
BC AC =,
BCF ACD ∴∆≅∆(AAS ),
BF AD ∴=.
(2)结论:2BD CF =.
理由:如图2中,作EH AC ⊥于H .
90AHE ACD DAE ∠=∠=∠=︒,
90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,
ADC EAH ∴∠=∠,AD AE =,
ACD EHA ∴∆≅∆,
CD AH ∴=,EH AC BC ==,
CB CA =,
BD CH ∴=,
90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,
EHF BCF ∴∆≅∆,
FH FC ∴=,
2BD CH CF ∴==.
(3)如图3中,作EH AC ⊥于交AC 延长线于H . 90AHE ACD DAE ∠=∠=∠=︒, 90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,
ADC EAH ∴∠=∠,
AD AE =,
ACD EHA ∴∆≅∆,
CD AH ∴=,EH AC BC ==,
CB CA =,
BD CH ∴=,
90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,
EHM BCM ∴∆≅∆,
MH MC ∴=,
2BD CH CM ∴==.
3AC CM =,设CM a =,则3AC CB a ==,2BD a =,
∴2233
DB a BC a ==.
【点睛】
本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.
9.(1)详见解析;(2)36(04)2BDE t t S -+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.
【解析】
【分析】 (
1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;
(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;
(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.
【详解】
解:(1)证明:射线//BF x 轴,
EBC DAC ∴∠=∠,CEB CDA ∠=∠,
又
C 为线段AB 的中点,
BC AC ∴=,
在△BCE 和△ACD 中, CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△BCE ≌△ACD (AAS ),
BE AD ∴=;
(2)解:在直线334
y x =-+中, 令0x =,则3y =,
令0y =,则4x =,
A ∴点坐标为(4,0),
B 点坐标为(0,3),
D 点坐标为(,0)t ,
4AD t BE ∴=-=,
113(4)36(04)222
BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;
(3)当BD BE =时,
在Rt OBD ∆中,90BOD ∠=︒,
由勾股定理得:222OB OD DB +=,
即2223(4)t t +=-
解得:78
t =; 当BD DE =时,
过点E 作EM x ⊥轴于M ,
90BOD EMD ∴∠=∠=︒,
//BF OA ,
OB ME ∴= 在Rt △OBD 和Rt △MED 中,
==BD DE OB ME
⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),
OD DM t ∴==,
由OM BE =得:24t t =- 解得:43t =
, 综上所述,当78t =或43
时,使得△BDE 是以BD 为腰的等腰三角形.
【点睛】
本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.
10.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.
【解析】
【分析】
(1)①如图①知1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠得 ()1112
EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=
∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.
(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出
11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.
②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出
()112906090A MC ︒︒︒-+∠=,即可求出解.
(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.
【详解】
解:(1)①如图①中,
1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=
∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22
EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=
∠+∠=⨯=, 故答案为45︒.
(2)①如图③中由折叠可知,
11,CMF FMC BME EMB ∠=∠∠=∠,
1111C MF EMB EMF C MB ∠+∠-∠=∠,
11CMF BME EMF C MB ∴∠+∠-∠=∠,
11()BMC EMF EMF C MB ∴∠-∠-∠=∠,
111808020C MB ︒︒︒∴-=∠=;
②如图④中根据折叠可知,
11,CMF C MF ABE A BE ∠=∠∠=∠,
112290CMF ABE A MC ︒∠+∠+∠=,
112()90CMF ABE A MC ︒∴∠+∠+∠=,
()1129090EMF AMC ︒︒∴-∠+∠=,
()11
2906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;
(3)如图⑤-1中,由折叠可知,a ββγ-=-,
2a γβ∴+=;
如图⑤-2中,由折叠可知,a ββγ-=+,
2a γβ∴-=.
【点睛】
本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.
11.(1)①见解析;②见解析;(2)2
【解析】
【分析】
(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;
②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;
(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;
【详解】
(1)①证明:如图1中,
∵AB=AC,∠ABC=60°
∴△ABC是等边三角形,
∴∠BAC=60°,
∵AD⊥BN,
∴∠ADB=90°,
∵∠MBN=30°,
∠BFD=60°=∠1+∠BAF=∠2+∠BAF,
∴∠1=∠2
②证明:如图2中,
在Rt △BFD 中,∵∠FBD =30°,
∴BF =2DF ,
∵BF =2AF ,
∴BF =AD ,
∵∠BAE =∠FBC ,AB =BC ,
∴△BFC ≌△ADB ,
∴∠BFC =∠ADB =90°,
∴BF ⊥CF
(2)在BF 上截取BK =AF ,连接AK
.
∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,
∴∠CFB =∠2+∠4+∠BAC ,
∵∠BFE =∠BAC =2∠EFC ,
∴∠1+∠4=∠2+∠4
∴∠1=∠2,∵AB =AC ,
∴△ABK ≌CAF ,
∴∠3=∠4,S △ABK =S △AFC ,
∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,
∴∠KAF =∠1+∠3=∠AKF ,
∴AF =FK =BK ,
∴S △ABK =S △AFK ,
∴ABF AFC
S 2S ∆∆=. 【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
12.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.
【解析】
【分析】
(1)利用含30的直角三角形的性质得出12
BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;
(3)同(2)的方法得出结论.
【详解】
解:(1)
90ACB ∠=︒,30A ∠=︒,
60CBA ∴∠=︒,12
BC AB =, 点D 是AB 的中点,
BC BD ∴=,
故答案为:BC BD =;
(2)BF BP BD +=,
理由:90ACB ∠=︒,30A ∠=︒,
60CBA ∴∠=︒,12
BC AB =, 点D 是AB 的中点,
BC BD ∴=,
DBC ∴∆是等边三角形,
60CDB ∴∠=︒,DC DB =,
线段DP 绕点D 逆时针旋转60︒,得到线段DF ,
60PDF ∴∠=︒,DP DF =,
CDB PDB PDF PDB ∴∠-∠=∠-∠,
CDP BDF ∴∠=∠,
在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩
,
DCP DBF ∴∆≅∆,
CP BF ∴=,
CP BP BC +=,
BF BP BC ∴+=,
BC BD =,
BF BP BD ∴+=;
(3)如图③,BF BD BP
=+,
理由:90
ACB
∠=︒,30
A
∠=︒,
60
CBA
∴∠=︒,
1
2
BC AB
=,
点D是AB的中点,
BC BD
∴=,
DBC
∴∆是等边三角形,
60
CDB
∴∠=︒,DC DB
=,
线段DP绕点D逆时针旋转60︒,得到线段DF,
60
PDF
∴∠=︒,DP DF
=,
CDB PDB PDF PDB
∴∠+∠=∠+∠,
CDP BDF
∴∠=∠,
在DCP
∆和DBF
∆中,
DC DB
CDP BDF
DP DF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
DCP DBF
∴∆≅∆,
CP BF
∴=,
CP BC BP
=+,
BF BC BP
∴=+,
BC BD
=,
BF BD BP
∴=+.
【点睛】
此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF
∆≅∆,是一道中等难度的中考常考题.。