八年级数学折叠问题(一)(人教版)(专题)(含答案)

合集下载

轴对称应用之折叠问题(人教版)(含答案)

轴对称应用之折叠问题(人教版)(含答案)

轴对称应用之折叠问题(人教版)一、单选题(共8道,每道12分)1.如图,将长方形ABCD沿EF折叠,点C落在点,点D落在点处.若∠EFC=119°,则为( )A.58°B.45°C.60°D.42°答案:A解题思路:试题难度:三颗星知识点:折叠问题2.如图,把长方形ABCD折叠,使点C落在点A处,点D落在点G处.若∠FED=120°,且DE=2,则边BC的长为( )A.4B.6C.8D.10答案:B解题思路:试题难度:三颗星知识点:折叠问题3.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边于点E,连接AD.若AE=2cm,则△ABD的周长是( )A.13cmB.12cmC.11cmD.10cm答案:C解题思路:试题难度:三颗星知识点:折叠问题4.如图,点D,E分别在等边△ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在处,,分别交边AC于点F,G.若∠BDE=50°,则∠CGE的度数为( )A.60°B.70°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:折叠问题5.如图,AD是Rt△ABC斜边BC上的高,将△ADC沿AD所在直线折叠,点C恰好落在BC 的中点E处,则∠B等于( )A.25°B.30°C.45°D.60°答案:B解题思路:试题难度:三颗星知识点:折叠问题6.如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.若∠BAC=40°,则∠CBD的度数为( )A.9°B.10°C.15°D.20°答案:B解题思路:试题难度:三颗星知识点:折叠问题7.如图,在△ABC中,∠A=30°,沿BE将此三角形对折,又沿再一次对折,点C落在BE上的点处,此时,则原三角形中∠ABC的度数为( )A.60°B.70°C.72°D.75°答案:C解题思路:试题难度:三颗星知识点:折叠问题8.如图,将等腰△ABC沿DE折叠,使顶角顶点A落在其两底角平分线的交点F处.若BF=DF,则∠C的度数是( )A.80°B.75°C.72°D.60°答案:C解题思路:试题难度:三颗星知识点:折叠问题。

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷一、选择题1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12 3D.16 32.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°5.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )A.78°B.75°C.60°D.45°6.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )A. B.﹣1 C. D.二、填空题8.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______9.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.10.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.11.如图,在▱ABCD中,AB=13,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .12.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为 .13.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .14.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.17.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题19.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.(1)求OC 长度;(2)求点B'的坐标;(3)求矩形ABCO 的面积.20.已知函数y=x 34,完成下列问题: (1)画出此函数图象;(2)若B 点(6,a )在图象上,求a 的值;(3)过B 点作BA ⊥x 轴于A 点,BC ⊥y 轴于C 点,求OB 的长;(4)将边OA 沿OE 翻折,使点A 落在OB 上的D 点处,求折痕OE 直线解析式.21.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌△CDE ;(2)若AB=4,BC=8,求图中阴影部分的面积.22.准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.23.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.24.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t <6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.参考答案1.答案为:D;2.B3.C4.D5.B6.B.7.答案为:A.8.答案为:51.9.答案为:2.10.答案为: .11.答案为:3.12.答案为: 2.13.答案为:3.7514.答案为:4﹣6.15.答案是:2.16.解:在Rt△ABC中,由勾股定理可知:AC=4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.17.答案为:2;18.答案为:(-2014,+1).19.解:(1)∵直线y=﹣0.5x+8与y轴交于点为C,∴令x=0,则y=8,∴点C坐标为(0,8),∴OC=8;(2)在矩形OABC中,AB=OC=8,∠A=90°,∵AE=3,∴BE=AB﹣BE=8﹣3=5,∵是△CBE沿CE翻折得到的,∴EB ′=BE=5,在Rt △AB ′E 中,AB ′===4,由点E 在直线y=﹣0.5x+8上,设E (a ,3),则有3=﹣0.5a+8,解得a=10,∴OA=10,∴OB ′=OA ﹣AB ′=10﹣4=6,∴点B ′的坐标为(0,6);(3)由(1),(2)知OC=8,OA=10,∴矩形ABCO 的面积为OC ×OA=8×10=80.20.(1)画图略;(2)a=8;(3)OB=10;(4)y=0.5x.21.解:(1)证明:由翻折的性质可得AF=AB ,∠F=∠B=90°.∵四边形ABCD 为矩形,∴AB=CD ,∠B=∠D=90°.∴AF=CD ,∠F=∠D.又∵∠AEF=∠CED ,∴△AFE ≌△CDE(AAS).(2)∵△AFE ≌△CDE ,∴AE=CE.根据翻折的性质可知FC=BC=8.在Rt △AFE 中,AE 2=AF 2+EF 2,即(8-EF)2=42+EF 2,解得EF=3.∴AE=5.∴S 阴影=12EC ·AF=12×5×4=10. 22.(1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE 的面积为:×2=23. (1)证明:根据翻折的方法可得EF=EC ,∠FEG=∠CEG.又∵GE=GE ,∴△EFG ≌△ECG.∴FG=GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE 是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.24.解:(1)如图①∵DF⊥BC,∠C=30°,∴DF=0.5CD=0.5×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE∴四边形AEFD是平行四边形;(2)①显然∠DFE<90°;②如图①′,当∠EDF=90°时,四边形EBFD为矩形,此时AE=0.5AD,∴t=0.5(12−2t),∴t=3;③如图①″,当∠DEF=90°时,此时∠ADE=90°∴∠AED=90°-∠A=30°∴AD=0.5AE,∴12−2t=0.5t,∴t=4.8.综上:当t=3秒或t=4.8秒时,△DEF为直角三角形;(3)如图②,若四边形AEA′D为菱形,则AE=AD,∴t=12-2t,∴t=4.∴当t=4时,四边形AEA′D为菱形.25.(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm.在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=5/3cm,∴菱形BFEP的边长为5/3cm.②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.。

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。

八年级初二数学 图形的对称-翻折变换(折叠问题) 含答案

八年级初二数学 图形的对称-翻折变换(折叠问题) 含答案

图形的对称-翻折变换(折叠问题)一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2 C.2D.122.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:213.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:85.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.68.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2411.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+515.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.616.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.1918.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.220.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.623.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.1226.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.1227.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.529.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF=.其中所有正确结论的个数是()A.4 B.3 C.2 D.130.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1图形的对称-翻折变换(折叠问题)参考答案与试题解析一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2C.2D.12【考点】翻折变换(折叠问题);勾股定理的应用;菱形的性质;矩形的性质.【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,∴假设BE=x,∴AE=6﹣x,∴CE=6﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,利用勾股定理得出:BC2+BE2=EC2,BC===2,故选:C.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.3.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE 的正弦值.【解答】解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先求出△BDP的面积,进而求出△DPC的面积;借助三角形的面积公式求出的值;由旋转变换的性质得到AB=PB,即可解决问题.【解答】解:如图,过点D作DE⊥BC于点E;由题意得:S△ABD=S△PBD=30,∴S△DPC=80﹣30﹣30=20,∴=,由题意得:AB=BP,∴AB:PC=3:2,故选A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的方法是作高线,表示出三角形的面积;解题的关键是灵活运用翻折变换的性质来分析、判断、推理或解答.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°【考点】翻折变换(折叠问题).【分析】根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.【解答】解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.【点评】此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.6【考点】翻折变换(折叠问题).【分析】由矩形的性质得到∠1=∠CFE=60°,由折叠可得∠2=60°,从而求得∠4的度数,得到AE=EC,在Rt△CDE中利用勾股定理可求得EC的长度,即可得到答案.【解答】解:∵矩形ABCD,∴BC∥AD,∴∠1=∠CFE=60°,∵EF为折痕,∴∠2=∠1=60°,AE=EC,∴∠3=180°﹣60°﹣60°=60°,Rt△CDE中,∠4=90°﹣60°=30°,∴EC=2×DE=2×1=2,∴BC=AE+ED=EC+ED=2+1=3.故选:A.【点评】本题考查了翻折问题;由折叠得到角相等,得到AE=EC利用勾股定理求解是正确解答本题的关键.8.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】由四边形ABCD是矩形与△AEC由△ABC翻折得到,AD=CE,∠ADF=∠CEF,由AAS证得△ADF≌△CEF,的长FA=FC,设DF=x,则FA=4﹣x,由勾股定理得:DA2+DF2=AF2,即可求出DF的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AB=DC=4,∠ADF=90°,∵△AEC由△ABC翻折得到,∴BC=EC,∠CEF=∠ABC=90°,∴AD=CE,∠ADF=∠CEF,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),∴FA=FC,设DF=x,则FA=FC=DC﹣DF=4﹣x,在Rt△DFA中,由勾股定理得:DA2+DF2=AF2,即32+x2=(4﹣x)2,解得:x=,即DF的长是.故选C.【点评】本题主要考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握折叠的性质,得到相等的线段与角是解决问题的关键.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【考点】翻折变换(折叠问题).【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,易得△CEF的周长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理,利用勾股定理得CF的长是解答此题的关键.11.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF中根据勾股定理列出关于x的方程,即可解决问题.【解答】解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=.故选B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+5【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】首先在RT△ABE中,求出EB,再在RT△CDE中利用勾股定理即可解决问题.【解答】解:∵△ADE是由△ADO翻折,∴DE=DO,AO=AE=10,∵四边形OABC是矩形,∴OC=AB=8,AO=BC=10,∠B=∠BCO=∠BAO=90°,在RT△ABE中,∵AE=10,AB=8,∴EB===6,∴EC=4,设DO=DE=x,在RT△DCE中,∵CD2+CE2=DE2,∴(8﹣a)2+42=a2,∴a=5,∴点D(0,5),点E(4,8),设直线DE为y=kx+b,∴解得,∴直线DE为:y=+5.故选A.【点评】本题考查翻折变换、待定系数法确定一次函数的解析式,解题的关键是巧妙利用勾股定理,用方程的思想去思考问题,属于中考常考题型.15.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】首先由DE∥BC与折叠的性质,可证得DE是△ABC的中位线,继而求得答案.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,由折叠的性质可得:∠ADE=∠EDF,AD=DF,∴∠B=∠BFD,∴BD=DF,∴AD=BD,同理:AE=EC,∴DE=BC,即BC=2DE=4.故选B.【点评】此题考查了折叠的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.16.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,等量代换得到AE=CD,AD=CE,推出四边形ACDE是平行四边形,于是得到AF=BC,四边形ACDE是矩形,故A,B 正确;根据平行四边形和矩形的性质得到△ACD≌△ACE≌△CDE≌△ADE≌△ABC,于是得到图中与△ABC全等的三角形有4个,故C正确;推出△BCE是等腰三角形,△AEF,△ACF,△CDF,△DEF是等腰三角形,于是得到图中有5个等腰三角形,故D错误.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,∴AE=CD,AD=CE,∵点B、A、E在同一条直线上,∴AE∥CD,∴四边形ACDE是平行四边形,∴AF=BC,四边形ACDE是矩形,故A,B正确;∵四边形ABCD是平行四边形,四边形ACDE是矩形,∴△ACD≌△ACE≌△CDE≌△ADE≌△ABC,∴图中与△ABC全等的三角形有4个,故C正确;∵BC=CE,∴△BCE是等腰三角形,∵四边形ACDE是矩形,∴AF=EF=CF=DF,∴△AEF,△ACF,△CDF,△DEF是等腰三角形,∴图中有5个等腰三角形,故D错误;故选D.【点评】本题考查了平行四边形的性质、折叠的性质以及等腰三角形的判定和性质,解题的关键是熟记等腰三角形和矩形的判定方法.17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.19【考点】翻折变换(折叠问题).【分析】根据勾股定理得到BC=8,由折叠的性质得到BD=CD=BC=4,DE⊥BC,根据三角形的中位线的性质得到DE=AB=3,AE=AC=5,于是得到结论.【解答】解:∵AB=6,AC=10,∠ABC=90°,∴BC=8,∵将该直角三角形纸片沿DE折叠,使点C与点B重合,∴BD=CD=BC=4,DE⊥BC,∵∠ABC=90°,∴DE∥AB,∴DE=AB=3,AE=AC=5,∴四边形ABDE的周长=AB+AE+DE+BD=6+5+3+4=18,故选C.【点评】此题考查了折叠的性质,勾股定理,三角形的中位线的性质,注意掌握折叠前后图形的对应关系.18.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.【点评】此题考查等腰梯形的性质,翻折的性质,三角形全等的判定与性质,等腰直角三角形的性质,相似三角形的判定和性质等知识,注意结合图形,作出常用辅助线解决问题.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG 即可;【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴(x+6)2=(12﹣x)2+62,解得x=4∴BG=4.故选B.【点评】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据关于y轴对称的点的特点找到B',结合直角坐标系可得出点B′的坐标.【解答】解:∵将△ABC沿y轴翻折得到△A′B′C′,∴点B与点B′关于y轴对称,∴B′(2,3),故选B.【点评】本题考查了翻折变换﹣折叠问题,坐标与图形的关系,熟记关于y轴对称的点的特点是解答本题的关键.21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=6cm,∴AC=AE+EC=6+6=12,∵△ABC的周长为36cm,∴AB+BC=36﹣12=24cm,∴△ABD的周长是24cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.【点评】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【考点】翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.26.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:A.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.27.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.【考点】翻折变换(折叠问题).【分析】由有一块直角三角形纸片,∠C=90°,AC=2,BC=,利用勾股定理即可求得AB的长,然后由折叠的性质,求得AE的长,继而求得答案.【解答】解:∵∠C=90°,AC=2,BC=,∴AB==,由折叠的性质可得:AE=AB=,∴CE=AE﹣AC=.故选A.【点评】此题考查了折叠的性质以及勾股定理.注意掌握折叠前后图形的对应关系是解此题的关键.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.5【考点】翻折变换(折叠问题).【分析】利用平行四边形的对边相等得到AD=BC=4,DC=AB=6,再由折叠的性质得到DE=AD,由DC﹣DE求出EC的长即可.【解答】解:由折叠及平行四边形的性质得:AE=AD=BC=4,DC=AB=6,则EC=DC﹣DE=6﹣4=2,故选B.【点评】此题考查了翻折变换(折叠问题),以及平行四边形的性质,熟练掌握折叠的性质是解本题的关键.29.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:。

