对载波跟踪混合DS 跳频扩频测控系统的研究摘要-毕业论文外文翻译
毕业设计(论文)-扩频通信技术实现方法的研究和设计-ds直接序列扩频[管理资料]
扩频通信技术实现方法的研究和设计——DS直接序列扩频专业:通信工程班级:2002级1班姓名:目录引言31扩频通信系统666810131717 2直序扩频通信系统1818182021 3用编程来实现直序扩频通信系统23232426 4实验28 Monte Carlo仿真28 SIMULINK仿真30 结论 36致谢37参考文献38附录1直扩程序M-文件40附录2直扩-SIMULINK动态仿真模框图43摘要扩频通信技术(简称扩频通信)是一种新兴的高科技通信技术,具有大容量、抗干扰、低截获功率等特点以及可实现码分多址(CDMA)等优点,在军事和民用通信系统中都得到了广泛的应用,并成为下一代移动通信的技术基础。
在扩频通信系统中,直序扩频的应用最为广泛。
首先介绍扩频通信的基本原理及组成,重点论述了直序扩频通信在通信系统中的使用。
MATLAB因具有强大的数学计算、算法推导、建模仿真和图形绘制等功能而广泛应用于各领域,本文利用MATLAB的M语言进行编程、仿真,从而对CDMA无线通信系统的性能进行了分析。
在此基础上,通过实例介绍了建立系统仿真模型的方法。
利用MATLAB软件对CDMA无线通信系统的性能进行了分析。
可见利用MATLAB/SIMULINK进行系统仿真简单、方便、形象、具体,是系统仿真较好软件之一。
关键词:直序扩频通信系统;PN序列产生器;误码率;仿真;MA TLAB;干扰AbstractSpread spectrum communication is a sort of new high-tech communication technique, it has a number of internal advantages, such as large capacity, interference immunity, low probability of intercept, code division multiple access(CDMA)etc ,which make it get broad applications in civilian as well as military environments ,and become the technical groundwork of next generation mobile communications, Direct sequencing spread-spectrum was widely used. This paper introduces fundamental and constitutes of spectrum it emphasizes elaborating spread-spectrum’s technique in the application of system.MATLAB has been using in a variety of fields as its powerful and universal functions on mathematics calculation, algorithm interference , modeling and simulation, graphic structure, etc, w e are making use of MATLAB’s M language to design program and to make simulation on error rate performance and then to analyze the performance on CDMA wireless communication system .On this basis, the method to build system simulation model is introduced with a simple example. Meanwhile a spreading-spectrum communication system is built to simulate it and prove its validity. Obviously, to simulate with MATLAB/SIMULINK is simple, convenient, visualized, special, which is one of the best simulation software.Key words:Direct sequence spread spectrum(DSSS); PN generator; Code error rate; SIMULINK; MATLAB; interference引言人类社会进入到了信息社会,通信现代化是人类社会进入信息时代的重要标志。
外文翻译外文文献英文文献扩频通信系统的介绍
外文翻译外文文献英文文献扩频通信系统的介绍扩频通信系统的介绍摘要:本应用笔记概述了扩频技术的原理,讨论了涵盖直接序列和快速跳频的方法。
相关理论方程的性能估算。
以及讨论直接序列扩频(DSSS)和跳频(FHSS)这两种扩频方式。
简介扩频技术越来越受欢迎,就连这一领域以外的电器工程师都渴望能够深入理解这一技术。
很多书和网站上都有关于这方面的书,但是,很多都很难理解或描述的不够详尽。
(例如,直接序列扩频技术广泛关注的是伪随机码的产生)。
下面讨论扩频技术(双关语意)。
简史一名女演员和一名音乐家首次以书面形式描述了扩频通信技术。
1941年,好莱坞女星Hedy Lamarr和钢琴家George Antheil描述一个安全的无线链路来控制鱼雷。
他们获得了美国专利#2.292.387。
但这一技术被遗忘了,没有在当时受到美军的重视,直到20世纪80年代它才开始活跃起来。
从那时起,这一技术在有关恶劣环境中的收音机链接方面越来越受欢迎。
最典型的扩频技术应用是数据收发器包括卫星定位系统(GPS)、3G移动通信、无限局域网(符合IEEE?802.11a,IEEE 802.11b,IEEE 802.11g标准),还有蓝牙技术也帮助了那些通讯落后和无线电通信条件有限的地方,因此,它是一种昂贵的资源。
扩频通信的原理扩频是香农定理的典型:C=B×log2(1+S/N) 公式(1)在公式中,C为信道容限,单位是比特/秒(bps),意指单位时间内信道中无差错传输的最大信息量。
B为信号频带宽度,单位是Hz,S/N为信噪比。
也就是说,C为信道允许通过的信息量,也代表了扩频的性能。
带宽(B)是代价,因为频率是一个有限的资源。
信噪比体现了环境条件或物理特性(如障碍、干扰器、干扰等)。
上式说明,的情况下,在无差错传输的信息速率C不变时,如果信噪比很低,则可以用足够宽的带宽来传输信号,即使信号功率密度低于噪音水平。
(公式可用!)改变公式(1)中对数的底数,2改为e,则为In=loge。
一种增强跳频系统同步抗干扰能力的方法
一种增强跳频系统同步抗干扰能力的方法张扬石,李庆武汉理工大学信息工程学院,湖北武汉 (430070)E-mail:zhysh1224@摘要:本文提出了一种针对跳频同步系统的有效抗干扰措施。
该方法综合利用了纠错编码技术和直接序列扩谱技术对TOD 同步信息进行处理,对单频干扰和跟踪式干扰均有较好的对抗能力,提高了系统性能。
关键词:跳频系统;同步;TOD;BCH纠错码;直接序列扩谱;抗干扰中图分类号:TN914.411.引言跳频是无线通信中防止无意和人为干扰的有效手段。
跳频系统实现的关键就是能使收发双方的跳频图案正确同步。
由于对跳频码长周期和对同步快速的要求,目前广泛应用的同步方法是由发送方发送本方的TOD信息,TOD (Time of Data)[1]是跳频码发生器的时间相关初始状态量经过一定处理后所得的信息。
接收方捕获TOD后,根据预定的方法解出该初始状态信息,调整自己的跳频码发生器的状态,实现双方跳频同步。
因此,TOD 同步信息的可靠接收是跳频系统能否正确、快速地同步和正常工作的关键。
正因为如此,要干扰敌方跳频系统,最有效的方法就是干扰它的同步系统。
战场通信的干扰形式主要有:宽带干扰,单/多音干扰以及跟踪式干扰。
对于宽带干扰,其覆盖的频率范围大,跳频很难完全避开,但是由于瞬时功率的限制,其干扰强度不可能很大,综合采用直接序列扩谱和纠错码技术可以将TOD 的误码率降至较低水平。
对抗单/多音干扰,主要依靠在不同的频点上多次重复发送信息,剔除受到干扰的数据。
跟踪式干扰由于其具有跟踪性,在跳频速率一定的情况下无法完全克服,但由于干扰方的分析需要一定的时间,只要保证每次传送的有效信息集中在跳频包的开始一段比特上,当跳速足够快时,就能有效地避开干扰。
2.抗干扰方案的提出考虑到同步建立阶段很难用删除/替换频点的方式来避开干扰,为了能在较强干扰的环境中也能快速同步,在我们的跳频系统中,综合利用直接序列扩谱和纠错码技术,对发送的TOD 同步信息的偶数次跳进行直接序列扩谱处理,对奇数次跳采用纠错编码,并重复多次发送。
基于信道化谱增强的混合DS/FH扩频信号跳速估计
(col/ lt nc nier g X d nU i r t X ’ 0 7, hn) S ho o Ee r i E g ei , i a nv sy i n7 01 C ia co n n i e i, a 1
朱明哲 姬 红兵 金 艳
707) 10 1 ( 电子科技 大学 电子工程 学院 西安 西安
摘 要:该文针对混合 D /H B S S F P K信号的参数估计问题,提出了一种结合谱增强与时频分析的精确跳速估计
方法。该方法首先利用非线性变换获得携带跳速信息的参考信号,并利用循环谱预估计 该信 号的频率集 ; 在此基础
i t re e c -u p e so n n a c o s i n l t o tl sn e a l n o m a i n Fi a l , a e n t e r l b e n e fr n es p r s i n a d e h n e n iy sg a h u o i g d t i i f r to . n l b s d o h ei l wi y a
s nl n acm n sl ,P V S ot- s d - i e Vl i r ui )s sd oe i ae h o t i a ehne et e t S W D(m ohPe o g r i Ds i t n iue t t te pr e g rus u W n — l tb o e t sm h a o eh bi D / H sra pc u i a S c n r ri om t no g a r nee ,h rp s f h y r SF pedset m s n1 i e opi f ai f i l ae edd tepooe t d r g . n o nr o sn s d
DS扩频通信系统抗窄带干扰及正弦波干扰性能研究.
