面板数据分析方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面板数据分析方法
面板数据分析方法
面板数据是指在时间序列上取多个截面,在这些截面上同时选取样本观测,也叫“平行数据”。
下面是小编想跟大家分享的面板数据分析方法,欢迎大家浏览。
面板数据的分析方法
面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。
在本文的研究中,我们首先运用面板数据的单位根检验与协整检验来考察能源消费、环境污染与经济增长之间的长期关系,然后建立计量模型来量化它们之间的内在联系。
面板数据的单位根检验的方法主要有Levin,Lin and CHU(2002)提出的LLC检验方法。
Im,Pesearn,Shin(2003)提出的'IPS检验, Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验等。
面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao(1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。
Luciano(2003)中运用Monte Carlo模拟对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。
具体面板数据单位根检验和协整检验的方法见参考文献。
面板数据的实证分析
指标选取和数据来源
经济增长:本文使用地区生产总值,以1999年为基期,根据各地区生产总值指数折算成实际,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。
因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。
所
以本文使用各地区电力消费量作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量作为环境污染的量化指标,单位:万吨。
本文采用1999-2006年全国30个省(直辖市,自治区)的地区生产总值、电力消费量和工业废水排放量的数据构建面板数据集。
30个省(直辖市,自治区)包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、山西、内蒙古、吉林、黑龙江、安徽、江西、河南、湖北、湖南、海南、广西、重庆、四川、贵州、云南、陕西、西藏、甘肃、青海、宁夏、新疆,由于西藏数据不全故不包括在内。
数据来源于《中国统计年鉴2000-2007》。
为了消除变量间可能存在的异方差,本文先对地区生产总值、地区电力消费量和工业废水排放量进行自然对数变换。