昆山市初中数学代数式易错题汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆山市初中数学代数式易错题汇编

一、选择题

1.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )

A .2,3

B .2,2

C .3,3

D .3,2

【答案】C

【解析】

【分析】

多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.

【详解】

2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.

故选:C.

【点睛】

此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.

2.下列各式中,运算正确的是( )

A .632a a a ÷=

B .325()a a =

C .=

D =【答案】D

【解析】

【分析】

利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.

【详解】

解:A 、a 6÷a 3=a 3,故不对;

B 、(a 3)2=a 6,故不对;

C 、和不是同类二次根式,因而不能合并;

D 、符合二次根式的除法法则,正确.

故选D .

3.下列运算正确的是( )

A .21ab ab -=

B 3=±

C .222()a b a b -=-

D .326()a a =

【答案】D

【解析】

【分析】

主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.

【详解】

解:

A 项,2ab ab ab -=,故A 项错误;

B 项,93=,故B 项错误;

C 项,222()2a b a ab b -=-+,故C 项错误;

D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.

故选D

【点睛】

本题主要考查:

(1)实数的平方根只有正数,而算术平方根才有正负.

(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.

4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )

A .7500

B .10000

C .12500

D .2500 【答案】A

【解析】

【分析】

用1至199的奇数的和减去1至99的奇数和即可.

【详解】

解:101+103+10 5+107+…+195+197+199

=22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭

=1002﹣502,

=10000﹣2500,

=7500,

故选A .

【点睛】

本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.

5.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )

A .(11,3)

B .(3,11)

C .(11,9)

D .(9,11) 【答案】A

【解析】

试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数

根据此规律即可得出结论.

解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.

故选A .

考点:坐标确定位置.

6.计算 2017201817(5)

()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367

【答案】A

【解析】

【分析】

根据积的乘方的逆用进行化简运算即可.

【详解】

2017201817(5)()736

-⨯ 20172018367()()736=-

⨯ 20173677()73636

=-⨯⨯ 20177(1)36=-⨯ 736

=- 故答案为:A .

【点睛】

本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.

7.下列运算正确的是( )

A .2235a a a +=

B .22224a b a b +=+()

C .236

a a a ⋅=

D .2336()ab a b -=- 【答案】D

【解析】

【分析】

根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.

【详解】

A. 235a a a +=,故A 选项错误;

B. 222244a b a ab b +=++(),故B 选项错误;

C. 235a a a ⋅=,故C 选项错误;

D. 2336()ab a b -=-,正确,

故选D.

【点睛】

本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.

8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )

A .23b

B .26b

C .29b

D .236b 【答案】C

【解析】

【分析】

根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.

【详解】

根据完全平方的形式可得,缺失的平方项为9b 2

故选C .

【点睛】

本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.

9.下列各运算中,计算正确的是( )

A .2a•3a =6a

B .(3a 2)3=27a 6

C .a 4÷a 2=2a

D .(a+b)2=a 2+ab+b 2

【答案】B

【解析】

试题解析:A 、2a •3a =6a 2,故此选项错误;

B 、(3a 2)3=27a 6,正确;

C 、a 4÷a 2=a 2,故此选项错误;

D 、(a+b )2=a 2+2ab +b 2,故此选项错误;

故选B .

【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.

相关文档
最新文档