陕西理工学院毕业论文(设计)DS扩频通信系统抗窄带干扰及正弦波干扰性能研究[摘要]人类社会进入到了信息社会,通信现代化是人类社会进入信息时代的重要标志。
扩频通信就是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰落和抗多径性能以及频谱利用率高、多址通信等诸多优点越来越为人们所认识,并且被广泛的应用于民用和军用通信,本文介绍的主要内容就与扩频通信相关。
扩展频谱通信系统简称为扩频系统。
本文通过对扩频技术基础理论的叙述以及DS 直接序列扩频通信系统基础理论和它的抗窄带干扰及正弦波干扰性能的介绍,运用数学分析、引用模型、MATLAB软件仿真的方法进行定性分析,并从仿真结果的图形直观说明DS系统的抗窄带及正弦波干扰性能。
最后简单谈到了扩频通信的几种抗干扰技术。
[关键词]伪随机码、窄带干扰、干扰容限、处理增益DS spread spectrum communication systems andnarrow-band interference sinusoidal interferenceProperties researchWang Hui(Grade 03,Class 9,Major electronics and information engineering ,Electronics and informationengineering Dept.,Shaanxi University of Technology ,Hanzhong 723000,Shaanxi) Tutor: Chen Li[Abstract]:Human society have entered the information society, the important signs of the human society having entered the information was communications modernization. And the spread spectrum communication is the modern communications system as a new means of communication,It’s strong anti-jamming and anti-fading and multi-path performance and high spectral efficiency、multi-site communications and many other advantages increasingly gaining recognition,And has been widely used in civil and military communications. in this paper the main elements related with spread spectrum communication. Spread spectrum communication system known as spread spectrum systems. Based on spread spectrum technology foundation of the narrative and DS direct sequence spread spectrum communication systems theory and the basis for its anti-narrow Sine Wave band jamming and interference with the performance of the briefing, Through the use of mathematical analysis, cited model, MATLAB simulation method for qualitative analysis, Simulation results from the graphic visual note DS system of narrow-band interference and the sine wave properties. On theend ,talking the spread spectrum communication of several anti-jamming technology.[Key words]:pseudo-random code, narrowband interference, jamming margin, processing gain 引言 (3)1.绪论 ........................................................................................................... 4 第 1 页共32 页陕西理工学院毕业论文(设计)1.1扩频通信系统的发展概述 (5)1.2扩频通信系统的理论基础及优越性 (5)1.3仿真软件MATLAB概述 (7)2.DS扩频通信系统分析 (8)2.1DS扩频通信系统模型 (9)2.2DS扩频通信系统抗干扰性能分析 (10)2.2.1抗窄带干扰能力 (10)2.2.2抗单频正弦干扰能力 (12)2.2.3抗加性白噪声干扰能力(加性高斯白噪声或带限白噪声) (12)2.2.4抗多径干扰 (13)2.2.5抗其它扩频信号干扰能力 (15)2.2.6 DS系统的处理增益与干扰容限 .............................................. 16 3 DS扩频通信系统性能分析仿真 .. (18)3.1抗窄带干扰仿真及结果分析 (18)3.1.1建立抗窄带干扰仿真模型 (18)3.1.2编写仿真代码 (18)3.1.3仿真结果及其分析 (21)3.2抗正弦干扰仿真及结果分析 (21)3.2.1建立抗正弦干扰仿真模型 (21)3.2.2编写仿真代码 (22)3.2.3仿真结果及其分析................................................................... 25 4扩频系统的抗干扰技术 ......................................................................... 25 第 2 页共 32 页陕西理工学院毕业论文(设计)4.1混合式扩展频谱系统 (26)4.2自适应天线抑制干扰技术 (26)4.3自适应滤波器抑制窄带干扰 ............................................................ 26 结束语 ........................................................................................................ 29 致谢 .............................................................................. 错误!未定义书签。
跳频扩频
历史
在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及 采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无 法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的 跳频码序列相比更加均匀,也更难预测。90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌 系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者 唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及 具有理想的线性范围。
原理
FHSS在同步、且同时的情况下,接受两端以特定型式的窄频载波来传送讯号,对于一个非特定的接受器, FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。FHSS所展开的讯号可依特别设计来规避噪声或One-toMany的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率 的最大时间间隔(Dwell Time)为400ms。
应用
跳频(frequency hopping)是用于扩频信号传输中的两种基本调制技术中的一种。它在无线电传输过程中 反复转换频率,通常能将电子对抗(就是未经授权的对无线电通讯的中途拦截或人为干扰)影响减少到最小。它 也被认为是分配多重通路的调频代码(FH-CDMA)。
扩频调制(spread spectrum modulation)技术在近几年越来越普及。扩频能使信号通过频率带传输,这 个频率带比信息信号要求的最小带宽要宽很多。发送器“展开”最初集中于窄带的能量,通过在一个宽的电磁频 谱上的大量的频率带频道。优点包括改进私密性、减少窄带干扰以及增加信号容量。
跳频扩频通信技术资料整理
跳频扩频通信技术资料整理跳频扩频(FHSS)和直接序列扩频(DSSS)是无线通信中的两种主要扩频技术。
这些技术被广泛应用于军事通信、卫星通信、蓝牙、Wi-Fi和无线局域网等领域。
该技术可提供更高的数据传输速率和更强的抗干扰性能。
接下来,本文将对跳频扩频技术进行资料整理。
跳频扩频(FHSS)是一种位于物理层的扩频技术,其原理是将信号频率在信号传输的过程中快速变化。
跳频通信利用一组由发送者和接收者共同协商的序列来决定在哪个频率上进行通信。
这些序列会在发送数据的过程中跳跃到不同的频率上,从而使信号分散,并且更难以被干扰或窃听。
不同的跳频序列可以使用不同的跳频速率,使得信号速率可以根据需求进行调整。
这一技术提供了更大的带宽,并使用户能够在具有多通道干扰的环境中进行通信。
跳频扩频通信系统具有良好的抗干扰性能,不易被干扰或窃听。
直接序列扩频(DSSS)是通过对数据流进行编码和调制来实现的扩频技术。
在DSSS中,发送数据的二进制编码在传输前被直接扩展为长码。
长码的位数比原二进制编码数高得多,因此可以用来扩展数据,使其在频域上占用更多带宽。
在接收端,需要使用相同的长码来解码接收信号。
DSSS技术可以在信号传输过程中伪装数据,从而提高传输数据的安全性。
DSSS可以减少其他通信设备对传输信号的干扰,并提供全双工通信功能。
这一技术在高速数据传输和较短距离的无线连接等应用中广泛应用。
为了实现跳频扩频技术,需要使用一些特定的硬件和软件组件,包括跳频序列产生器、频道扫描机和信号误差控制器。
这些设备和组件可以提供更高的数据传输速率、更好的抗干扰性能和更安全的通信环境。
一般来说,跳频扩频技术的应用需要进行一定的设备配置和技术支持,在实际应用中需要谨慎考虑。
需要注意的是,跳频扩频技术并不是万能的,对其的攻击方式也会随着技术的发展而不断升级。
例如,攻击者可以利用定向天线、模拟拦截器、信号干扰发生器等设备对跳频扩频通信进行攻击。
因此,在实际应用中应该密切关注技术的演进,并将需要进行相应的安全措施和设备防御。
采用直扩(DSSS)和跳频(FHSS)技术的扩频收发信机及载波恢复研究
采用直扩(DSSS)和跳频(FHSS)技术的扩频收发信机及载波恢复研究在现代军事高科技领域中,扩频技术以其独特的抗干扰、抗截获和抗侦破的能力被广泛应用于军事通信领域,扩频收发信机也因此成为军用通信系统的核心装备。