轴对称的性质—折叠问题(专项培优训练)2023-2024学年八年级数学上册(人教版)(解析版)

轴对称的性质—折叠问题(专项培优训练)2023-2024学年八年级数学上册(人教版)(解析版)

轴对称的性质—折叠问题(专项培优训练)试卷满分:100分 考试时间:120分钟 试卷难度:较难试卷说明:本套试卷结合人教版数学八年级上册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。

一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(本题2分)(2022秋·天津津南·八年级校考期中)如图,把一张长方形纸片ABCD ,沿对角线AC 折叠,点B 的对应点为B ',AB '与DC 相交于点E ,则下列结论正确的有( )①ABC AB C ≅';②AE CE =;③ADE CB E ≅';④B CE EAB ∠'=∠.A .1个B .2个C .3个D .4个【答案】C 【分析】由折叠的性质可得ABC AB C ≅',,BAC CAB '∠=∠,AD BC B C =='由平行线的性质和等腰三角形的性质可得 ,ECA EAC AE CE ∠=∠=,由“HL ”可证()Rt ADE Rt CB E HL '≅,可得 ED EB =' ,即可进行判断;【详解】∵矩形纸片 ABCD 沿对角线 AC 折叠,点B 的对应点为 B '∴ABC AB C '≅,故①正确;,BAC CAB '∴∠=∠,AD BC B C =='∵AB CD ∥,BAC ACD ∴∠=∠,ACD CAB ∴∠=∠',ECA EAC ∴∠=∠∴AE CE =,故②正确;,,AE CE AD BC B C ==='在Rt ADE △ 和 Rt CB E '中,AE CE AD CB =⎧⎨=⎩∴()Rt ADE Rt CB E HL '≅故③正确;,DEA B CE '∴∠=∠,DEA EAB ∠≠∠,B CE EAB ∴∠'≠∠故④不正确;∴结论正确的有①②③共3个故选:C【点睛】本题考查了翻折变换,矩形的性质,全等三角形的性质,证明 AE EC = 是本题的关键.A .①②B .①②③C .①③④D .①②③④【答案】D 【分析】先求出点A ,点B 坐标,由勾股定理可求AB 的长,可判断①;由折叠的性质可得6OB BD ==,OC CD =,90BOC BDC ∠=∠=︒,由勾股定理可求OC 的长,可得点C 坐标,利用待定系数法可求BC 解析式,可判断②;由面积公式可求DH 的长,代入解析式可求点D 坐标,可判断③;分别讨论P 点在C 、B 点的情况,比较AP DP +值的情况,得出当P 点在C 点时,使得AP DP +的值最小可判断④,即可求解. 【详解】解:直线3=+64y x −分别与x 、y 轴交于点A 、B ,∴点()8,0A ,点()0,6B ,8OA ∴=,6OB =,10AB ∴=,故①正确;线段OB 沿BC 翻折,点O 落在AB 边上的点D 处,6OB BD ∴==,OC CD =,90BOC BDC ∠=∠=︒,4AD AB BD ∴=−=,222AC AD CD =+,()22816OC OC ∴−=+,3OC ∴=,∴点()3,0C ,设直线BC 解析式为:6y kx =+,036k ∴=+,2k ∴=−,∴直线BC 解析式为:26y x =−+,故②正确;如图,过点D 作DH AC ⊥于H ,3CD OC ==,5CA ∴=,1122ACD S AC DH CD AD =⋅=⋅△, 341255DH ⨯∴==,∴当125y =时,123654x =−+, 245x ∴=,∴点2412,55D ⎛⎫ ⎪⎝⎭,故③正确;直线BC 上存在一点P ,当P 点在C 点时,()OC DC P =,∴AP DP AC OC OA +=+=,当P 点在B 点时,AP DP AD DB AB +=+=,在Rt OAB 中,AB OA >∴当P 点在C 点时,使得AP DP +的值最小,则点P 的坐标是()3,0,故④正确;综上分析可知,正确的结论为①②③④,故D 正确.故选:D .【点睛】本题是一次函数综合题,考查了利用待定系数法求解析式,折叠的性质,面积法,勾股定理等知识,灵活运用这些性质解决问题是本题的关键. 3.(本题2分)(2023春·福建厦门·八年级厦门市湖滨中学校考期末)如图,在ABC 中,D 是AC 边上的中点,连接BD ,把BDC 沿BD 翻折,得到BDC ',DC '与AB 交于点E ,连接AC ',若2AD AC '==,3BD =,则C 到BD 的距离为( )【答案】B【分析】连接CC ',交BD 于点M ,由翻折知,BDC BDC '≌,BD 垂直平分CC ',证ADC '为等边三角形,利用含30度的直角三角形性质及勾股定理求出1DM =,CM =【详解】解:如图,连接CC ',交BD 于点M ,∵2AD AC ='=,D 是AC 边上的中点,∴2DC AD ==,由翻折知,BDC BDC '≌,BD 垂直平分CC ',∴2DC DC '==,BC BC '=,CM C M '=,∴2AD AC DC ''===,∴ADC '为等边三角形,∴60ADC AC D C AC ∠'=∠'=∠'=︒,∵DC DC =', ∴160302DCC DC C ∠'=∠'=⨯︒=︒,在Rt CDM △中,30DCC ∠'=︒,2DC =,∴1DM =,CM C M '∴=∴C 到BD故选B .【点睛】本题考查了等边三角形的判定及性质、含30度角的直角三角形的性质、勾股定理、折叠的性质、全等三角形的性质,熟练掌握性质定理是解题的关键. 4.(本题2分)(2020秋·广东广州·八年级校考期中)如图1,长方形ABCD 中,E 点在AD 上,且30ABE ∠︒=.分别以BE 、CE 为折线,将A 、D 向BC 的方向折过去,如图2,若图2中15AED ∠=︒,则BCE ∠度数为( )A .30︒B .32.5︒C .35︒D .37.5︒【答案】D 【分析】根据长方形的性质与三角形内角和定理,得到60AEB ∠=︒,再根据折叠的性质,得到A EB AEB '∠=,DEC D EC '∠=∠,由105AED '∠=︒,进而得到37.5DEC ∠=︒,最后根据平行线的性质,即可求出BCE ∠度数.【详解】解:四边形ABCD 是长方形,AD BC ∴∥,90A ∠=︒,30ABE ∠︒=,18060AEB A ABE ∴∠=︒−∠−∠=︒,由折叠的性质可知,60A EB AEB ∠=∠='︒,DEC D EC '∠=∠,15A ED ''∠=︒,606015105AED AEB A EB A ED ''''∴∠=∠+∠−∠=︒+︒−︒=︒,18075DED AED ''∴∠=︒−∠=︒,137.52DEC D EC DED ''∴∠=∠=∠=︒,AD BC ∥,37.5BCE DEC ∴∠=∠=︒,故选:D .【点睛】本题考查了折叠的性质,三角形内角和定理,平行线的性质,熟练掌握折叠的性质是解题关键.5.(本题2分)(2023春·陕西榆林·八年级校考期末)如图,在等腰ABC 中,AB AC =,50BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则CEF ∠的度数是( )A .55︒B .50︒C .45︒D .40︒【答案】B 【分析】连接OB ,OC ,先求出25BAO ∠=︒,进而求出40OBC ∠=︒,求出40COE OCB ∠=∠=︒,由三角形内角和定理和12CEF OEF CEO ∠=∠=∠即可求得答案. 【详解】解:如图,连接OB ,50BAC ∠=︒,AO 为BAC ∠的平分线,11502522BAO BAC ∴∠=∠=⨯︒=︒.又AB AC =,()1180652ABC ACB BAC ∴∠=∠=︒−∠=︒.DO 是AB 的垂直平分线,OA OB ∴=,25ABO BAO ∴∠=∠=︒,652540OBC ABC ABO ∴∠=∠−∠=︒−︒=︒.AO 为BAC ∠的平分线,AB AC =,∴直线AO 垂直平分BC ,OB OC ∴=,40OCB OBC ∴∠=∠=︒,点C 沿EF 折叠后与点O 重合,OE CE ∴=,12CEF OEF CEO ∠=∠=∠,40COE OCB ∴∠=∠=︒;在OCE △中,1801804040100CEO COE OCB ∠=︒−∠−∠=︒−︒−︒=︒,1502CEF CEO ∴∠=∠=︒.故选:B .【点睛】本题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关知识来分析、判断. .将AFG 沿AG A .1B .32 【答案】C 【分析】由正方形的性质可得AD AB =,设BF CF a ==,则2CD a =,24DG CD CG a =−=−,由题意知,90ADE ABF ∠=∠=︒,由折叠的性质可得HG EF ⊥,AE AF =,GE GF =,证明()Rt Rt HL ADE ABF ≌,则DE BF a ==,2434GF GE a a a ==+−=−,由勾股定理得222GF CF DG −=,即()222344a a −−=,解得3a =,0a =(舍去),则3CF =,5EG =,9EC =,由勾股定理得EF ,根据1122CEF S EG CF EF HG =⨯=⨯,即115322HG ⨯⨯=⨯,计算求解即可.【详解】解:由正方形的性质可得AD AB =,设BF CF a ==,则2CD a =,24DG CD CG a =−=−, 由题意知,90ADE ABF ∠=∠=︒,由折叠的性质可得HG EF ⊥,AE AF =,GE GF =,∵AE AF =,AD AB =,∴()Rt Rt HL ADE ABF ≌,∴DE BF a ==,2434GF GE a a a ==+−=−,由勾股定理得222GF CF CG −=,即()222344a a −−=,解得3a =,0a =(舍去),∴3CF =,5EG =,9EC =,由勾股定理得EF ∵1122GEF S EG CF EF HG =⨯=⨯,∴115322HG ⨯⨯=⨯,解得HG =, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,折叠的性质,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.A .65︒B .62.5︒C .55︒D .52.5︒【答案】B 【分析】根据折叠得出90OB C B ''∠=∠=︒,求出55OB G '∠=︒,根据平行线的性质得出18055125B OB '∠=︒−︒=︒.根据折叠得出162.52BOG B OB '∠=∠=︒.【详解】解:根据折叠可知,90OB C B ''∠=∠=︒,∵35GB C ''∠=︒,∴55OB G '∠=︒,∵AB CD ∥,∴18055125B OB '∠=︒−︒=︒. 由折叠可知,162.52BOG B OB '∠=∠=︒,故B 正确. 故选:B .【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补. 8.(本题2分)(2023·浙江·八年级假期作业)如图,现有一块三角板ABC ,其中90ABC ︒∠=,60CAB ︒∠=,8AB =,将该三角板沿BC 边翻转得到A BC '△,再将A BC '△沿A C '边翻转得到A B C ''△,则A 与B '两点之间的距离为( )【答案】C 【分析】连接AB ',作B D AA ''⊥,交AA '延长线于点D ,在Rt A B D ''中求得B D '、A D '的长度,在Rt AB D '中,即可求得AB '.【详解】解:连接AB ',作B D AA ''⊥,交AA '延长线于点D ,如下图:由折叠的性质可得:8AB A B A B '''===,60CAB CA B CA B '''∠=∠=∠=︒∴60B A D ''∠=︒∵B D AA ''⊥,∴90D Ð=°,∴30A B D ''∠=︒, ∴142A D A B '''==,∴B D '==,20AD =,∴AB '=故选:C【点睛】此题考查了勾股定理,折叠的性质,含30︒直角三角形的性质,解题的关键是熟练利用相关性质进行求解.A .①②④B .①②③C .①③④D .①②③④【答案】D 【分析】作FM BC ⊥于M (见详解图),①根据翻折变换的性质和正方形的性质可证ABG AFG △△≌;②设BG GF x ==,在Rt EGC △中,根据勾股定理可证3BG GC ==;③通过tan 2AB AGB BG ∠==,tan 2FM FCM CM ∠==,证明AGB FCM ∠=∠,由平行线的判定定理可得AG CF ∥;④由②得到3GC =,由③得到125FM =,根据12FCG S GC FM =△即可计算面积.【详解】解:作FM BC ⊥于M ,四边形ABCD 是正方形,∴6AB BC CD DA ====,90B D BCD ∠=∠=∠=︒,AFE △是由ADE V 翻折,∴AD AF AB ==,90ADE AFE AFG ∠=∠=∠=︒,在Rt AGF 和Rt AGB 中,AG AG AF AB =⎧⎨=⎩,∴ABG AFG △△≌.故①正确.∴BG GF =,设BG GF x ==,在Rt EGC △中,90ECG ∠=︒,2DE =,6CD =,4EC =,2EG x =+,6GC x =−,∴()()222246x x +=+−,∴3x =,∴3BG GC ==,故②正确.FM BC ⊥,CD BC ⊥∴FM EC ∥ ∴GF FM GM GE ECGC ==,3GF =,5GE =,4EC =,3GC =∴125FM =,95GM =,65CM GC GM =−=, ∴6tan 23AGB ∠==, tan 2FM FCM CM ∠==,∴AGB FCM ∠=∠,∴AG CF ∥,故③正确. ∴112183255FCG S ==△,故④正确.综上,选项D 符合题意.故选:D .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、翻折变换、勾股定理的应用等知识,熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键. 为对称轴将CDE 折叠得到CHE ,使得点 A .90CEF ∠=︒ B .CE 【答案】D 【分析】A.由折叠的性质可以知道EF 和CE 分别是AEG ∠和DEG ∠的平分线,同时AED ∠是平角,所以可知90CEF ∠=︒,故选项A 正确;B.由题意和折叠的性质可以知道EF AG ⊥、EF CE ⊥,就可以得到CE AG ∥,选项B 正确;C 和D.过点C 作C M A B ⊥于点M ,120CBA ∠=︒,可得2BM =,CM =BF a =,可以得到4FG AF a ==−,2FM BF BM a =+=+.根据折叠的性质可得4CG CD ==,根据勾股定理,求得2.4a =,即可得到 1.6FG =, 5.6CF =,所以5.6745CF AB ==.故选项C 正确,选项D 错误. 【详解】解:A.由折叠可知EF 和CE 分别是AEG ∠和DEG ∠的平分线. 又180AED ∠=︒,111809022CEF CEG FEG AED ∴∠=∠+∠=∠=⨯︒=︒, 故选项A 正确.B.