北京市中关村中学2018-2019学年上学期期中高考数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市中关村中学2018-2042学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 复数i i
i
z (21+=是虚数单位)的虚部为( )
A .1-
B .i -
C .i 2
D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.
2. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )
A .10
B .11
C .12
D .13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 3. 记
,那么
A
B
C D
4. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2
【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 5. 函数2
(44)x
y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .1
6. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个
圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .π21
C .π121-
D .π2141-
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 7. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为
2
π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π
D .23π
8. 已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( ) A.5
B.2
D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
9. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①
()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④
⎩⎨
⎧=≠=0
,00
|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4
【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要
D
A
B
C
O
有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 10.已知抛物线2
4y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C. D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 11.设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则7
4
S a =( ) A .
74 B .14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
12.若当R x ∈时,函数|
|)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.设R m ∈,实数x ,y 满足23603260y m
x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若182≤+y x ,则实数m 的取值范围是___________.
【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
14.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 15.已知函数2
1()sin cos sin 2f x a x x x =-+
的一条对称轴方程为6
x π
=,则函数()f x 的最大值为
___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想. 16.设全集
______.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 3
2
=,且0=⋅. (1)求曲线C 的方程;
(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为
2
3
,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.
18.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,曲线C 1:⎩
⎪⎨⎪⎧x =1+3cos α
y =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
标系,C 2的极坐标方程为ρ=
2sin (θ+π4
)
.
(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=3π
4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
积.
19.(本小题满分12分)
如图长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面
相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由); (2)求平面α将长方体分成的两部分体积之比.
20.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r =(],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí
=+ïî(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C 的参数方程;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
21.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;
(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .
22.(本小题满分12分) 已知函数2
()x
f x e ax bx =--.
(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2
x ∈时,()1f x <.
北京市中关村中学2018-2042学年上学期期中高考数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A 【解析】
()
12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 2. 【答案】C
【解析】由题意,得甲组中78888486929095
887
m +++++++=,解得3m
=.乙组中888992<<,
所以9n =,所以12m n +=,故选C .
3. 【答案】B 【解析】【解析1】
,
所以
【解析2】
,
4. 【答案】B
【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B. 5. 【答案】C 【解析】
考点:指数函数的概念. 6. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形
OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P .
7.【答案】A
【解析】
考点:三角函数的图象性质.
8.【答案】A.
【解析】
9.【答案】B
第10.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||2
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
1
||||222
22
AF y
⋅=⨯⨯=,故选B.
11.【答案】C.
【解析】根据等差数列的性质,
423111
2()32(2)
a a a a d a d a d
=+⇒+=+++,化简得
1
a d
=-,∴
1
7
41
76
714
27
32
a d
S d
a a d d
⋅
+
===
+
,故选C.
12.【答案】C
【解析】由||
)
(x a
x
f=始终满足1
)
(≥
x
f可知1
>
a.由函数
3
|
|
log
x
x
y a
=是奇函数,排除B;当)1,0(
∈
x时,0
|
|
log<
x
a
,此时0
|
|
log
3
<
=
x
x
y a,排除A;当+∞
→
x时,0
→
y,排除D,因此选C.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】[3,6]
-.
【解析】不等式表示的区域如图所示(ABC
∆及其内部区域),
5
2y
x
d
+
=表示原点)0,0(
O到直线0
2:=
+y
x
l的距离,点)6,6(A到直线l的距离
5
18
5
6
12
≤
+
=
d成立,点)
,
2
6
3
(m
m
B
-
到直线l的距离5
18
5
6
3
≤
+
-
=
m
m
d,解得6
3≤
≤
-m,故填:[3,6]
-.
14.
【解析】
15.【答案】1 【
解
析
】
16.【答案】{7,9}
【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x -=-==
,∴),3
1
(y x E 则)1,(-=y x QM ,)1,3
1
(+=y x PE …………2分
∵0=⋅PE QM ,∴0)1)(1(3
1
=+-+⋅y y x x ,即1322=+y x ∴曲线C 的方程为13
22
=+y x …………4分
18.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数)
得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9.
即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=
2sin (θ+π
4
)
得
ρ(sin θ+cos θ)=2, 即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π
4代入上式得
ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.
C 3:θ=3
4
π(ρ∈R )的直角坐标方程为x +y =0,
∴C 2与C 3是两平行直线,其距离d =2
2
= 2.
∴△PMN 的面积为S =12|MN |×d =1
2×32×2=3.
即△PMN 的面积为3. 19.【答案】 【解析】解:
(1)交线围成的四边形EFCG (如图所示). (2)∵平面A 1B 1C 1D 1∥平面ABCD , 平面A 1B 1C 1D 1∩α=EF , 平面ABCD ∩α=GC , ∴EF ∥GC ,同理EG ∥FC . ∴四边形EFCG 为平行四边形, 过E 作EM ⊥D 1F ,垂足为M ,
∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4. ∴GC =EF =EM 2+MF 2=
102+42=116,
∴GB =
GC 2-BC 2=
116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1GBC 两部分组成. 其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1 =12×8×8×10+1
2
×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V 1V 2=800480=53
, ∴其体积比为53(3
5也可以).
20.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k ==-, 故直线l 的斜率的取值范围为]22,32(--. 21.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1),
又∵a 1=1,
∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分
(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1
,
∴T n =1•20+2•2+…+n •2n ﹣1,
2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,
错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n
=
﹣n •2n
=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .
则所求和为12n
n - 6分
22.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2
(,)4
e a ∈+∞时,有个公共
点;(2)证明见解析. 【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x
e a x
=,构造函数2()x e h x x =,利用()'h x 求出
单调性可知()h x 在(0,)+∞的最小值2
(2)4
e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数
2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1
试题解析:
当2
(0,
)4
e
a ∈时,有0个公共点; 当2
4e a =,有1个公共点;
当2
(,)4
e a ∈+∞有2个公共点.
(2)证明:设2()1x h x e x x =---,则'()21x
h x e x =--,
令'
()()21x
m x h x e x ==--,则'
()2x
m x e =-,
因为1(,1]2x ∈,所以,当1[,ln 2)2
x ∈时,'()0m x <;()m x 在1[,ln 2)2
上是减函数,
当(ln 2,1)x ∈时,'
()0m x >,()m x 在(ln 2,1)上是增函数,
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.。