本论文通过采用直序扩频(DSSS)和跳频扩频(FHSS)实现了信号频谱的扩展,通过采用声表面波技术保证了宽带直扩信号的实时解扩解调,扩频信号的载波恢复采用改进的平方环法得以实现。
本论文的研究领域几乎涵盖了扩频收发信机的主要单元,研究范围从系统级设计一直延伸到器件级设计。
而且项目面向军用,项目技术指标要求高。
经联试,系统工作稳定可靠,满足设计要求。
本论文的创新点和项目研究过程中有价值的工作主要体现在以下几方面:从声表面波核心器件研制开始,完成了对基于声表面波技术和锁相环技术的扩频和跳频技术相结合的扩频收发信机的设计和研制,对整个扩频收发信机的信号链路设计给出了明确的理论设计方法和硬件实现手段。
为实现扩频接收模块对宽谱扩频信号的实时解扩,我们自主设计并研制了目前国内最高位数的单片式SAW匹配滤波器和与之配套的SAW固定延迟线。
SAW匹配滤波器的处理增益Gp=23.5dB,仅比理论值低0.5dB。
在ST石英上制作的SAW固定延迟线在延迟时间τ =25μs、插损IL≤55dB的情况下,Δf-3dB≥21.7MHz,达到国内先进水平。
在复合式频率合成器的研究中,合成的70MHz频率其SSB相位噪声≤-112dBc/Hz@1kHz,杂散抑制≥80dB;合成的跳变频率其SSB相位噪声≤-102dBc/Hz@1kHz,杂散抑制≥65dB。
由于较好地解决了高频信号的板间串扰问题,对板间串扰的抑制从56dB提高到69dB,从而首次成功地将两个PLL单元集成在同一PCB上,实现了模块体积的小型化。
同时简化了装配流程,在我们查阅的资料和国内同类产品中未见相同结构的报道。
在载波恢复模块中,充分利用分频器对杂散抑制的的独特作用,通过增加两级分频器改进了通用平方环的性能,保证了在大多普勒频移(±150kHz)条件下对载波的快速跟踪(4kHz/s)和低相位噪声载波(-114dBc/Hz@1kHz)的恢复,同时将距载波频率仅±39.4kHz的杂散抑制提高了15dB。
跳频扩频技术-毕业论文外文翻译
跳频扩频技术跳频扩频(FHSS)的传输无线电信号,通过快速切换方法的载波频率在许多渠道,使用伪随机序列发射器和接收器。
它是利用作为多址接入方法在跳频码分多址接入(FH-CDMA)的计划。
扩频传输提供一个固定的频率传输的三个主要优点:1.扩频信号是高抗窄带干扰。
重新收集传播信号的过程中展开的干扰信号,使其回落到后台。
2.扩频信号是难以拦截。
一个跳频信号只出现在窄带接收机的背景噪声的增加。
窃听者只能够拦截传输,如果被称为伪随机序列。
3.扩频传输,可以与许多传统的传输类型的频带,以最小的干扰。
扩频信号加噪音极小狭窄的高频通信,反之亦然。
作为一个结果,可以更有效地利用带宽。
历史跳频的概念跳频首次提到在1903年美国专利723188 美国专利725605 特斯拉在1900年7月。
特斯拉来到展示了世界上第一个无线电遥控潜水船在1898年,当它成为明显的控制无线信号的船需要的是从安全“受到干扰,拦截,或以任何方式干预后的想法。
”他的专利涉及两个根本不同的技术实现的抗干扰能力,这两个的作用,通过改变载波的频率或其他专属特性。
首先有一个发射器,同时在两个或两个以上的不同频率和一个接收器,在每一个人的传播频率进行调整,为了控制电路响应,工作。
第二种方法使用可变频率的发射器,由一个编码轮,在预定的方式改变发射频率控制。
这些专利描述跳频频率的基本原则和频分复用,电子与门的逻辑电路。
跳频无线电先驱乔纳森Zenneck的书无线电报(德国,1908年,英文翻译McGraw Hill出版社,1915)也提到,虽然Zenneck自己指出,德律风根已经尝试过了几年前。
zenneck的书是一个时间领先的文本,它是可能的,许多后来的工程师们意识到这一点。
德国军队在第一次世界大战中,英国的力量,没有技术,按照顺序,以防止窃听有限使用固定指挥点之间的通信跳频。
一位波兰工程师,伦纳德Danilewicz ,来到了在1929年的想法。
在20世纪30年代被其他几个专利,包括一个由威廉Broertjes(德国1929年,美国专利1869695 ,1932年)。
基于跳频图案补偿的DS/FH混合扩频测控信号载波跟踪技术
ajs etnt ci p Sm l i sl o a t e o l nt eisbl s t g r a— dut n i r k gl . iua o r u s hwt t em t demi e t t it r u i o cr m a n o t ne t s h h h i as h n a i e l n fm y
C HEN u, WANG u n q n, ANG n g Zh Y a —i Y We — e
( cdm f q i et o m n A ae yo u m n m ad& Tcnl y eig1 11 , hn ) E p C eh o g ,B in 04 6 C i o j a
第 5 卷 第 7期 0
21 00年 7 月
电讯 技 术
T lc mmu iain En ie rn ee o nc t gn e g o i
Vo . 0 N . 15 o 7
J1 O O u .2 1
文章编 号 :0 1 9 X(00 0 —0 4 10 —83 2 1 )7 09—0 6
Ke o d : e s aeTF C ss n D / H y w r s a r pc & t ; S F o y ̄
se t m; r e ak ̄ ;e u ny a it;ie y h p cr c t r rc i f q e c l a d b 【 u ai t r gi d y
pt r a en t
求, 本文考虑将公 认的最具抗 干扰能力 的 D的核心任务是对空间 飞行器 的速度 和距 离进行测量 , 中对 载波信号 的高精度跟 踪是最 其
tun s se i ifu n e y teDo pe rq e c l r r y tm s n e c d b h p lrf u n y a e,S eta kn o p wil hf ot efe u n y se — l e Ot rc i glo l s i t rq e c tp r h t h e s o s tt e s lsl d t el p i i eyt e u lc e p n e sae c a eesy a o sl l o b n o k d.Tos le ti rb e a c r e rc i g lo i - n h k ov sp o lm, a t rt kn o p ad h i a e y h p i gpatr s i e eo e n t i a r y t e s h u e rqu n y h p ig p t msa d t ec re t d b o p n t n sd v lp d i sp p .B h c e l fe e c o p n at n u r n e h e d d e h
高动态扩频信号载波跟踪
邓洪军唐广
电子科技大学电子工程学院
四川
成都610054
摘要:要检测高动态扩频信号,如何快速捕获信号,并进行精确跟踪,是问题的关键。针对高动态环境下 扩频信号跟踪问题,本文分析了高动态环境下多普勒效应对载波信号的影响,以及提出了锁频环、相位旋转 辅助锁相环混合载波跟踪方案,并对环路滤波器的结构和参数设计方法进行了说明。以本方案设计的样机经 测试表明,该方法能很好的实现高动态扩频信号的载波跟踪。 关键词:高动态;叉积自动频率跟踪:科斯塔斯环;环路滤波器
用SIMUuNK搭建的仿真原理图如图2所示。
(3)
・770・
图2锁频环原理框图
3.2相位旋转辅助科斯塔斯环
Cost∞锁相环特别的性质在于costas鉴别器在预检测积分中相对于自然时钟相位而言的相位调节能力。 对I和O信号的180。相位翻转不敏感。鉴别器算法采用,。・Qm,输出相位误差为siIl2咖该算法在低信噪 比时性能接近母佳,斜率与信号幅度的平方成正比,运算量要求中等。但此算法存在非稳定平衡点(n为任 意奇数时)。假设起始状态恰恰处于不稳定平衡点,环路自身没有能力摆脱这种状态,只有依靠外力(噪声 或人为扰动)才能使环路偏离这个状态而进行捕获。因此,一旦遇到这种情况就可能出现不稳定平德状态的 滞留,致使捕获过程延长。为了提高捕获的速度,本系统对科斯塔斯环做了一些改进:在环路同相支路中加 了一个判决环节。改进的科斯塔斯环能有效地克服了延滞现象,并且更方便于FPGA实现。原理框I虱如图3 所示。
图3
CDs£ag覆理框图
鉴相特性如图4所示。
圈4
cost8鉴相特性
在有锁频环和锁相环的载波跟踪环路中.虽能有效的跟踪到载波,但由于其环路中仍存在较大的相位残 差.因此从I路和Q路中解调出来的数据效果并不理想。利用相位旋转辅助costas环的方法,能有效减小1 路和Q路数据的相位残差,从而提商解调出来数据的质量。相位旋转变换示意图如图5所示。
扩频通信的同步于跟踪
用一组特殊的码字来代表同步信息,然后把这个码 字周期性的插入编码数字信息序列里。收方根据同步 码字的特点进行识别,就得到了码字同步的信息。
实现同步的几种方法(2)
自同步法
将发送端跳频信号中隐含的同步信息设法提取 出来 ,控制接收跳频器 ,以实现跳频同步;不用专 门的频带,也不占据专门的时隙,不需要专门的 同步信号功率。即在节省频率资源和信号功率方 面及抗干扰能力上 ,优于前两种方法 ,因而应用较 为普遍。
同步不确定性的来源(2)
码相位的不确定性(时间不定区)包含: 从发射点到接收点电波传播的时延及多径传播 ☺ 收发双方启动码序列的时间差 ☺ 收发双方时钟的不稳定性
载波频率的不确定性(频率不定区)包含: ☻ 收发双方基准频率源的不稳定性 ☻ 多普勒频偏
同步过程(1)
在数字通信系统中同步包含的内容是:码时 钟速率同步即码位同步(或码元同步)、码字 同步及载波同步。
快速扫描式自同步方法
这种同步方案的接收频率合成器有两种工作状态 , 一种是跳频工作状态 ,在PN码作用下 ,按跳频图案输 出本地跳频信号 ;另一种是扫描工作状态 ,这时频率 合成器置于某一频组上 ,扫描输出M个频率 。一个 频组的持续时间等于一个chip占用的时间T ,每一 扫描子频隙的时间为T/M ,显然这种状态时频率合 成器的频率转换速率提高了M倍 ,所以称快速扫描 。 为使捕获概率大 ,每个频组的M个频率是从接收跳频 图案中的N个频率点上等间隔抽取的。
signature code acquisition in CDMA mobile packet communication . IEEE Trans. V. T,1998,47(1 ) :196~ 208 [4] 刘杰 ,续大我 ,费铸增等 快速哈达马变换在 SCDMA- FWA系 统中的应用 .北京 :北京邮电大学学报1998,21 (5) [5] 李道本著 信号的统计检测与估计理论 .北京 :北京邮电大学出 版社 ,1996
毕业设计(论文)-基于matlab的跳频扩频通信系统的研究[管理资料]
摘要在科技的日益发展中,扩展频谱通信则是一种新型的通信方式。
跳频通信是扩展频谱通信中的一种,跳频通信和自适应通信、扩展频谱通信以及高速数字数据通信系统被称为“90年代的通信技术”。
由于扩展频谱通信、跳频通信极强的抗干扰能力和多址通信性能,使其在军事和民用上都得到越来越广泛的应用。
本文讲述了扩频通信的基本概念和跳频系统的主要特点。
跳频通信技术具有很强的抗干扰能力,所以跳频通信一直也是扩频通信技术研究中的一个重点。
在阐述跳频通信基本原理和实现方法的基础上,利用 Matlab 提供的可视化工具 Simulink 建立了跳频通信系统仿真模型,详细讲述了各模块的设计。