又点A 与点G 关于EF 对称,∴EF AG ⊥, 又EF CE ⊥,∴CE AG ∥,故选项B 正确.C 和D.如答图,过点C 作C M A B ⊥于点M .120CBA ∠=︒,∴60CBM ∠=︒,4BC =,∴易知2BM =,CM =设BF a =,∴4FG AF a ==−,2FM BF BM a =+=+,点E 是AD 的中点,折叠后点H 落到EG 上,∴点G 与点H 重合,4CG CD ==.易知点C G F ,,共线,∴448CF FG CG a a =+=−+=−.222FM CM CF +=,()(()22228a a ∴+=−+,解得 2.4a =. ∴4 2.4 1.6FG =−=,88 2.4 5.6CF a =−=−=,5.6745CF AB ∴==,故选项C 正确,选项D 错误.综上,故选:D .【点睛】本题考查翻折变换(折叠问题)、菱形的性质、勾股定理,熟练掌握翻折的性质是解答本题的关键.二、填空题:本大题共10小题,每小题2分,共20分. 11.(本题2分)(2023春·河北承德·八年级统考期末)如图,小宇将一张平行四边形纸片折叠,使点A 落在长边CD 上的点1A 处,并得到折痕DE ,小宇测得长边6CD =,则四边形1A EBC 的周长为 .【答案】12【分析】根据折叠的性质,得到DA DA '=,EA EA '=,结合平行四边形的性质,得到DA DA BC '==,代入计算即可.【详解】根据折叠的性质,得到DA DA '=,EA EA '=,∵四边形ABCD 是平行四边形,∴DA DA BC '==,6AB CD ==,∴四边形1A EBC 的周长为1111212BC BE A E AC A D AC AE BE AB CD CD +++=+++=+==.故答案为:12.【点睛】本题考查了折叠的性质,平行四边形的性质,熟练掌握性质是解题的关键.12.(本题2分)(2023春·上海浦东新·八年级统考期末)如图,在ABC 中,90A ∠=︒,28BC AC ==,点M 在边BC 上,过点M 作MN BC ⊥,垂足为点M ,交边AB 于点N ,将ABC 沿直线MN 翻折,点A 、C 分别与点D 、E 对应,如果四边形ADBE 是平行四边形,那么CM 的长是 .【答案】3【分析】当点E 在线段BC 上时,连接DE 交AB 于点O ,过点O 作OH BC ⊥于点H ,则90BHO ∠=︒,求出AB =30ABC ∠=︒,由轴对称可得4DE AC ==,得OB =2OD OE ==,OH =,求出6CE =,由折叠可知,3CM =;假设点E 在线段CB 的延长线上,得到)4AN AF x ==−,与)2AN x =−矛盾,故点E 不可能在线段CB 的延长线上,即可确定CM 的长.【详解】解:当点E 在线段BC 上时,如图,连接DE 交AB 于点O ,过点O 作OH BC ⊥于点H ,则90BHO ∠=︒,∵90BAC ∠=︒,28BC AC ==,∴AB ==30ABC ∠=︒,∵将ABC 沿直线MN 翻折,点A 、C 分别与点D 、E 对应,∴4DE AC ==,∵四边形ADBE 是平行四边形,∴1122OB AB ==⨯=122OD OE DE ===,∴12OH OB ==∴3BH ==,∴1EH ==,∴312BE BH EH =−=−=,∴826CE BC BE =−=−=,由折叠可知,132CM EM CE ===,假设点E 在线段CB 的延长线上,延长MN 交AD 于点F ,则AD FM ⊥,12AF DF AD ==,∵90BAC ∠=︒,28BC AC ==,∴AB ==30ABC ∠=︒,设CM EM x ==,则8BM x =−,∴()828BE x x x AD=−−=−=, ∴142AF DF AD x ===−, 在Rt BMN △中,30ABC ∠=︒,90BMN ∠=︒, ∴1MN BN 2=,∴222BM MN BN +=,即22212BM BN BN ⎛⎫+= ⎪⎝⎭,则)8BN x ==−,))82AN BN x x ==−==−,在Rt ANF △中,142AF DF AD x ===−,30NAF ABC ∠=∠=︒,90AFN ∠=︒, ∴12FN AN =,∴222AF FN AN +=,即22212AF AN AN ⎛⎫+= ⎪⎝⎭,)4AN AF x ==−,与)2AN x =−矛盾,故点E 不可能在线段CB 的延长线上,综上可知,3CM =,故答案为:3【点睛】此题考查了勾股定理、平行四边形的性质、含30︒角的直角三角形的性质等知识, 分类讨论是解题的关键. 13.(本题2分)(2023春·北京丰台·八年级统考期末)如图,在Rt ABC △中,90B Ð=°,3AB =,4BC =,将ABC 折叠,使点B 恰好落在边AC 上,与点B '重合,AE 为折痕,则BE 的长等于 .【答案】1.5【分析】根据折叠得到BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =−,根据勾股定理求得AC 的值,再由勾股定理可列方程求解即可.【详解】解:根据折叠可得BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =−,在Rt ABC △中,90B Ð=°,3AB =,4BC =5AC ∴=532B C AC AB ''∴=−=−=在Rt B EC '△中,由勾股定理得,()222x 24x +=− 解得 1.5x =故答案为:1.5【点睛】本题考查的是翻折变换的性质,解题的关键是掌握折叠前后图形的形状和大小不变,对应边和对应角相等,能熟练运用勾股定理列方程解决问题.14.(本题2分)(2023春·四川达州·八年级统考期末)如图,在ABC 和DCB △中,90A D ∠=∠=︒,AC ,BD 相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若40BED '∠=︒,则BCD '∠的大小为 .【答案】15︒/15度【分析】根据全等三角形的判定和性质得出BE CE =,再由等边对等角确定EBC ECB ∠∠=,利用折叠的性质及三角形内角和定理求解即可.【详解】解:在AEB 和DEC 中,90A D AE DE AEB DEC ∠∠∠∠==︒⎧⎪=⎨⎪=⎩,∴(ASA)AEB DEC ≌,∴BE CE =,∴EBC ECB ∠∠=,∵40BED '∠=︒,CDE 沿CE 折叠,点D 落在点D ¢处,∴70D EC DEC ︒'∠=∠=,∴180110BEC DEC ∠=︒−∠=︒,790200DCE ︒−︒=︒∠=,∴180110352EBC ECB ︒−∠︒=∠==︒,20DCE D CE ︒'∠=∠=,∴15BCD ECB D CE ''∠=∠−∠=︒,故答案为:15︒.【点睛】题目主要考查折叠的性质及全等三角形的判定和性质,三角形内角和定理及等腰三角形的判定和性质,理解题意,综合运用这些知识点是解题关键.15.(本题2分)(2023·浙江·八年级假期作业)折纸是一项有趣的活动,如图所示,一张长方形纸片()90ABCD A B C ∠=∠=∠=︒,先将纸片沿EF 折叠,再将折叠后的纸片沿GH 折叠,使得GD '与A B ''重合,展开纸片后若62BFE ∠=︒,则DGH ∠= ︒.【答案】17【分析】由平行线的性质得到62GEF BFE ∠=∠=︒,由平角定义得到180118AEF GEF ∠=︒−∠=︒,由轴对称的性质得到:90A A '∠=∠=︒,118A EF AEF '∠=∠=︒,DGH D GH '∠=∠,求出A EG '∠,由直角三角形的性质求出'∠A GE ,由对顶角的性质得到DGD A GE ''∠=∠,即可求出12DGH DGD '∠=.【详解】解:四边形ABCD 是矩形, AD BC ∴∥,90A ∠=︒,62GEF BFE ∴∠=∠=︒,180118AEF GEF ∴∠=︒−∠=︒,由题意得:90A A '∠=∠=︒,118A EF AEF '∠=∠=︒,DGH D GH '∠=∠,1186256A EG A EF GEF ''∴∠=∠−∠=︒−︒=︒,9034A GE A EG ''∴∠=︒−∠=︒,34DGD A GE ''∴∠=∠=︒,1172DGH DGD '∴∠==︒.故答案为:17.【点睛】本题考查轴对称的性质,平行线的性质,余角的计算,对顶角的性质,解题的关键是掌握轴对称的性质.16.(本题2分)(2023·浙江·八年级假期作业)如图,在△ABC 中,AB AC =,30C ∠=︒,将纸片沿DE 折叠,使点B 落到点A 处,若6BC =,则DE = .【答案】1【分析】利用等腰三角形的性质得到30B C ∠=∠=︒,则120BAC ∠=︒,再由折叠性质得BD AD =,30BAD B ∠=∠=︒,90AED ∠=︒,进而得到90DAC ∠=︒,再根据含30度角的直角三角形的性质求解即可.【详解】解:∵AB AC =,30C ∠=︒∴30B C ∠=∠=︒,则3018030120BAC ∠=−︒−︒=︒,由折叠性质得BD AD =,30BAD B ∠=∠=︒,90AED ∠=︒,∴1309020DAC ︒−︒=∠=︒,12DE AD =,∴2CD AD =,又6BC =,∴236BC BD CD AD AD AD =+=+==,∴2AD =, ∴112DE AD ==, 故答案为:1.【点睛】本题考查等腰三角形的性质、折叠性质、三角形的内角和定理、含30度角的直角三角形的性质,熟练掌握折叠性质和直角三角形的性质是解答的关键. 上一动点,把CDE 沿直线,若D BC '为等边三角形,【答案】1或4/4或1【分析】依据折叠的性质、菱形的性质以及等边三角形的性质,分两种情况得到DE 的长即可.【详解】解:由折叠及菱形的性质可得CD CD CB '==,故D BC '是以BD '底的等腰三角形,故当60D BC '∠=︒,D BC '为等边三角形,分以下两种情况讨论,1)如图(1),当点D ¢点A 重合时,60D BC '∠=︒,此时点E 为AD 的中点,故1DE =,2)如图(2),当点D ¢与点A 关于直线BC 对称时,D ¢,C ,D 三点共线,EC DC ⊥,故24DE DC ==, 综上所述,1DE =或4,故答案为:1或4.【点睛】本题考查了菱形的性质,折叠问题及等边三角形的性质等知识的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 如图,ABC 中,【答案】108【分析】连接OB 、OC ,根据角平分线的定义求出BAO ∠,根据等腰三角形两底角相等求出ABC ∠,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA OB =,根据等边对等角可得ABO BAO ∠=∠,再求出OBC ∠,证明 OB OC =,再根据等边对等角求出OCB OBC ∠=∠,根据翻折的性质可得OE CE =,然后根据等边对等角求出COE ∠,再利用三角形的内角和定理列式计算即可.【详解】解:如图,连接OB 、OC ,54BAC ∠=︒Q ,AO 为BAC ∠的平分线,11542722BAO BAC ∴∠=∠=⨯︒=︒,又AB AC =,11(180)(18054)6322ABC BAC ∴∠=︒−∠=︒−︒=︒, DO 是AB 的垂直平分线,OA OB ∴=,27ABO BAO ∴∠=∠=︒,632736OBC ABC ABO ∴∠=∠−∠=︒−︒=︒, AO 为BAC ∠的平分线,AB AC =,∴点O 在BC 的垂直平分线上,∴OB OC =,36OCB OBC ∴∠=∠=︒,将C ∠沿(EF E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,OE CE ∴=,36COE OCB ∴∠=∠=︒,在OCE △中,1801803636108OEC COE OCB ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:108.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,三角形内角和定理等等,熟知相关知识是解题的关键.19.(本题2分)(2023春·辽宁沈阳·八年级统考期末)如图,在ABC ∆中,90A ∠=︒,30C ∠=︒,3AB =,点D 为AC 的中点,点E 是BC 边上一个动点,将CDE ∆沿着DE 翻折,使得点C 落在点F 处,当FE AC ⊥时,EF 的长为 .【答案】32或92【分析】根据题意,分两种情况:①当E 在D 的右侧时;②当E 在D 的左侧时,由翻折性质,结合含30︒的直角三角形边的关系列方程求解即可得到答案.【详解】解:在ABC 中,90A ∠=︒,30C ∠=︒,3AB =,点D 为AC 的中点,AC ∴=12CD AB =, 当E 在D 的右侧时,延长FE 交AC 于H ,如图所示:FE AC ⊥,90EHC ∴∠=︒,由翻折的性质知,CD DF ==,30C DFH∠=∠=︒, 设EF x =,则CE EF x ==,1122EH EC x ==, 32FH x ∴=,在直角三角形DFH 中,30DFH ∠=︒,则FH =,∴32x =,32x ∴=;当E 在D 的左侧时,如图所示:由翻折性质知,CD DF ==,30C EFD ∠=∠=︒,CE EF x ==,EF AC ⊥,90FHD ∴∠=︒,1122EH EC x ∴==,1122FH x x x =−=,在直角三角形FHD 中,HF =,∴12x =,解得92x =, 故答案为:32或92.【点睛】本题考查翻折性质,充分利用翻折性质及含30︒的直角三角形边的关系分情况讨论是解决问题的关键. 20.(本题2分)(2023春·重庆忠县·八年级统考期末)如图,在正方形ABCD 中,点E 是BC 上一点,连接DE ,将BDE 沿DE 翻折得到GDE ,连接CG .若CG BD ∥,则CEG ∠= .【答案】60︒/60度【分析】根据直角三角形斜边中线的性质得出CH DH HB ==,1=2CH DB ,由折叠的性质得DB DG =,∠=∠BDE GDE ,利用辅助线构造矩形并由其性质得出CH GK =,再由等量代换得出12GK DG =,最后由特殊直角三角形的性质得出30GDK ∠=︒,利用折叠的性质及正方形的性质即可求解. 【详解】解:如图,过点C 作直线CH DB ⊥于点H ,过点G 作直线GK DB ⊥于点K ,正方形ABCD 中,DC CB =,90452CDB ︒∠==︒,CH DH HB ∴==,1=2CH DB . GDE △由BDE 沿DE 翻折得到,GDE BDE ∴≌△△, DB DG ∴=,∠=∠BDE GDE ,CH DB ⊥,GK DB ⊥,CG BD ∥,CH GK ∴∥,90CHK ∠=︒,∴四边形CHKG 是矩形.CH GK ∴=, ∴11=22GK CH DB DG ==,90GKD ∠=︒,∴30GDK ∠=︒.11=30=1522BDE GDK ∴∠=∠⨯︒︒.∵正方形ABCD ,∴45DBE ∠=︒,∴1804515120BED ∠=︒−︒−︒=︒,60CED ∠=︒,∵BDE 沿DE 翻折得到GDE ,∴120BED DEG ∠=∠=︒,∴12060CEG DEC ∠=︒−∠=︒,故答案为:60︒.