海城市高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海城市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π D .72π
2. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )
A .3y x =
B . 21y x =-+
C .||1y x =+
D .2x y -=
3. 定义运算
,例如
.若已知
,则
=( )
A .
B .
C .
D .
4. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0
C .1
D .2
5. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}-
【命题意图】本题考查集合的交集运算,意在考查计算能力.
6. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1
D .﹣1
7. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2
)
则a ,b ,c 的大小关系为( )
A .a <c <b
B .b <a <c
C .c <a <b
D .c <b <a
8. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )
A .①②
B .①
C .③④
D .①②③④ 9. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )
A .30°
B .45°
C .60°
D .120°
10.若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x 11.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆2
2
5x y +=上,则
|2|a b +=( )
A B . C . D .
12.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )
A .有无穷多条直线,每条直线上至少存在两个有理点
B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点
C .有且仅有一条直线至少过两个有理点
D .每条直线至多过一个有理点
二、填空题
13.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
14.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,则
+
+…+= .
15.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .
16.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .
17.对于集合M ,定义函数
对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )
=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .
18.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.
三、解答题
19.设集合{}
()(
){
}
2
2
2
|320,|2150A x x x B x x a x a =-+==+-+-=.
(1)若{}2A B =,求实数的值;
(2)A B A =,求实数的取值范围.1111]
20.已知函数()()x f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.
(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦
及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.
21.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.
22.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .
23.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数; (2)求函数f (x )的解析式.
24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.
(1)求函数)(x f 的单调递增区间;
(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.
【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.
海城市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】
【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,
又V 四棱锥P -ABCD =1
3
S 矩形ABCD ·PO
=13abR ≤23R 3. ∴2
3
R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 2. 【答案】C 【解析】
试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2x y -=为非奇非偶函数。
故选C 。
考点:1.函数的单调性;2.函数的奇偶性。
3. 【答案】D
【解析】解:由新定义可得,
=
=
=
=
.
故选:D .
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
4. 【答案】D
【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1. 下列a 的取值能使“¬p ”是真命题的是a=2. 故选;D .
5. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
6. 【答案】D
【解析】解:由zi=1+i ,得
,
∴z的虚部为﹣1.
故选:D.
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
7.【答案】C
【解析】解:由题意f(x)=f(|x|).
∵log43<1,∴|log43|<1;
2>|ln|=|ln3|>1;
∵|0.4﹣1.2|=| 1.2|>2
∴|0.4﹣1.2|>|ln|>|log43|.
又∵f(x)在(﹣∞,0]上是增函数且为偶函数,
∴f(x)在[0,+∞)上是减函数.
∴c<a<b.
故选C
8.【答案】A
【解析】
考点:斜二测画法.
9.【答案】C
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AA1=2AB=2AD=2,
A1(1,0,2),C1(0,1,2),=(﹣1,1,0),
B(1,1,0),G(0,1,1),=(﹣1,0,1),
设直线A1C1与BG所成角为θ,
cosθ===,
∴θ=60°.
故选:C.
【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
10.【答案】D
【解析】
考点:直线方程
11.【答案】A
【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.
12.【答案】C
【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),
由于也在此直线上,
所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;
当x 1≠x 2时,直线的斜率存在,且有,
又x 2﹣a 为无理数,而为有理数,
所以只能是,且y 2﹣y 1=0,
即
;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C . 故选:C .
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
二、填空题
13.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
14.【答案】 .
【解析】解:点An (n ,
)(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,
=
,
=
,…, =,
∴
+
+…+
=
+…+
=1﹣
=
,
故答案为:.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
15.【答案】.
【解析】解:由于角A为锐角,
∴且不共线,
∴6+3m>0且2m≠9,解得m>﹣2且m.
∴实数m的取值范围是.
故答案为:.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
16.【答案】2n﹣1.
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,
…
a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n=2n﹣1,
故答案为:2n﹣1,
17.【答案】{1,6,10,12}.
【解析】解:要使f A(x)f B(x)=﹣1,
必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}
={6,10}∪{1,12}={1,6,10,12,},
所以A△B={1,6,10,12}.
故答案为{1,6,10,12}.
【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.
18.【答案】2300 【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300
.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.
三、解答题
19.【答案】(1)1a =或5a =-;(2)3a >. 【解析】
(2){}{}1,2,1,2A A B == .
①()()
22
,2150B x a x a =∅+-+-=无实根,0∆<, 解得3a >;
② B 中只含有一个元素,()()
22
2150x a x a +-+-=仅有一个实根,
{}{}0,3,2,2,1,2a B A B ∆===-=-故舍去;
③B 中只含有两个元素,使 ()()
22
2150x a x a +-+-= 两个实根为和,
需要满足()2
212121=a 5
a ⎧+=--⎪⎨⨯-⎪⎩方程组无根,故舍去, 综上所述3a >]
考点:集合的运算及其应用.
20.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,
1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.
【解析】
(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值; 当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值; 当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.
(3)()(221)x g x x k e =-+,∴'()(223)x g x x k e =-+, 由'()0g x =,得32
x k =-, 当3
2x k <-
时,'()0g x <; 当3
2
x k >-时,'()0g x >,
∴()g x 在3(,)2k -∞-上递减,在3
(,)2
k -+∞递增,
故323
()()22
k g x g k e -=-=-最小值,
又∵35,22k ⎡⎤
∈⎢⎥⎣⎦
,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,
∴()g x λ≥对[]0,1x ∀∈恒成立等价于32
()2k g x e λ-
=-≥最小值;
又32
()2k g x e λ-
=-≥最小值对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
恒成立.
∴3
2
min (2)k e
k --≥,故2e λ≤-.1
考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想
之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的. 21.【答案】
【解析】解:(1)f'(x )=3ax 2
+2bx ﹣3,依题意,f'(1)=f'(﹣1)=0,
即,解得a=1,b=0.
∴f (x )=x 3
﹣3x .
【点评】本题考查了导数和函数极值的问题,属于基础题.
22.【答案】(1)3;(2)623+. 【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形, 2(111312)623S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的
表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 23.【答案】
【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(
﹣1)﹣(
﹣1)=
,
由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.
(2)当x <0时,﹣x >0,f (﹣x )=
﹣1=﹣f (x ),∴f (x )=+1.
又f (0)=0,故函数f (x )的解析式为f (x )=.
24.【答案】
【解析】(1)由题意知,)cos )(sin cos (sin 2
3
cos sin )(x x x x x x b a x f +-+
=⋅= )3
2sin(2cos 232sin 21π-=-=x x x ……………………………………3分 令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12
512π
πππ+≤≤-k x k ,Z k ∈.
∴)(x f 的单调递增区间为]12
5,12[π
πππ+-k k (Z k ∈).…………………………5分。