在给定仿真条件下,对该跳频通信系统在宽带噪声干扰工作机制下进行了仿真,得到了宽带噪声干扰下的误码率信噪比曲线。
结果表明,跳频通信系统的抗干扰能力优于传统的定频通信,在战术通信中有更高的可靠性。
【关键词】:扩展频谱通信跳频通信抗干扰误码率信噪比ABSTRACTIn the development of science and technology, the spread spectrum communication is a kind of new way to communicate. Frequency hopping communication is spread spectrum communication of frequency hopping communication and adaptive communication, spread spectrum communication and high speed digital data communication system known as "90’s communications technology". Due to the spread spectrum communication, frequency hopping communication strong anti-interference ability and multi-access communication performance, so that in the military and civilian up to get more and more widely. This paper introduced the spread spectrum communication of the basic concepts and frequency hopping system main characteristics.Frequency hopping communication technology has the very strong anti-jamming ability, so the frequency hopping communication has also spread spectrum communication technology in the study of a key. In this paper the frequency hopping communication basic principle and method, and on the basis of the use of Matlab provide visual tools Simulink established the frequency hopping communication system simulation model, the detailed design of each module in tells the story. In a given simulation conditions, the frequency hopping communication system in broadband noise under the working mechanism is simulated, and get the broadband noise ber under Signal to noise rate curve. The results show that the frequency hopping communication system of anti-interference ability is better than that of traditional fixed frequency communication in communications have higher tactics reliability.【Keywords】: spread spectrum communication; Frequency hopping communication; Anti-interference; The bit error rate; Signal to noise rate目录第一章绪论 (4)选题目的及意义 (4)跳频通信的应用和发展 (5)第二章跳频通信理论基础 (7)跳频系统的组成及数学模型 (7)跳频的主要技术指标 (9)跳频系统的关键技术 (10)跳频图案 (11)跳频信号的发送与接收 (16)跳频信号的同步 (16)第三章基于Matlab/Simulink的跳频系统仿真 (20)Simulink 仿真介绍 (20)跳频系统仿真模型 (22)跳频系统抗干扰性能分析 (32)第四章总结 (34)致谢 (35)参考文献 (36)第一章绪论第一节选题目的及意义在现代通信中常常会遇见的一个重要问题就是抗干扰问题。
扩频技术外文翻译
毕业设计(论文)外文资料翻译学院通信与信息工程学院专业通信工程学生姓名班级学号外文出处Robert Clyde Dixon.Spread Spectrum Techniques[M].IEEE Press,1976附件:1.外文资料翻译译文;2.外文原文附件1:外文资料翻译译文扩频技术摘要扩频技术是信号(例如一个电气、电磁,或声信号)生成的特定带宽频率域中特意传播,从而导致更大带宽的信号的方法。
这些技术用于各种原因包括增加抗自然干扰和干扰,以防止检测,并限制功率流密度(如在卫星下行链路)的安全通信设立的。
跳频的历史:跳频的概念最早是归档在1903年美国专利723188和美国专利725605由尼古拉特斯拉在1900年7月提出的。
特斯拉想出了这个想法后,在1898年时展示了世界上第一个无线电遥控潜水船,却从“受到干扰,拦截,或者以任何方式干涉”发现无线信号控制船是安全的需要。
他的专利涉及两个实现抗干扰能力根本不同的技术,实现这两个功能通过改变载波频率或其他专用特征的干扰免疫。
第一次在为使控制电路发射机的工作,同时在两个或多个独立的频率和一个接收器,其中的每一个人发送频率调整,必须在作出回应。
第二个技术使用由预定的方式更改传输的频率的一个编码轮控制的变频发送器。
这些专利描述频率跳变和频分多路复用,以及电子与门逻辑电路的基本原则。
跳频在无线电报中也被无线电先驱约翰内斯Zenneck提及(1908,德语,英语翻译麦克劳希尔,1915年),虽然Zenneck自己指出德律风根在早几年已经试过它。
Zenneck的书是当时领先的文本,很可能后来的许多工程师已经注意到这个问题。
一名波兰的工程师(Leonard Danilewicz),在1929年提出了这个想法。
其他几个专利被带到了20世纪30年代包括威廉贝尔特耶斯(德国1929年,美国专利1869695,1932)。
在第二次世界大战中,美国陆军通信兵发明一种称为SIGSALY的通信系统,使得罗斯福和丘吉尔之间能相互通信,这种系统称为扩频,但由于其高的机密性,SIGSALY的存在直到20世纪80年代才知道。
跳码直扩通信系统关键技术研究---优秀毕业论文参考文献可复制黏贴
博士学位论文跳码直扩通信系统关键技术研究KEY TECHNOLOGIES OF THE CODE HOPPING DIRECT SEQUENCE SPREAD SPECTRUM COMMUNICATION SYSTEMS李德志哈尔滨工业大学2012年10月国内图书分类号:TN929.5 学校代码:10213 国际图书分类号:621.396 密级:公开工学博士学位论文跳码直扩通信系统关键技术研究博士研究生:李德志导 师:顾学迈教授申请学位:工学博士学科:信息与通信工程所在单位:电子与信息工程学院答辩日期:2012年10月授予学位单位:哈尔滨工业大学Classified Index: TN929.5U.D.C: 621.396Dissertation for the Doctoral Degree in EngineeringKEY TECHNOLOGIES OF THE CODE HOPPING DIRECT SEQUENCE SPREAD SPECTRUMCOMMUNICATION SYSTEMSCandidate:Li DezhiSupervisor:Prof. Gu XuemaiAcademic Degree Applied for:Doctor of EngineeringSpeciality:Information and Communication EngineeringAffiliation:School of Electronics and Information EngineeringDate of Defence:Oct, 2012Degree-Conferring-Institution:Harbin Institute of Technology摘要摘要在无线通信技术高度发展的今天,无线通信应用已经深入到人们生活的各个角落。
越来越多的私密信息通过手机网络、无线局域网等无线媒体传输,然而无线通信的物理层却缺乏足够的安全保护。
扩频通信系统中跳频技术的研究的开题报告
扩频通信系统中跳频技术的研究的开题报告一、研究背景随着通信技术的发展,移动通信、卫星通信、无线局域网等通信技术的普及,对于频率资源的要求越来越高,频率资源的稀缺性和有限性也愈发明显。
扩频通信技术具有带宽利用率高、抗干扰能力强等优点,在现代通信系统中得到了广泛的应用。
而在扩频通信系统中,跳频技术是一种既能提高系统安全性,又能增加频率资源利用效率的重要技术。
二、研究内容本文将对跳频技术在扩频通信系统中的应用进行研究,主要包括以下内容:1. 跳频技术在扩频通信系统中的基本原理和特点,以及与传统频分复用技术的比较分析。
2. 跳频序列设计的方法和技巧,以及跳频序列的评价指标和分析方法。
3. 跳频信号的特性和传输过程中的抗干扰性能,包括干扰模式分析、抗干扰技术优化等。
4. 基于跳频技术的扩频通信系统的系统设计和实现,包括构建跳频序列、系统参数设置、硬件实现等。
5. 系统性能测试和仿真分析,包括系统的抗噪声性能、误码率等指标的测试、仿真分析等。
三、研究意义1. 探究跳频技术在扩频通信系统中的应用流程和工作原理,为设计更加安全、稳定、高效的扩频通信系统提供参考。
2. 系统研究跳频技术的序列设计与编码技术、抗干扰技术等,确保系统的稳定性和抗干扰能力。
3. 对于扩频通信系统的性能测试和仿真分析,有助于评估系统的抗干扰性、数据传输速率和误码率等参数,为系统的实际应用提供支持。
四、研究方法和技术路线本文采用文献和资料研究法、理论分析和实验数据对比法相结合的研究方法,具体研究路线为:1. 文献调研和综述:对跳频技术在扩频通信领域的发展历史、研究现状、应用现状等进行综述和总结。
2. 理论分析和算法设计:通过理论分析和算法设计,探究跳频技术在扩频通信系统中的基本原理和特点,同时设计跳频序列和编码技术。
3. 抗干扰技术研究:研究跳频信号传输过程中的干扰模式和抗干扰技术优化,提高系统的抗干扰能力和通信质量。
4. 系统设计和实现:基于理论分析和算法设计,进行系统设计和实现。
一种DS扩频系统抗干扰性能的仿真
一种DS扩频系统抗干扰性能的仿真
屈霞;马正华;李文杰;张小鸣
【期刊名称】《计算机仿真》
【年(卷),期】2010(027)011
【摘要】针对传统直接序列扩频系统(DS-SS)抗干扰性能仿真方法在工程应用中难以实施及系统纯硬件实现的复杂性,提出一种基于VHDL的仿真方案.设计两种不同扩频增益系统,在扩频信号中引入表征各种干扰环境集中产生的噪声;收端采用序列相位搜索捕获法获得同步进而实现相关解扩.在两种处理增益下通过增大噪声,对各种干扰环境下系统性能进行分析.仿真结果表明,提高扩频增益可提高抗干扰性能.当扩频增益为127时,接收扩频信号中误码率为26%时系统能正确解扩;扩频增益增加3dB,即使错误码元达38%,系统仍能零误码解扩.仿真方法和结论对实际应用有一定的参考价值.