【点睛】本题考查正方形—翻折问题.具体考查正方形的性质,折叠的性质,全等三角形的性质,特殊直角三角形的性质,矩形的判定和性质等的综合运用能力.灵活添加辅助线是解本题的关键.三、解答题:本大题共7小题,21-25题每小题8分,26-27题每小题10分,共60分. 若将DAB 沿直线 (1)求点A B 、的坐标.(2)求三角形ACE 的面积.(3)求直线CD 的解析式.【答案】(1)()3,0A ,()0,4B(2)6(3)364y x =−【分析】(1)当0x =,4043y =−⨯+,解得4y =,则()0,4B ,当0y =,4043x =−+,解得3x =,则()3,0A ;(2)由折叠的性质可知AB AC =,OBA ECA ∠=∠,证明()AAS ABO ACE ≌,根据12ACE ABO S S OA OB ==⨯,计算求解即可;(3)由勾股定理得,5AB ,则8OC OA AC =+=,()80C ,,待定系数法求直线CD 的解析式即可.【详解】(1)解:当0x =,4043y =−⨯+,解得4y =,则()0,4B ,当0y =,4043x =−+,解得3x =,则()3,0A ,∴()3,0A ,()0,4B ;(2)解:由折叠的性质可知AB AC =,OBA ECA ∠=∠,∵OBA ECA ∠=∠,OAB EAC ∠=∠,AB AC =,∴()AAS ABO ACE ≌, ∴1134622ACE ABO S S OA OB ==⨯=⨯⨯=,∴三角形ACE 的面积为6;(3)解:由勾股定理得,5AB ==,由(2)可知5AC AB ==,8OC OA AC =+=,∴()80C ,,设直线CD 的解析式为y kx b =+,将()0,6D −,()80C ,,代入y kx b =+得,680b k b =−⎧⎨+=⎩,解得346k b ⎧=⎪⎨⎪=−⎩,∴直线CD 的解析式为364y x =−. 【点睛】本题考查了一次函数的解析式,勾股定理,折叠的性质,全等三角形的判定与性质,一次函数的图象坐标轴的交点.解题的关键在于对知识的熟练掌握与灵活运用. 22.(本题8分)(2023春·吉林长春·八年级统考期末)将边长为2的正方形纸片ABCD 按如下操作:【操作一】如图①,将正方形纸片ABCD 对折,使点A 与点B 重合,点D 与点C 重合,再将正方形纸片ABCD 展开,得到折痕EF .则点B 、点F 之间的距离为_____________.【操作二】如图②,G 为正方形ABCD 边BC 上一点,连接AG ,将图①的正方形纸片沿AG 翻折,使点B 的对称点H 落在折痕EF 上.连接BH .(1)求证:ABH 是等边三角形.(2)求四边形CFGH 的周长.(1)证明见解析;(2)5【分析】操作一:由题知,4BC =,122CF DF CD ===,利用勾股定理可得BF =操作二:(1)由翻折得EF 是AB 的垂直平分线,故BH AH =,又AB AH =,即AB BH AH ==,即得ABH 是等边三角形;(2)由ABH 是等边三角形,可得2AH AB ==,1AE =.HE ==可得2FH EF HE =−=即可得出四边形ABGH 的周长.【详解】解:操作一:如图,连接BF ,由题知2BC CD ==,由翻折,知112CF DF CD ===,由勾股定理,得BF操作二:(1)由翻折知EF 是AB 的垂直平分线,BH AH ∴=,又AB AH =,AB BH AH ∴==,ABH ∴是等边三角形;(2)∵ABH 是等边三角形.∴2AH AB ==,1AE =.∴HE =∴2FH EF HE =−=∴四边形CFHG 的周长CF HF HG CG CF HF CB +++=++122=+5=【点睛】本题主要考查四边形的综合题,涉及勾股定理,等边三角形的判定和性质,正方形的性质等知识点,熟练掌握轴对称的性质与勾股定理的应用是解题的关键. (1)试判断重叠部分BED 的形状,并证明你的结论;(2)若BE 平分ABD ∠,12BC =,求BED 的面积.【答案】(1)BED 是等腰三角形,证明见解析(2)BED 的面积【分析】(1)根据折叠性质得出EBD DBC ∠=∠,进而得出EDB EBD ∠=∠,可得EB ED =,根据等角对等边即可得证;(2)根据含30度角的直角三角形的性质,勾股定理得出DE ,进而根据三角形的面积公式即可求解.【详解】(1)BED 是等腰三角形,证明:四边形ABCD 是长方形,AD BC ∴∥,EDB DBC ∴∠=∠,由折叠可知:EBD DBC ∠=∠,EDB EBD ∴∠=∠,EB ED ∴=,BED ∴是等腰三角形;(2)四边形ABCD 是长方形,AB DC ∴=,12AD BC ==,90A ABC C ∠=∠=∠=︒, BE 平分ABD ∠,ABE EBD ∴∠=∠,30ABE EBD DBC ∴∠=∠=∠=︒,2,BC CD BC ∴==,DC BC ∴==AB ∴=EB ED =,12AE AD DE DE ∴=−=−,在Rt ABE △中,根据勾股定理,得222AE AB BE +=,222(12)DE DE ∴−+=,解得8DE =,BED ∴的面积11822DE AB =⨯⋅=⨯⨯=【点睛】本题考查了勾股定理,折叠问题,含30度角的直角三角形的性质,熟练掌握勾股定理与折叠的性质是解题的关键. 24.(本题8分)(2023春·山西阳泉·八年级统考期末)综合与实践问题情境:在综合实践活动课上,同学们以“平行四边形纸片的折叠”为主题开展数学活动.在平行四边形纸片ABCD 中,E 为CD 边上任意一点,将ADE V 沿AE 折叠,点D 的对应点为D ¢.分析探究:(1)如图1,当点D ¢恰好落在AB 边上时,四边形D BCE '的形状为 .问题解决:(2)如图2,当E ,F 为CD 边的三等分点时,连接FD '并延长,交AB 边于点G .试判断线段AG 与BG 的数量关系,并说明理由.(3)如图3,当60ABC ∠=︒,45DAE =︒∠时,连接DD '并延长,交BC 边于点H .若ABCD Y 的面积为24,4=AD ,请直接写出线段D H '的长.【答案】(1)平行四边形;(2)2BG AG =,理由见解析;(3)D H '=【分析】(1)利用平行四边形的性质及折叠的性质可得ABCD ,AD DE AD '==,可得四边形ADED '是菱形,可知DE AD =',继而可知BD CE '=,即可求解;(2)利用折叠的性质可得AED AED '∠=∠,ED ED ¢=,结合三等分点可知ED ED EF '==,进而可得ED F EFD ''∠=∠,利用三角形外角性质可得AED ED F ''∠=∠,进而可知AE FG ∥,可得四边形AEFG 是平行四边形,再结合平行四边形的性质即可得AG 与BG 的数量关系;(3)由折叠可知:45DAE D AE '∠=∠=︒,AD AD =',易知DAD '△为等腰直角三角形,延长AD '交BC 于M ,可知45MD H AD D ''∠=∠=︒,由平行四边形的性质可得,45BHM ADH MD H '∠=∠=︒=∠,AM AD ⊥,进而可知MD MH '=由ABCD Y 的面积为24,4=AD ,得24AD AM ⋅=,求得6AM =,可得2MD AM AD ''=−=,再利用勾股定理即可求解.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD ,AB CD =则D AE AED '∠=∠由折叠可知:AD AD =',DAE D AE '∠=∠,∴DAE AED ∠=∠,∴AD DE AD '==,∴四边形ADED '是平行四边形,又∵AD AD =',∴四边形ADED '是菱形,∴DE AD =',∴BD CE '=,∴四边形D BCE '是平行四边形,故答案为:平行四边形;(2)2BG AG =,理由如下:∵四边形ABCD 是平行四边形,∴AB CD ,AB CD =,又∵E ,F 为CD 边的三等分点, ∴13DE EF CF DC ===,由折叠可知:ED ED ¢=,AED AED '∠=∠,则ED ED EF '==,∴ED F EFD ''∠=∠,由三角形外角可知:DED ED F EFD AED AED ''''∠=∠+∠=∠+∠,∴AED ED F ''∠=∠,∴AE FG ∥,∴四边形AEFG 是平行四边形,∴EF AG =, ∵13EF DC =,AB CD =, ∴13AG AB =,则23BG AB =,∴2BG AG =;(3)由折叠可知:45DAE D AE '∠=∠=︒,AD AD =',∴90DAD '∠=︒,则DAD '△为等腰直角三角形,∴45ADH AD D '∠=∠=︒,延长AD '交BC 于M ,则45MD H AD D ''∠=∠=︒∵四边形ABCD 是平行四边形,∴AD BC ∥,∴45DHM ADH MD H ∠=∠=∠'︒=,90AMH DAD '∠=∠=︒,即AM AD ⊥,∴MD MH '=∵ABCD Y 的面积为24,4=AD ,即:24AD AM ⋅=,∴6AM =,则2MD AM AD AM AD ''=−=−=,∴D H '【点睛】本题考查平行四边形的判定及性质,菱形的判定,翻折的性质,等腰直角三角形的判定及性质,勾股定理等知识点,熟练掌握相关性质定理是解决问题的关键. 轴的负半轴上,若将DAB 沿直线(1)求线段AB 的长(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB SS =,求点【答案】(1)5AB =(2)364y x =− (3)7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫− ⎪⎝⎭【分析】(1)先根据点,A B 的坐标可得3,4OA OB ==,再利用勾股定理可得5AB =;(2)设点D 的坐标为()0,D m ,则4,BD m OD m =−=−,先根据折叠的性质可得4CD BD m ==−,再在Rt COD 中,利用勾股定理可得6m =−,从而可得()0,6D −,然后利用待定系数法即可得;(3)设点P 的坐标为3,64P n n ⎛⎫− ⎪⎝⎭,根据2PAC OAB S S =建立方程,解方程可得n 的值,由此即可得出答案.【详解】(1)解:()3,0A ,()0,4B , 3,4OA OB ∴==, x 轴y ⊥轴,5AB ∴=.(2)解:设点D 的坐标为()0,D m ,则4,BD m OD m =−=−,由折叠的性质得:4CD BD m ==−,5AC AB ==,8OC OA AC ∴=+=,∴点C 的坐标为()8,0,在Rt COD 中,222OD OC CD +=,即()()22284m m −+=−,解得:6m =−,()0,6D ∴−,设直线CD 的函数表达式为y kx b =+,将点()()8,0,0,6C D −代入得:806k b b +=⎧⎨=−⎩,解得346k b ⎧=⎪⎨⎪=−⎩,则直线CD 的函数表达式为364y x =−.(3)解:由题意,设点P 的坐标为3,64P n n ⎛⎫− ⎪⎝⎭, 3,4OA OB ==,162OAB S OA OB ∴=⋅=,2PAC OAB S S =,61562342n −∴⨯=⨯, 解得725n =或85n =, 当725n =时,732364424655n −=−=⨯,即此时7224,55P ⎛⎫ ⎪⎝⎭, 当85n =时,83246534564n =−=−−⨯,即此时824,55P ⎛⎫− ⎪⎝⎭, 综上,点P 的坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫− ⎪⎝⎭. 【点睛】本题考查了勾股定理、折叠的性质、求一次函数的解析式、一次函数的几何应用,熟练掌握折叠的性质和待定系数法是解题关键. 26.(本题10分)(2023春·江苏苏州·八年级星海实验中学校考期中)如图1,四边形ABCD 中,AD BC ∥,90ADC ∠=︒,8AD =,6BC =,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动,过点N 作NP AD ⊥于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时间为t 秒.(1)AM =______,AP =______.(用含t 的代数式表示)(2)当四边形ANCP 为平行四边形时,求t 的值;(3)如图2,将AQM 沿AD 翻折,得AKM ,是否存在某时刻t ,使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由.【答案】(1)82t −,2t +(2)2t =(3)存在,1t =【分析】(1)由2DM t =,根据AM AD DM =−即可求出82AM t =−;先证明四边形CNPD 为矩形,得出6DP CN t ==−,则2AP AD DP t =−=+;(2)根据四边形ANCP 为平行四边形时,可得68(6)t t −=−−,解方程即可;(3)由NP AD ⊥,QP PK =,可得当PM PA =时有四边形AQMK 为菱形,列出方程628()6t t t −−=−−,求解即可.【详解】(1)解:如图1.2DM t =,82AM AD DM t ∴=−=−.在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,NP AD ⊥于点P ,∴四边形CNPD 为矩形,6DP CN BC BN t ∴==−=−,8(6)2AP AD DP t t ∴=−=−−=+;故答案为:82t −,2t +.(2)四边形ANCP 为平行四边形时,CN AP =,68(6)t t ∴−=−−,解得:2t =;(3)存在时刻1t =,使四边形AQMK 为菱形.理由如下:NP AD ⊥,QP PK =,∴当PM PA =时有四边形AQMK 为菱形,628(6)t t t ∴−−=−−,解得1t =.【点睛】本题主要考查了四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.(1)BQ = ______ (含t 的代数式表示);(2)如图2,连接AD ,PF ,PQ ,当AD PQ ∥时,求PQF △的面积;(3)如图3,连接PF ,PQ ,D 点关于直线PF 的对称点为D '点,若'D 落在PQB △的内部则t 的取值范围为______.【答案】(1)4(02)t t −<≤(2)PQFS = (3)4453t <<【分析】(1)根据几何动点的速度和时间可得结论;(2)根据四边形BPDQ 是平行四边形,证明四边形APQD 是平行四边形,可得1t =,再证明EFD ≌△CFQ ,最后利用三角形的面积公式可解答;(3)先证明DF FQ =,再计算两个边界点时点t 的值;①如图3,点D '与Q 重合,②如图4,D '在斜边AB 上,由此可得结论.【详解】(1)解:在Rt ABC △中,90830C AB A ∠∠=︒==︒,,,142BC AB AC ∴===,由题意,CQ t =,()402BQ t t ∴=−<≤. 故答案为:()402t t −<≤; (2)如图2中,四边形BPDQ 是平行四边形,∴DQ AB ∥,BP DQ BQ PD ==,,。