【总页数】4页(P122-124,179)
【作者】屈霞;马正华;李文杰;张小鸣
【作者单位】常州大学信息科学与工程学院,江苏,常州,213164;常州大学信息科学与工程学院,江苏,常州,213164;常州大学信息科学与工程学院,江苏,常州,213164;常州大学信息科学与工程学院,江苏,常州,213164
【正文语种】中文
【中图分类】TN914.42
【相关文献】
1.混沌混合DS/SFH扩频系统的抗干扰性能分析 [J], 谢红;林海英
2.扩频遥测系统抗干扰性能仿真 [J], 胡茂海;吴潜;郭黎利;李华超
3.DS/FH/TH混合扩频系统抗干扰性能的计算机模拟 [J], 蓝天;戴庆芬
4.基于抗干扰算法FH/DS扩频系统的抗干扰性能研究 [J], 郭淑霞;陈志坤;韩琮
5.直接序列扩频(DS SS)系统及其抗干扰性能研究 [J], 张瑞军;程新丽
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AbstractResearch on Carrier Tracking in Hybrid DS/FHSpread Spectrum TT&C SystemAbstractBecause of the effect of carrier frequency hopping, the input IF signal of carrier tracking loop in DS/FHSS (Direct Sequence/Frequency Hopping Spread Spectrum) TT&C (Telemetry, Tracking & Command) System is characterized by the Doppler frequency agile. The tracking loop will shift to the frequency step response state ceaselessly and the measurement resolution severely decline, even the loop is likely to be unlocked. This paper presents a carrier tracking loop aided by frequency hopping pattern. In order to keep the stability of the tracking loop, the Doppler frequency agility in the next frequency hopping dwell is estimated and timely compensated to the frequency adjustment of carrier NCO according to the preset frequency hopping pattern and current spacecraft velocity. Simulation results show that this method effectively eliminates the instability due to carrier frequency hopping, and the resolution of loop meets the requirement of TT&C system.Keywords:carrier tracking;DS/FHSS;frequency agility;aided;TT&CI.INTRODUCTIONThe main function of TT&C (Telemetry, Tracking and Command) system is ranging and velocity measurement. Presently, the most common used TT&C systems are unit carrier system and unit spread spectrum system. For the unit carrier TT&C system, ranging is realized by measuring the phase difference between transmitted and received tones, and for the unit spread spectrum TT&C system, according to the autocorrelation properties of PN code, ranging is realized by measuring the phase delay between the received and local pseudonoise (PN) code. Velocity measurement in both of TT&C systems depends on extracting the frequency difference resulting from the Doppler phenomena between the transmitted and received carrier. While all the processes mentioned above are finished on the ground of high resolution carrier tracking, and the phase lock loop is the common used method to implement it in TT&C system. As the space electromagnetism environment become more and more complicated, the capability of anti-jamming is required by the future TT&C system [1]. So we consider using the hybrid DS/FHSS (Direct Sequence/Frequency Hopping Spread Spectrum) technology to build a more robust TT&C system.For many ordinary hybrid DS/FHSS communication systems, the most important function is demodulating data but not measuring, so it is not necessary to measure the carrier frequency precisely. However, in hybrid DS/FHSS TT&C system, measuring and tracking the carrier precisely is the foundation of system, so some special problem needs to be solved. In the hybrid DS/FHSS TT&C system, even the received signal has been dehopped by the pattern synchronization module, due to the Doppler Effect and carrier frequency hopping, the input frequency of tracking loop contains frequency agility severely. As a result, the loop is likely to shift to the frequency step responses state again and again, and it seems to be impossible for frequency measurement and carrier tracking. The paper is organized as follows. In section I, the frequency hopping pattern synchronization module in the DS/FHSS TT&C system is introduced. In section II, we analyze how the carrier frequency hopping influences the performance of the carrier tracking loop. In section III, a carrier tracking loop aided by frequency hopping pattern and current spacecraft velocity is proposed. In section IV, a simulation mode on the ground of actual requirement of TT&C system is built and the results of simulation show that this method is very simple and effectivefor DS/FHSS TT&C system. Finally, some conclusions are drawn in section V.II.INPUT SIGNAL OF CARRIER TRACKING LOOPAs the traditional TT&C and communication system, the input signal of carrier tracking loop must be a monotonous intermediate frequency signal, so the received RF signal should be dehopped by the frequency hopping patternsynchronization module. In FH communication system, the signal during a hop dwell time is a narrowband signal and the general power detector is commonly used to detect the frequency hopping signal [2]. But in the hybrid DS/FHSS TT&C system, the signal is submerged in the noise, it is impossible to acquire signal directly by power detector such as FH communication system. However, the signal during a hop dwell time in the system just is a direct sequence spread spectrum signal, so we can acquire