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)一、选择题1.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.若BE平分∠ABC,且AB=5,BE=4,则AE=( )A.2B.3C.4D.54.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )A.9.5B.10.5C.11D.15.55.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )A.7cmB.10cmC.12cmD.22cm6.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.8.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为10.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.12.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为______.三、解答题13.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已AB=32cm,BC=40cm,求CE的长.14.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F 处.(1)求EF的长;(2)求四边形ABCE的面积.15.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.16.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.17.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.18.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.19.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4求QF的值.20.如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.如图1,在矩形纸片ABCD中,AB=12 cm,AD=20 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图1 图2参考答案1.A.2.A3.B.4.D.5.C.6.A7.答案为:36°.8.答案为:3(cm).10.答案为:3cm.11.答案为:2.12.答案为:28.8.13.解:∵四边形ABCD是矩形∴AD=BC=40cm,DC=AB=32cm;∠B=90°由题意得:AF=AD=40cm;DE=EF(设为x),EC=40﹣x;由勾股定理得:BF2=402﹣322=576∴BF=24,CF=40﹣24=16;由勾股定理得:x2=162+(40﹣x)2,解得:x=23.2∴EC=32﹣23.2=8.8.14.解:(1)设EF=x依题意知:△CDE≌△CFE∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5∴S梯形ABCE=(5+8)×6÷2=39.15.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE∵AE=A′E=BC,∠AEF=∠BCE∴△AEF≌△BCE∴△GEF≌△HCE∴EG=CH;(2)∵AF=FG=2,∠FDG=45°∴FD=2,AD=2+2;∵AF=FG=HE=EB=2,AE=AD=2+ 2∴AB=AE+EB=2+2+2=2+2 2.16.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形∴BC=OA=4,∠AOC=∠DCE=90°由折叠的性质可得DE=BD=BC﹣CD=4﹣1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=22,则有OE=OC﹣CE=m﹣2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m﹣22)2=m2,解得m=3 2.17.证明:(1)∵AD⊥BC∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°∠BAG=∠BAD,∠CAF=∠CAD∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形解:(2)∵四边形AFHG是正方形∴∠BHC=90°又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去) ∴AD=12∴AB=6 5.18.证明:(1)由题意可得,△BCE≌△BFE∴∠BEC=∠BEF,FE=CE∵FG∥CE∴∠FGE=∠CEB∴∠FGE=∠FEG∴FG=FE∴FG=EC∴四边形CEFG是平行四边形又∵CE=FE∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF∴∠BAF=90°,AD=BC=BF=10∴AF=8∴DF=2设EF=x,则CE=x,DE=6﹣x∵∠FDE=90°∴22+(6﹣x)2=x 2,解得,x =103 ∴CE =103∴四边形CEFG 的面积是:CE •DF =103×2=203. 19.证明:(1)∵E ,F 分别是正方形ABCD 边BC ,CD 的中点 ∴CF =BE在△ABE 和△BCF 中∴Rt △ABE ≌Rt △BCF(SAS)∴∠BAE =∠CBF又∵∠BAE +∠BEA =90°∴∠CBF +∠BEA =90°∴∠BGE =90°∴AE ⊥BF ;(2)解:∵将△BCF 沿BF 折叠,得到△BPF∴FP =FC ,∠PFB =∠BFC ,∠FPB =90°∵CD ∥AB∴∠CFB =∠ABF∴∠ABF =∠PFB∴QF =QB设QF =x ,PB =BC =AB =4,CF =PF =2∴QB =x ,PQ =x ﹣2在Rt △BPQ 中∴x 2=(x ﹣2)2+42解得:x =5,即QF =5.20.解:(1)∵在△OAB 中,∠OAB =90º,∠AOB =30º,OB =8 ∴OA =43,AB =4.∴点B 的坐标为(43,4).(2)∵∠OAB =90º∴AB ⊥x 轴∴AB ∥EC.又∵△OBC 是等边三角形∴OC =OB =8.又∵D 是OB 的中点,即AD 是Rt △OAB 斜边上的中线∴AD =OD∴∠OAD =∠AOD =30º∴OE =4.∴EC =OC -OE =4.∴AB =EC.∴四边形ABCE 是平行四边形.(3)设OG =x ,则由折叠对称的性质,得GA =GC =8-x. 在Rt △OAG 中,由勾股定理,得GA 2=OA 2+OG2 即,解得,x =1. ∴OG 的长为1.21. (1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ∴点B 与点E 关于PQ 对称∴PB =PE ,BF =EF ,∠BPF =∠EPF.又∵EF ∥AB∴∠BPF =∠EFP ,∴∠EPF =∠EFP∴EP =EF ,∴BP =BF =EF =EP ∴四边形BFEP 为菱形.(2)解:①∵四边形ABCD 是矩形∴BC =AD =20,CD =AB =12,∠A =∠D =90°.∵点B 与点E 关于PQ 对称∴CE =BC =20.在Rt △CDE 中,DE =CE 2-CD 2=16∴AE =AD -DE =20-16=4.在Rt △APE 中,AE =4,AP =12-PB =12-PE∴EP 2=42+(12-EP)2.解得EP =203∴菱形BFEP 的边长为203cm. ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =4. 当点P 与点A 重合时,如图点E离点A最远,此时四边形ABQE为正方形,AE=AB=12 ∴点E在边AD上移动的最大距离为8 cm.。

折叠问题(人教版)(含答案)

折叠问题(人教版)(含答案)

学生做题前请先回答以下问题问题1:折叠问题的处理思路是什么?问题2:折叠背景下勾股定理的应用,折叠这个条件可以怎么用?勾股定理怎么用?问题3:折叠问题中利用勾股定理建等式时需要注意什么?折叠问题(人教版)一、单选题(共8道,每道12分)1.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则DE的长为( )cm.A.5cmB.3cmC.cmD.4cm答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用2.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=( )A.4cmB.3cmC.5cmD.6cm答案:C解题思路:试题难度:三颗星知识点:折叠问题3.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F 处,折痕为MN,则线段CN的长是( )A.6cmB.8cmC.10cmD.12cm答案:A解题思路:试题难度:三颗星知识点:折叠问题4.如图,长方形纸片ABCD中,AB=12,BC=5,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( )A. B.6C. D.答案:D解题思路:试题难度:三颗星知识点:折叠问题5.如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是( )A.8cm2B.6cm2C.48cm2D.24cm2答案:D解题思路:试题难度:三颗星知识点:勾股定理之折叠问题6.如图,在长方形ABCD中,BC=4,DC=3,将该长方形沿对角线AC折叠,使点B落在点F 处,CF交AD于点E,则EF的长为( )A. B.C.1D.答案:B解题思路:试题难度:三颗星知识点:折叠问题7.把一张长方形纸片(长方形ABCD)按如图所示方式折叠,使顶点B与点D重合,折痕为EF.若AB=6,BC=10,求重叠部分△DEF的面积为( )A. B.C.20D.答案:A解题思路:试题难度:三颗星知识点:折叠问题8.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC 为16,宽AB为8,则折叠后重合部分的面积是( )A.30B.40C.60D.80答案:B解题思路:试题难度:三颗星知识点:勾股定理之折叠问题。

人教版八年级数学下教学案(新)折叠问题(期末复习)教案导学案课时作业试卷同步练习含答案解析

人教版八年级数学下教学案(新)折叠问题(期末复习)教案导学案课时作业试卷同步练习含答案解析

A B C D M N PQ 折叠问题(专题复习)一、计算角度1.点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________.2.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度. 2.如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上A 1,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,则∠AFE =____________.3.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD =____________.二、折出特殊的四边形1.如图,一张矩形纸片,腰折出一个最大的正方形.小明把矩形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形.他判定的方法是_________________.2.如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . ⑴求证:△ABF ≌△EDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.ABABOOCDE3.在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?4A BCDA B CD E三、计算长度及面积1.如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折, 使DC 落在对角线DB 上,则EB ∶CE =_________.2.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在C ´的位置, 若BC =2,则BC ´=_________.3.有一矩形纸片ABCD ,AB =9cm ,BC =12cm ,将纸片沿EF 折叠,使B 与D 重合.求折痕EF 的长.4.如下图,等腰梯形ABCD 中,AD ∥BC ,045=∠DBC .翻折梯形ABCD ,使点B 重合与点D ,折痕分别交边AB 、BC 于点F 、E .若AD =2,BC =8, 求BE 的长;5.如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.(1)当折痕的另一端F 在AB 边上时,求△EFG 的面积.(2)当折痕的另一端F 在AD 边上时,如图,证明四边形BGEF 为菱形,并求出折痕GF 的长.AB CD E F G H (A)(B)6.(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.7.已知:如图,矩形AOBC ,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上. 点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,求D 点坐标.8.如图,在矩形纸片ABCD 中,AB =33,BC =6,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,∠BPE =30°. ⑴ 求BE 、QF 的长.⑵ 求四边形PEFH 的面积. 9.在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 翻折后得△AB ′E ,求△AB ′E 与四边形AECD 重叠部分的面积.四、综合型问题1.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.A 图① A 图② F EE D CF B A 图③ E D C A B FG ' D ' A D E C B F G α 图④ 图⑤(1) 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=______;(2) 将△ECD 绕点C 逆时针旋转到图(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数=______; (3) 将△ECD 沿直线AC 翻折到图(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.2.如图,把一个等腰直角△ABC 沿斜边上的中线CD (裁剪线)剪一刀,把分割成的两部分拼成一个四边形A ′BCD ,如示意图(1)。

人教版八年级数学下册-思想方法专题:矩形中的折叠问题

人教版八年级数学下册-思想方法专题:矩形中的折叠问题

思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一折叠中求角度1.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠EFC′=125°,那么∠ABE的度数为()A.15° B.20° C.25° D.30°第1题图第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD,使AD和BC 重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠ABM的度数是()A.25° B.30° C.36° D.45°◆类型二折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm第3题图第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF 的长为________.◆类型三 折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .(1)求证:△AFE ≌△CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B解析:由折叠可知∠EFC=∠EFC′=125°.∵在矩形ABCD中,AD∥BC,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF=∠DEF=55°,∴∠BED=110°.∵四边形ABCD为矩形,∠A=90°,∴∠ABE=110°-90°=20°.故选B.2.B 3.C 4.C5. 185解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12BC =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝⎛⎭⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F =∠D .在△AFE与△CDE 中,⎩⎪⎨⎪⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10. 7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA =∠MAQ ,由折叠性质得△ANM ≌△ADM ,∴∠ANM =∠D =90°,∠DMA =∠AMQ ,AN =AD =3,MN =MD =1,∴∠MAQ =∠AMQ ,∴MQ =AQ .设NQ =x ,则AQ =MQ =MN +NQ =1+x .∵∠ANM =90°,∴∠ANQ =90°.在Rt △ANQ 中,由勾股定理得AQ 2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB=45S△NAQ=45×12×AN·NQ=45×12×3×4=245.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

(完整版)初中数学中的折叠问题

(完整版)初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB ’=x ,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12C'ABCDE21GC'A BC DE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

折叠问题练习题(含答案)

折叠问题练习题(含答案)

专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片 ABC 使点 C 与点 A 重合,然后展开铺平,得到折痕 DE ;第二步:将△ABC 沿折痕 DE 展开,然后将△DEC 绕点 D 逆时针方向旋转得到△DFG ,点 E ,C 的对应点分别是点 F ,G ,射线 GF 与边 AC 交于点 M(点 M 不与点 A 重合),与边 AB 交于点 N ,线段 DG 与边 AC 交于点 P.数学思考:(1)求 DC 的长;(2)在△DEC 绕点 D 旋转的过程中,试判断 MF 与 ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点 D 旋转的过程中,探究 下列问题:① 如图 2,当 GF ∥BC 时,求 AM 的长;② 如图 3,当 GF 经过点 B 时,AM 的长为③ 当△DEC 绕点 D 旋转至 DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线 GF ,并直接写出 AM 的长(要求:尺规作图 ,不写作法,保留 作图痕迹,标记出所有相应的字母)2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论;②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF 的值.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.4.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=√2AD,那么请直接写出点D'到直线BC的距离.专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(3)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(4)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明见解答.【分析】(1)由折叠可得AB=AB′,BE=B'E,再根据四边形ABCD是正方形,易证B'E=B'F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B'E,∵四边形ABCD是正方形,∴AB=DC=DF,∠CB'E=45°,∴B'E=B'F,∴AF=AB'+B'F,即DF+BE=AF;(5)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B'AE,∴∠B'AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∴∠BAM=∠FAD,AF=AM ∵ΔABE≌AB'E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAE,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合,然后展开铺平,得到折痕DE;第二步:将△ABC 沿折痕DE 展开,然后将△DEC 绕点D 逆时针方向旋转得到△DFG,点E,C 的对应点分别是点F,G,射线GF 与边AC 交于点M(点M 不与点A 重合),与边AB交于点N,线段DG 与边AC 交于点P.数学思考:(1)求DC 的长;(2)在△DEC 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点D 旋转的过程中,探究下列问题:①如图2,当GF∥BC 时,求AM 的长;②如图3,当GF 经过点B 时,AM 的长为③当△DEC 绕点D 旋转至DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线GF,并直接写出AM 的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)【答案】(1) DC=5;(2)相等,理由见解析;(3)①AM=3;②AM=74;③AM=10 3√5【分析】(1)理由勾股定理求出BC即可解决问题.(2)结论:MF=ME.证明Rt△DMF≌Rt△DME(HL),即可解决问题.(3)①如图2中,作AH⊥BC于H,交FG于K.由KM∥CH,推出AK AH =AMAC,求出AK,AH即可解决问题.②证明BM=MC,设BM=MC=x,在Rt△ABM中,根据BM2=AB2+AM2,构建方程即可解决问题.③尺规作图如图4-1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4-1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.【解答】解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC=√AB2+BC2=√62+82=10,∴CD=12BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH=AB⋅ACBC =245,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH-KH=95,∵KM∥CH,∴AKAH =AMAC,∴95245=AM8,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C ,∴∠MBC=∠C ,∴BM=MC ,设BM=MC=x ,在Rt △ABM 中,∵BM 2=AB 2+AM 2,∴62+(8-x )2=x 2,∴x=254∴AM=AC-CM=8-254=74.故答案为74.③尺规作图如图4-1所示.作DR 平分∠CDF ,在DR 上截取DG=DC ,分别以D ,G 为圆心,DE ,CE 为半径画弧,两弧交于点F ,△DFG 即为所求.如图4-1中,连接DM ,设DG 交AC 于T ,作TH ⊥CD 于H ,作DK 平分∠CDG 交TH 于K ,作KJ ⊥DG 于J .易证△DEM ≌△DHK (AAS ),推出EM=HK ,只要求出HK 即可.∵TE ⊥DE ,TH ⊥DC ,DG 平分∠CDE ,∴TE=TH ,设TE=TH=x ,在Rt △TCH 中,x 2+22=(4-x )2,∴x=32, ∴DT =√32+(32)2=32√5, ∵DK 平分∠CDT ,KJ ⊥DT ,KH ⊥CD ,∴KJ=KH ,设KJ=KH=y ,在Rt △KTJ 中,y 2+(32√5−3)2=(32−y)2∴y =3√5−6,∴EM=3√5−6∴AM =AE −EM =4−(3√5−6)=10−3√5.2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.【答案】(1)52;(2)①四边形AE M F 为菱形;②4√109;(3)32. 【分析】试题分析:(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(6)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;【解答】(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴,∴,∴4y2+2xy﹣x2=0,∴,∴(负根已经舍弃),∴.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD ∽△ACB ,∴∠DAE=∠ABC=∠DA′C , ∴∠DA′C+∠A′CB=180°,∴A′D ∥BC , ∴△PA′D ∽△PBC ,∴,∴,即∴PC=1.4.Rt △ABC 中,∠ACB =90°,AC =3,BC =7,点P 是边AC 上不与点A 、C 重合的一点,作PD ∥BC 交AB 边于点D .(1)如图1,将△APD 沿直线AB 翻折,得到△AP 'D ,作AE ∥PD .求证:AE =ED ; (2)将△APD 绕点A 顺时针旋转,得到△AP 'D ',点P 、D 的对应点分别为点P '、D ', ①如图2,当点D '在△ABC 内部时,连接P ′C 和D 'B ,求证:△AP 'C ∽△AD 'B ;②如果AP :PC =5:1,连接DD ',且DD '=√2AD ,那么请直接写出点D '到直线BC 的距离.【答案】(1)见解析;(2)①见解析;②点D '到直线BC 的距离为176或536 【分析】(1)由折叠的性质和平行线的性质可得∠EAD =∠ADP =∠ADP ',即可得AE =DE ;(2)①由题意可证△APD ∽△ACB ,可得APAC =ADAB ,由旋转的性质可得AP =AP ',AD =AD ',∠PAD =∠P 'AD ',即∠P 'AC =∠D 'AB ,,则△AP 'C ∽△AD 'B ;②分点D '在直线BC 的下方和点D '在直线BC 的上方AP′AC =AD′AB两种情况讨论,根据平行线分线段成比例,可求PD =356,通过证明△AMD '≌△DPA ,可得AM =PD =356,即可求点D '到直线BC 的距离.【解答】证明:(1)∵将△APD 沿直线AB 翻折,得到△AP 'D , ∴∠ADP '=∠ADP , ∵AE ∥PD , ∴∠EAD =∠ADP , ∴∠EAD =∠ADP ', ∴AE =DE(2)①∵DP ∥BC ,∴△APD∽△ACB,∴APAC =ADAB,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,AP′AC =AD′AB,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴APAC =PDBC=56,∵BC=7,∴PD=356,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=12D'D,∠ADF=∠AD'F,∵cos∠ADF=DFAD =12D′DAD=√22ADAD√22,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=356,∵CM=AM﹣AC=356﹣3,∴CM =176,∴点D '到直线BC 的距离为176若点D '在直线BC 的上方,如图,过点D '作D 'M ⊥AC ,交CA 的延长线于点M ,同理可证:△AMD '≌△DPA , ∴AM =PD =356,∵CM =AC +AM , ∴CM =3+356=356,∴点D '到直线BC 的距离为356综上所述:点D '到直线BC 的距离为176或536;。