it based on the acquisition of direct sequence spread spectrum signal. The acquisition methods, such as serial-search acquisition, parallel acquisition and rapid acquisition based on FFT have been discussed in a lot of papers [3-5], so we won’t discuss the p roblem detailedly in this paper. In our system, since one hop dwell time is very short, the rapid acquisition based on FFT which can extract the phase delay and carrier frequency at one time will be the best way for acquisition. The scheme of the frequency hopping patters acquisition, i.e., coarse synchronization, could be shown as Fig 1.Figure 1. Scheme of frequency hopping pattern synchronization The synchronization of frequency hopping pattern is realized by the local frequency synthesizer rapid searching and the two dimension rapid acquisition of Direct Sequence PN code phase and carrier frequency. At the beginning, the link switch is on the location 1, and the output signal of local frequency synthesizer with higher hop speed than the received one is mixed with the received signal. Then, via the band pass filter, the output signal of mixer is fed into the acquisition module of PNcode and carrier. If the output of correlator in acquisition module is less than the preset threshold, the direct sequence spread spectrum signal is not acquired during this hop dwell time and the local frequency synthesizer steps the next frequency. By contrast, if detection variable of acquisition module is more than the preset threshold, it means that the frequency hopping signal is acquired and the mixer outputs a stable district spread spectrum signal. After that, the switch is on the location 2 and the local frequency synthesizer will timely change the output frequency according to the frequency hopping pattern. After the coarse synchronization mentioned above, the DS/FHSS signal have being dehopped is fed to PN code tracking loop and a fine alignment between the received PN code and local PN code is achieved by a code tracking loop namely the delay-locked loop. Then, the output of code tracking loop, i.e., a duplicate of received PN code, is mixed to the IF direct sequence spread spectrum signal dehopped by coarse synchronization, and a monotonous intermediate frequency narrowband signal which will be fed to carrier tracking loop is obtained.III. CHARACTERISTIC OF DS/FHSS CARRIER TRACKING LOOPCompared with the carrier tracking loop in ordinarycommunication system, because of the high dynamic of the spacecraft, especially during the landing, accelerating and decelerating, the carrier tracking loop of hybrid DS/FHSS TT&C system will be influenced more severely by the Doppler Effect (up to 100KHz). Addition to that, a Doppler frequency agility resulted from the carrier frequency hopping won’t be eliminated by dehopping the frequency hopping carrier, and which becomes the main factor influencing the performance of carrier tracking loop in DS/FHSS TT&C system. The frequency of downlink signal of DS/FHSS TT&C system may be described as:)()(1)()()()(000i v i f ci f i f i f i f d +=+= where i is the sequence number of carrier frequency, )(0i f is the ith carrier frequency , )(i f d is the Doppler frequency offset during the ith hop dwell time and )(i v is the current speed of spacecraft. We can assume that the synchronization of frequency hopping pattern has been completed, and the output frequency of localfrequency synthesizer is )()()(i f i f i f o lo ∆-= , where )(i f ∆is the frequency difference between the received and local frequency, i.e., the intermediate frequency of input signal of carrier tracking loop. Passing a IF band pass filter, a IF signal, the frequency of which is )(i f ∆, is obtained.According to the relation among the velocity, carrier frequency and Doppler frequency offset, the input frequency of carrier tracking loop is derived easily as follow:)()(1)()()()(0i v i f ci f i f i f i f d in +=+=∆∆ Then, between the interval of the ith frequency and the (i+i)th frequency, the Doppler frequency agility )(i f d ∆ is generated, and can be expressed as:)]()()1()1([1)(00i v i f i v i f ci f d -++=∆ Generally speaking, we assume that the velocity of spacecraft during twoadjacent frequency won’t change, i.e.)()1(i v i v =+, so )()(1)(0i f i v ci f d ∆∆=, which shows that the frequency agility is a function of the frequency difference of two adjacent hop and the current speed of spacecraft.Then, the input signal of the carrier tracking loop can be expressed as:)(])()()(1222sin[)(2)(0t n nT t p n f n v c t f t f t R P t s n ab +++-++∙=∑∞∞→∆∆τσπππ where P is the carrier power after the synchronization of frequency hopping pattern, )(t R is the modulated data, ∆f is the intermediate frequency, d f and τ are the rudimental frequency offset and rudimental phase offset brought from acquisition module respective. ;1)(,10=≤≤t p t otherwise 0)(=t p , T is one hop dwell time, σ is the timing error of the synchronization of frequency hopping patterns, n(t) is the additive white