人教版八年级数学下册 第18章 《四边形》利用特殊四边形的性质巧解折叠问题 (含答案)

人教版八年级数学下册 第18章 《四边形》利用特殊四边形的性质巧解折叠问题 (含答案)

《四边形》利用特殊四边形的性质巧解折叠问题名师点金:四边形的折叠问题是指将四边形按照某种方式折叠,然后在平面图形内按照要求完成相应的计算和证明.折叠的本质是图形的轴对称变换,折叠后的图形与原图形全等.平行四边形的折叠问题1.如图,将平行四边形纸片ABCD沿AC折叠,点D落在点E处,AE恰好经过BC边的中点.若AB=3,BC=6,求∠B的度数.(第1题)矩形的折叠问题2.(中考·衢州)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图②.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.(第2题)菱形的折叠问题3.如图,在菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的F点,连结CF,那么∠BFC的度数是( ) A.60° B.70° C.75° D.80°(第3题)(第4题)正方形的折叠问题4.如图,正方形纸片ABCD的边长AB=12,E是DC上一点,CE=5,折叠正方形纸片使点B和点E重合,折痕为FG,则FG的长为________.5.(中考·德州)如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A,点D重合).将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连结BP,BH.(1)求证:∠APB=∠BPH.【导学号:71412046】(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.(第5题)专训2 利用特殊四边形的性质巧解动点问题名师点金:利用特殊四边形的性质解动点问题,一般将动点看成特殊点,再运用从特殊...到一般的思想......,将特殊点转化为一般点(动点)来解答.平行四边形中的动点问题1.如图,在▱ABCD中,E,F两点在对角线BD上运动(E,F两点不重合),且保持BE=DF,连结AE,CF.请你猜想AE与CF有怎样的数量关系和位置关系,并对你的猜想加以证明.(第1题)矩形中的动点问题2.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.连结AF,CE.(1)试说明四边形AFCE为菱形,并求AF的长;(2)动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.(第2题)菱形中的动点问题3.如图,在菱形ABCD中,∠B=60°,动点E在边BC上,动点F在边CD 上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.(第3题)正方形中的动点问题4.如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由.(第4题)专训3 全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查与矩形、菱形、正方形有关的计算和证明等问题.近几年又出现了许多与特殊平行四边形有关的开放探索题、操作题以及与全等、相似、函数知识相结合的综合题.其主要考点可概括为:三个图形,三个技巧.三个图形图形1矩形1.如图,在▱ABCD中,E,F分别是AB,CD的中点,连结AF,CE.(1)求证:△BEC≌△DFA;(2)连结AC,当CA=CB时,判断四边形AECF是什么特殊四边形,并说明理由.(第1题)图形2菱形2.如图,△ABC是边长为1的等边三角形,将△ABC绕点C顺时针旋转120°,得到△EDC,连结BD,交AC于F.(1)猜想AC与BD的位置关系,并给予证明;(2)求线段BD的长.(第2题)图形3正方形3.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.(1)求证:AF-BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形ABCD的边长为3,求点F′与旋转前图形中的点E之间的距离.(第3题)4.如图①,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.(第4题)三个技巧技巧1解与四边形有关的折叠问题的技巧(轴对称变换法)5.如图所示,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,求阴影部分的周长.(第5题)技巧2解与四边形有关的旋转问题的技巧(特殊位置法)6.如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都等于1,那么正方形A′B′C′O 绕顶点O 转动,两个正方形重叠部分的面积大小有什么规律?请说明理由.(第6题)技巧3 解与四边形有关的动态问题的技巧(固定位置法)7.如图,在Rt △ABC 中,∠B=90°,AC =60 cm ,点D 从点C 出发沿CA 方向以4 cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s (0≤t≤15).过点D 作DF⊥BC 于点F ,且DF =12DC ,连结EF.若四边形AEFD 为菱形,则t 的值为( )(第7题)A.5B.10C.15D.208.如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系,并说明理由.(第8题)答案专训1(第1题)1.解:设AE与BC相交于点F,如图.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠1=∠3.∵平行四边形纸片ABCD沿AC折叠,点D落在点E处,∴∠2=∠3,∴∠1=∠2.∴FC=FA.∵F为BC边的中点,BC=6,∴AF=CF=BF=12×6=3.又∵AB=3,∴△ABF是等边三角形.∴∠B=60°.(第2题)2.(1)证明:由折叠知A′E=AE=EG,BC=CH.∵四边形ABCD是矩形,∴AD=BC.易得四边形AEA′D是正方形,∴A′E=AD.∴EG=CH.(2)解:∵∠ADE=45°,∠FGE=∠A=90°,AF=2,∴DG=FG=AF= 2.由勾股定理得DF=2.∴A D=2+ 2.如图,由折叠知,∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∠1+∠3=90°.∵∠1+∠AFE=90°,∴∠AFE=∠3.由(1)知,AE=BC.又∵∠A=∠B=90°,∴△EFA≌△CEB.∴AF=BE.∴AB=AE+BE=AD+AF=2+2+2=2+2 2.3.C点拨:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC.∵∠A=120°,∴∠ABC=60°,∴∠FB C=30°.根据折叠可得AB=BF,∴BF=BC.∴∠BFC=∠BCF=(180°-30°)÷2=75°.故选C.4.13 点拨:如图,过点F作FM⊥BC,垂足为M,连结BE,FE,设BE交FG于点N,由折叠的性质知FG⊥BE,∴∠C=∠BNG=90°,∴∠1=∠BEC.易知FM=BC,∠FMG=∠C,∴△FMG≌△BCE,∴MG=CE=5,由勾股定理得FG=FM2+MG2=13.(第4题)5.(1)证明:由折叠知PE=BE,∠EPH=∠EBC=90°,∴∠EBP=∠EPB.∴∠EPH-∠EPB=∠EBC-∠EBP,即∠BPH=∠PBC.又∵AD∥BC,∴∠APB=∠PBC,∴∠APB=∠BPH.(2)解:△PDH的周长不发生变化.证明如下:过B作BQ⊥PH,垂足为Q.如图.由(1)知∠APB=∠QPB,又∵∠A=∠BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴Rt△BCH≌Rt△BQH,∴CH=QH.∴△PDH的周长为:PD+DH+PH=AP+PD+DH+CH=AD+CD=8(定值).(第5题)专训21.解:AE=CF,AE∥CF.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,∵AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDF.∴AE=CF,∠AEB=∠CFD.∵∠AEB+∠AED=∠CFD+∠CFB=180°,∴∠AED=∠CFB.∴AE∥CF.2.解:(1)∵四边形ABCD是矩形,∴AD∥BC.∴∠OAE=∠OCF,∠AEO=∠C FO.∵EF垂直平分AC,垂足为O,∴OA=OC.∴△AOE≌△COF.∴OE=OF.∴四边形AFCE为平行四边形.又∵EF⊥AC,∴四边形AFCE为菱形.设AF=CF=x cm,则BF=(8-x)cm,(第2题)在Rt△ABF中,AB=4 cm,由勾股定理得42+(8-x)2=x2,解得x=5.∴AF=5 cm.(2)显然当P点在AF上,Q点在CD上时,A,C,P,Q四点不可能构成平行四边形;同理P点在AB上,Q点在DE或CE上时,也不可能构成平行四边形.因此只有当P点在BF上,Q点在ED上时,才能构成平行四边形,如图,连结AP,CQ,则以A,C,P,Q四点为顶点的四边形是平行四边形,此时PC=QA.∵点P 的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,∴PC=5t cm,QA=(12-4t)cm.∴5t=12-4t,解得t=4 3 .∴当以A,C,P,Q四点为顶点的四边形是平行四边形时,t=43 .3.证明:(1)如图①,连结AC.∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠BCD=180°-∠B=120°.∴△ABC是等边三角形.又∵E是BC的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°.∴∠CFE=180°-∠FEC-∠BCD=180°-30°-120°=30°.∴∠FEC=∠CFE.∴EC=CF.∴BE=DF.(第3题)(2)如图②,连结AC.由(1)知△ABC是等边三角形,∴AB=AC,∠ACB=∠BAC=60°.又∵∠EAF=60°,∴∠BAE=∠CAF.由(1)知∠BCD=120°.又∵∠ACB=60°,∴∠ACF=60°,∴∠B=∠ACF.∴△ABE≌△ACF.∴AE=AF.∴△AEF是等边三角形.(第4题)4.(1)证明:如图,∵四边形ABCD为正方形,∴∠A=∠EBF=∠C=∠GDH=90°,AB=BC=CD=AD.∵AE=BF=CG=DH,∴AH=BE=CF=DG.∴△AEH≌△BFE≌△CGF≌△DHG.∴∠1=∠2,EH=EF=FG=GH.∴四边形EFGH为菱形.∵∠1+∠3=90°,∠1=∠2,∴∠2+∠3=90°.∴∠HEF=90°.∴四边形EFGH是正方形.(2)解:直线EG经过一个定点.理由如下:如图,连结BD,DE,BG.设EG 与BD交于O点.∵BE瘙綊DG,∴四边形BGDE为平行四边形.∴BD与EG互相平分.∴BO=OD.∴点O为正方形的中心.∴直线EG必过正方形的中心.专训31.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,∠B=∠D,BC=DA.∵E,F分别是AB,CD的中点,∴BE=DF.∴△BEC≌△DFA(S.A.S.).(2)解:四边形AECF是矩形,理由:∵AE=12AB,CF=12CD,AB=CD,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∵CA=CB,E为AB的中点,∴CE⊥AB,∴∠AEC=90°.∴四边形AECF是矩形.2.解:(1)AC⊥BD.证明:连结AD,由题意知,△ABC≌△EDC,∠ACE=120°.∵△ABC是等边三角形,∴AC=DC,∠DCE=60°,∴∠ACD=60°,∴△ACD是等边三角形,∴CD=AD=AC=AB=BC,∴四边形ABCD为菱形,∴AC⊥BD.(2)由(1)知,四边形ABCD为菱形,∴∠DBC=12∠ABC=30°.∵BC=CD,∴∠BDC=∠DBC=30°,∴∠BDE=30°+60°=90°. ∵∠ACE+∠ACB=180°, ∴B,C ,E 三点在一条直线上, ∴BE=2.∴BD=BE 2-DE 2=22-12= 3. 3.(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAD=∠BAF+∠EAD=90°. ∵DE⊥AG,∴∠AED=∠DEG=90°. ∴∠EAD+∠ADE=90°. ∴∠ADE=∠BAF. 又∵BF∥DE,∴∠BFA=∠DEG=90°. ∴∠AED=∠BFA. 在△AED 和△BFA 中,∵⎩⎨⎧∠AED=∠BFA,∠ADE=∠BAF,AD =BA ,∴△AED≌△BFA(A .A .S .). ∴BF=AE. ∵AF-AE =EF , ∴AF-BF =EF.(2)解:如图,由题意知将△ABF 绕A 点旋转得到△ADF′,B 与D 重合,连结F′E,由(1)易得DE =AF.(第3题)根据题意知:∠F′AE=90°,DE=AF=AF′,∴∠F′AE=∠AED=90°.即∠F′AE+∠AED=180°.∴AF′∥DE.∴四边形AE DF′为平行四边形.又∠AED=90°,∴四边形AEDF′是矩形.∵AD=3,∴EF′=AD=3.4.(1)证明:∵四边形ABCD是正方形,∴AD=BA,∠D=∠BAE=90°,∴∠DAF+∠BAF=90°.∵AF⊥BE,∴∠ABE+∠BAF=90°.∴∠DAF=∠ABE.∴△DAF≌△ABE.∴AF=BE.(2)解:MP与NQ相等.理由如下:过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵MP⊥NQ,∴AF⊥BE,由(1)知AF=BE.易证四边形AMPF,四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,∴MP=NQ.5.解:∵在矩形ABCD中,AB=10,BC=5,∴CD=AB=10,AD=BC=5.又∵将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,根据轴对称的性质可得,A 1E =AE ,A 1D 1=AD ,D 1F =DF.设线段D 1F 与线段AB 交于点M ,则阴影部分的周长为 (A 1E +EM +MD 1+A 1D 1)+(MB +MF +FC +CB) =AE +EM +MD 1+AD +MB +MF +FC +CB =(AE +EM +MB)+(MD 1+MF +FC)+AD +CB =AB +(FD 1+FC)+10 =AB +(FD +FC)+10 =10+10+10=30.点拨:要求阴影部分的周长,我们可以把两块阴影部分的周长相加,找到它们的周长和与原矩形边长的关系,从而得到问题的答案.6.解:两个正方形重叠部分的面积保持不变,始终是14.理由如下:∵四边形ABCD 是正方形, ∴OB=OC ,∠OBE=∠OCF=45°, ∠BOC=90°.∵四边形A′B′C′O 是正方形, ∴∠EOF=90°,∴∠EOF=∠BOC. ∴∠EOF-∠BOF=∠BOC-∠BOF, 即∠BOE=∠COF.∴△BOE≌△COF.∴S △BOE =S △COF .∴两个正方形重叠部分的面积等于S △BOC . ∵S 正方形ABCD =1×1=1. ∴S △BOC =14S 正方形ABCD =14.∴两个正方形重叠部分的面积保持不变,始终是14.7.B 点拨:因为DF =12DC ,DC =4t cm ,所以DF =2t cm .又因为AE =2t cm ,所以AE =DF.因为AE∥DF,所以可推出四边形AEFD 为平行四边形.令AE =AD ,则60-4t =2t.解得t =10.所以当t =10时,四边形AEFD 为菱形.8.解:(1)在菱形ABCD 中,AC⊥BD,BG =12BD =12×16=8,由勾股定理得AG=AB2-BG2=102-82=6,∴AC=2AG=2×6=12.∴菱形ABCD的面积=12AC·BD=12×12×16=96.(第8题)(2)OE+OF的值不发生变化.理由:如图①,连结AO,则S△ABD =S△ABO+S△AOD,所以12BD·AG=12AB·OE+12AD·OF,即12×16×6=12×10·OE+12×10·OF,解得OE+OF=9.6,是定值,不变.(3)OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.理由:如图②,连结AO,则S△ABD =S△ABO-S△AOD,所以12BD·AG=12AB·OE-12AD·OF,即12×16×6=12×10·OE-12×10·OF,解得OE-OF=9.6.。

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EFAF =FHEF ,即EF 2=FH ·AF ,又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ;(3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF ,解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∵∠DCE =∠ADF =90°,∴Rt △DCE ∽Rt △ADF ,∴EC DF =DE AF ,即EC 25=810,∴EC =855,∴BE =BC -EC =1255.02如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F ,若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .证明:(1)在矩形ABCD 中,AB =CD ,∠A =∠C =90°, ∵△BED 是△BCD 对折得到的,∴ED =CD ,∠E =∠C ,∴ED =AB ,∠E =∠A ,(2分)又∵∠AFB =∠EFD ,∴△ABF ≌△EDF (AAS),∴AF =EF ;(4分)(2)在Rt △BCD 中,∵DC =DE =4,BD =8,∴sin ∠CBD =DC BD =12, ∴∠CBD =30°,(5分)∴∠EBD =∠CBD =30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F 重合(E、F两点均在BD上),折痕分别为BH、DG。

勾股定理中的折叠问题(人教版)(含答案)

勾股定理中的折叠问题(人教版)(含答案)

勾股定理中的折叠问题(人教版)一、单选题(共8道,每道10分)1.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是( )A.6cmB.8cmC.10cmD.12cm答案:A解题思路:试题难度:三颗星知识点:折叠问题2.如图,矩形纸片ABCD中,AB=12,BC=5,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG 的长为( )A. B.6C. D.答案:D解题思路:试题难度:三颗星知识点:折叠问题3.如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm, 则Rt△CDF的面积是( )A.8cm2B.6cm2C.48cm2D.24cm2答案:D解题思路:试题难度:三颗星知识点:勾股定理之折叠问题4.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=4cm,BC=5cm,则EF=( )A.2cmB.cmC.cmD.3cm答案:C解题思路:试题难度:三颗星知识点:折叠问题5.如图,在矩形ABCD中,BC=4,DC=3,将该矩形沿对角线AC折叠,使点B落在点F处,CF交AD于点E,则EF的长为( )A. B.C.1D.答案:B解题思路:试题难度:三颗星知识点:折叠问题6.把一张矩形纸片(矩形ABCD)按如图所示方式折叠,使顶点B与点D重合,折痕为EF.若AB=6,BC=10,求重叠部分△DEF的面积为( ).A. B. C.20 D.答案:A解题思路:试题难度:三颗星知识点:折叠问题7.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC为16,宽AB为8,则折叠后重合部分的面积是( )A.30B.40C.60D.80答案:B解题思路:试题难度:三颗星知识点:勾股定理之折叠问题8.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则AM=_____cm,BN=_____cm.( )A.,1B.,C.,D.,1答案:C解题思路:试题难度:三颗星知识点:折叠问题二、填空题(共2道,每道10分)9.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则DE的长为____cm.答案:3解题思路:试题难度:知识点:勾股定理的应用10.如图,折叠一个矩形纸片,沿着AE折叠后,点D恰好落在BC边的一点F上,已知AB=8cm,BC=10cm,则=____cm2.答案:6解题思路:试题难度:一颗星知识点:勾股定理之折叠问题。

初二数学培优专题(5)——折叠问题(答案详解)

初二数学培优专题(5)——折叠问题(答案详解)

折叠问题(一)正方形内的十字架结构结论1:在正方形ABCD中,E、F、G、H分别为AB、CD、BC、AD边上的点,若EF⊥GH,则GH=EF【例1】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在CD的中点E处,折痕为FG,点F 在AD边,求折痕FG的长;【变式2】如图,将边长为的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN.(1)求线段CN的长;(2)求以线段MN为边长的正方形的面积;(3)求线段AM的长度.(二)折痕垂直于对称点的连线结论:折痕上的点到对应点距离相等【例2】如图,在矩形ABCD 中,AB=4,AD=3,将矩形折叠使得点D 与BC 上的点E 重合,折痕分别交AB 、CD 于点G 、F ,若BE=1,求AG 的长.【变式1】如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 对应点为A',且,则AM 的长是______________.【变式2】(2016年山东威海中考题)如图,在矩形ABCD 中,4AB = ,6BC = ,点E 为BC 的中点,将ABE ∆沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A.95 B.125 C.165 D.185(三) 折叠中动点轨迹与最值【例3】(2015四川自贡)如图,在矩形ABCD 中,4AB = ,6AD = ,E 是AB 边的中点,F 是线段BC 上的动点,将EBF ∆沿EF 所在直线折叠得到'EB F ∆,连接'B D ,则'B D 的最小值是( )。

A. 2B. 6C. 2-D.4【变式】(2014成都)如图,在边长为2的菱形ABCD 中,60A ∠=︒ ,M 是AD 边的中点,N 是AB 边上的一动点,将AMN ∆ 沿MN 所在直线翻折得到'A MN ∆,连接'A C ,则'A C 长度的最小值是_____ 。

八年级数学折叠问题(一)

八年级数学折叠问题(一)

八年级数学折叠问题(一)相关问题一:什么是八年级数学折叠问题?•八年级数学折叠问题是一种常见的几何问题。

•它通常要求计算折叠纸条的总厚度,或者是折叠N次之后的厚度。

•这个问题可以帮助学生理解指数、幂函数以及几何级数的概念。

相关问题二:如何计算折叠纸条的总厚度?•首先,我们假设每次折叠都会使纸条的厚度翻倍。

•如果初始纸条的厚度为t,那么折叠一次后的厚度为2t。

•类似地,折叠两次后的厚度为4t,折叠三次后的厚度为8t,以此类推。

•因此,折叠N次后的总厚度为2^N * t (其中^表示乘方运算)。

相关问题三:如何计算折叠N次后的厚度?•如果已知折叠一次的厚度t和折叠次数N,可以使用公式:总厚度 = 2^N * t 进行计算。

•例如,如果t=毫米,N=8,那么总厚度 = 2^8 * = 毫米。

•可以看到,每次折叠都会使纸条的厚度快速增加,数量级呈指数增长。

相关问题四:折叠问题与指数函数的关系是什么?•折叠问题中,每次折叠都会使纸条的厚度翻倍,这体现了指数函数的性质。

•具体来说,纸条的厚度随折叠次数呈2的指数增长,这与指数函数的图像形状相吻合。

•因此,折叠问题可以帮助学生理解指数函数的定义、图像、性质和应用。

相关问题五:折叠问题与几何级数的关系是什么?•折叠问题中,每次折叠后的厚度都是初始厚度的倍数,这符合几何级数的定义。

•具体来说,如果初始纸条的厚度为t,那么折叠一次后的厚度为2t,折叠两次后的厚度为4t,以此类推。

•这种倍数关系恰好符合几何级数的通项公式,即第n次折叠的厚度为t * 2^(n-1)。

•因此,折叠问题也可以用来帮助学生理解几何级数的概念和性质。

通过以上列举的相关问题,我们可以更加全面地了解和掌握八年级数学折叠问题的各个方面。

这些问题涉及到了折叠纸条的总厚度计算、指数函数的关系、几何级数的关系等,对于学生来说具有一定的挑战性和启发性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

折叠问题(一)(人教版)(专题)
一、单选题(共6道,每道12分)
1.如图,在长方形纸片ABCD中,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为( )
A.1
B.2
C.3
D.5
答案:B
解题思路:
如图,过点E作EG⊥BC,交BC于点G
在Rt△EGM中,
EG=AB=8,EM=ED=12-AE,MG=12-4-AE=8-AE


∴AE=2
故选B
试题难度:三颗星知识点:略
2.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为( )
A.12cm
B.12.5cm
C.cm
D.13.5cm
答案:C
解题思路:
如图,
过N作NF⊥AM于F,
∵MN为折痕,A,E为对应点,∴MN⊥AE
∴∠AMN+∠MAE=90°
∵∠AMN+∠MNF=90°
∴∠MAE=∠MNF
∵FN=AD
∴△ADE≌△NFM(ASA)
∴MN=AE
∵AB=12,EC=8
∴DE=4
在Rt△ADE中,
∴AE=
故选C
试题难度:三颗星知识点:略
3.如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是( )cm.
A. B.3
C. D.
答案:C
解题思路:
如图,连接QE,过点Q作QG⊥CD于点G
∴QG=PD=3
设PQ=x,则GE=x-2,
由折叠得,QE=x,
在Rt△QGE中,由勾股定理得,


故选C
试题难度:三颗星知识点:略
4.将长方形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的处,并且点B落在边上的处.则BC的长为( )
A. B.4
C.6
D.
答案:C
解题思路:
在Rt△ABE中,∠BAE=30°,,
∴BE=2,AE=4
∵∠BAE=30°

∵是由∠AEB折叠而来

∴是等边三角形

又∵EC折叠后得到

∴BC=6
故选C
试题难度:三颗星知识点:略
5.如图,先把矩形ABCD对折,折痕为MN,展开后再折叠,使点B落在MN上,此时折痕为AE,点B在MN上的对应点为,则=( )
A.15°
B.30°
C.45°
D.60°
答案:B
解题思路:
如图,过点作⊥AD于点F.
由第一次折叠,得,
由第二次折叠,得,,
∴,
又∵



故选B
试题难度:三颗星知识点:略
6.如图,将长方形纸片ABCD折叠,使点D与点B重合,折痕为EF,AE=4cm,DE=8cm,则折痕EF的长是( )cm.
A.4
B.8
C. D.
答案:B
解题思路:
如图,
由折叠,得∠1=∠2,BE=DE=8.
在Rt△ABE中,
∵AE=4,BE=8,
∴∠ABE=30°,
∴∠AEB=60°,
∴∠1=∠2=60°.
在长方形ABCD中,BC∥AD,
∴∠3=∠1=60°,
∴△BEF为等边三角形,
∴EF=BE=8.
故选B
试题难度:三颗星知识点:略
二、填空题(共2道,每道12分)
7.如图,P是平行四边形纸片ABCD的边BC上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在边上处,折痕与AB边交于点N.若∠MPC=75°,则=____°.
答案:15
解题思路:
如图,由折叠性质可知,



故填15.
试题难度:知识点:略
8.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为____.
答案:5
解题思路:
解:由折叠知,∠CBD=∠C′BD,由平行知,∠ADB=∠CBD,
∴∠ADB=∠C′BD,
EB=ED
设ED=x,则EB=x、AE=8-x
在Rt△ABE中,由勾股定理可得,AE2+AB2=BE2
即(8-x)2+42=x2
解得x=5
所以DE的长为5.
试题难度:知识点:略。

相关文档
最新文档