Gaussian noise with two-side power spectral density 2N W/Hz and c is the velocity of light.The tracking resolution is the basic description of the loop performance, and we can obtain it by the error transfer function as follow:)()(1)()()(0s KF s s s H s s s H +=-==θθθ where, F(s) is the transfer function of loop filter, K is the gain of open loop. Then we can apply the limit theorem, which is expressed as )()()(0100lim s H s s s Θ=∞→θ,toderive the steady-state tracking error. Unfortunately, the derivation of Laplaciantransfer of is seen to be impossible, so we can’t calculate the measuring error precisely and only analyze it by simulation. For the 2edorder loop, the acquisition time can be expressed as:3202nT ξωωρ∆= where, 0ω is the initial frequency offset, n ω and ξ are the natural frequency and damping factor of the tracking loop. In the hybrid DS/FHSS TT&C system, 0ω just is the frequency agility which is a function of time according to the frequency hopping pattern. Thereby, three cases are discussed.Case 1: Tp<Tc , i.e., hop dwell time is more than the loop acquisition time.The carrier tracking loop is able to acquire and track the DS/FHSS TT&C signal, but shift the unlock state immediately when the next frequency signal is fed to the loop. The loop steps to lock, unlock, re-lock, re-unlock state repeatedly for all time, and the Doppler offset can’t be ex tracted accurately.Case 2: Tp>Tc, i.e., hop dwell time is less than the loop acquisition time. During the acquisition state of loop, the frequency of input signal is likely to step up suddenly, and then the loop steps to the acquisition state once again. For the case, the tracking loop will step to acquisition state again and again for all time.Case 3: For the non-ideal 2ed or high-degree order loop, the acquisition band p ω∆ is limited, and the hopping frequency agility )(i f d ∆ also influences the performance of loop. When )(i f d ∆<p ω∆ , the conclusion is same as the analysis mentioned above, and when )(i f d ∆>p ω∆ , the tracking loop won’t locked the signal forever.The simulation result of 2ed order tracking loop used commonly in TT&C fieldis shown in Fig 2. The Doppler agility is plotted by broken line and the time response is denoted by real line. Fig. 2(a) shows the tracking performance without Doppler offset agility; the time response as Tp<Tc is described in Fig. 2(b), the loop state is alternating between locked and unlocked. In Fig. 2(c), the loop is acquiring signal forever. Because the frequency is changed before stepping to the locked state, the loop won’t acquire any signal at all time. In Fig 2(d), when )(i f d ∆>p ω∆, the tracking capability of the loop is invalid entirely.Figure 2. Time response of tracking loop with Doppler offset agility:(a) No hopping, (b) Tp<Tc , (c) Tp>Tc ,(d) )(i f d ∆>p ω∆IV. THE SCHEME OF CARRIER TRACKING LOOP AIDED BY HOPPING PATTERNThe structure of the carrier track loop aided by the hopping frequency pattern is shown in Fig 3. Generally speaking, we can assume that the velocity during the interval time between two adjacent frequency will keep a fixed value, then the dopplerfrequency offset in the next frequency interval can be calculated by the currentvelocity of spacecraft combined with carrier frequency. The is added timely to the adjustment value of the carrier NCO when the new frequency signal is fed to the loop. So the output frequency of NCO also changes synchronal as the frequency changing of input signal, and the loop keeps stable. Deserve to mentioned, before the loop stepped to steady state, the spacecraft velocity used by the scheme is given from the acquisition module. After having being locked state, then the velocity should be extracted from the loop itself directly. By this way, the loop is able to keep stable even on the high dynamic condition.Figure 3. Carrier tracking loop aided by frequency hopping pattern Besides the thermal noise jitter, the main error of carrier tracking loop aided by the frequency hopping pattern is the frequency jitter of the frequency synthesizer and timing error due to frequency pattern synchronization. The former one depends on the resolution of frequency synthesizer as other communication and we only discuss the latter one. Briefly, when the local frequency changing of the local frequency synthesizer is advanced or retarded to the one of receive signal, the aiding module will provide a frequency offset to the carrier NCO at the wrong time and the loop will step to the unlocked state at once, i.e., response of frequency step. Fortunately, when the frequency of input signal changes actually, the loop will return to the steady state rapidly. But as the increase of synchronization error, it also be likely to become too severe to meet the resolution requirement of the TT&C system.V. SIMULATIOMThe model of carrier tracking loop of hybrid DS/FHSS system is shown in Fig 3, which is built in the simulink of Matlab. The tracking loop is the standard costas loop commonly used in the TT&C field, which is able to eliminate the inference resulted form the polarity change of the modulated data [9]. To adapt the Doppler frequency change due to the spacecraft movement, the loop is designed as a 2ed order loop, and the loop filter is a 1st order filter. The simulation parameter is set according to the actual TT&C task as follows:Carrier frequency: 2.2GHz~2.3GHzAmount of frequencies: 128Frequency hopping pattern: based on m-sequenceRudimental frequency offset after acquisition: 300HzIntermediate frequency of the carrier tracking loop:4.8MHzSampling frequency: 16.3MbpsNoise Bandwidth of the loop: 10HzA. The time response on uniform motion and uniformly accelerated motionWe assume the spacecraft speed is 7.9km/s, by the relation among the Doppler frequency, carrier frequency and velocity, the frequency offset of the input IF signal of loop is obtained as Fig 4(a). The max frequency agility is up to 2.3KHz. The time response without aid is shown in the Fig 4(b) and the one with aid by hopping pattern is shown in Fig4(c). The results show that the loop without aid is unlocked completely, while the one with aid can track the carrier accurately. When the spacecraft is on the uniformly accelerated motion (the initial speed is 7.9km/s, and speed accelerator is 30g), the time response is shown in Fig 5. The same conclusion is obtained as pre-paragraph.Figure 4. The time response on uniform motion:(a)doppler frequency,(b)without aid, (c) with aid.Figure 5. Time response on uniformly accelerated motion:(a)doppler frequency,(b)without aid (c) with aidB. Tracking resolution on different hopping speedIn this simulation, the resolution of carrier tracking loop is obtained by calculating variance. The relation between tracking resolution and hopping speed is shown in Fig 6 on different input SNR and the minimum value insuring the demodulating correctly in TT&C system is 13 dB. The result of simulation testified that the resolution is not sensitive to the hopping speed and the scheme is very robust for different hopping speed.Figure 6. Stead-state tracking resolution vs hopping speedC. Tracking resolution on different timing error of frequency pattern synchronizationFor carrier tracking loop aided by the frequency hopping pattern, according to the above discussion the main factor impacting the stability of loop is the timing error caused by the patterns synchronization. Fig 7 shows the stead-state tracking accuracies on different timing error of synchronization pattern on different input SNR. The measuring error is increase as increasing of timing error and the measurement error resulted from the SNR even can be ignored when the time error is up to some specified value. Conseq uently, we can infer that the track accuracy won’t meet the requirement of TT&C system finally, and the problem needs to be researched in the future.Figure 7. Stead-state tracking resolution vs timing error of pattern synchronizationVI. CONCLUSIONSIn the hybrid DS/FHSS TT&C system, the rudimental Doppler frequency agility leads the carrier tracking loop holding on frequency step response state ceaselessly, so it is hardy to extract the Doppler frequency offset precisely formeasuring the distance and velocity. By analyzing effect of frequency agility to the performance of the tracking, a tracking aided by frequency hopping pattern and current spacecraft velocity is presented. A compensated frequency is added to the tracking loop as carrier frequency hopping, and the accuracy of this method is demonstrated by simulation.ReferencesREFERENCES[1]L. Simone, N. Salerno, and M. Maffei, “Frequency-Hopping Techniques for Secure Satellite TT&C: System Analysis & Trade-Offs”, Satellite a nd Space Communications, 2006 International Workshop on , Sept.2006, pp.13-17, dio:10.1109/WSSC.2006.255980.[2] Don Torrieri, Frequency-Hopping Communication Systems, Amy research laboratory, Mar.2003.[3]M.K.Simon, J.K.Omura, Robert A.Scholtz and Barry K.Levitt, Spread Spectrum Communication Handbook. Boston: McGraw-Hill, 2003.[4]D.Akopian, “Fast FFT based GPS satellite acquisition Methods,” Proc.Inst. Elect. Eng. Radar, Sonar, Navig., vol. 152, no. 4, pp.227-286, Aug.2005.[5]S.Yoon,I.Son, and S.Y.Kim, “Code acquisition for DS/SS communications in non-Gaussian impulsive channels,” IEEE Trans. Commun., vol. 52, no.5, pp.909-919, May.2005.[6] Roland E. Best, Phase-Locked Loops: Design, Simulation, and Application (5th Edition). Boston: McGraw-Hill, 2003.[7] S.Hinedi and B. Shah, “Acquisition Performance of Various QPSK Carrier Tracking Loops,” IEEE mun., vol.40, no.9, pp.1426-1429, Sep.1992.[8]I.N.Psaromiligkos, S.N Batalama, and M.J.Med ley, “Rapid combined synchronization/demodulation structures for DS-CDMA systems.I.algorithmic developments,” IEEE Trans. Commun., vol.51, no.6, pp.983-994,June 2003.[9]Elliott D.Kaplan,UNDERSTANDING GPS Principles and Applications. Artech House, 1996.摘要对载波跟踪混合DS /跳频扩频测控系统的研究摘要由于载波频率调频的影响,DS/FHSS(直接序列/跳频扩频)TT&C(测控)系统的载波跟踪回路的输入信号具有多普勒频移灵活的特征。