升压斩波电路设计..

合集下载

升压斩波(boost+chopper)电路设计

升压斩波(boost+chopper)电路设计

电力电子技术课程设计报告题目:升压斩波(boost chopper)电路设计学院:专业:学号:姓名:指导老师:时间:目录前言******************************************************* ****2MATlAB仿真设计***********************************************6硬件实验******************************************************* **14参考文献******************************************************* **19附录一设计任务书*************************************20 附录二PROTEL简介****************************************21 附录三MATLAB简介****************************************24升压斩波电路(Boost Chopper )设计 一、前言1.Boost Chopper 工作原理:图 1.1升压斩波电路图图 1.1中假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I 1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。

设V 通的时间为t o n ,此阶段L 上积蓄的能量为E I 1t o nV 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为t o f f ,则此期间电感L 释放能量为()o f f o t I E U 1- 稳态时,一个周期T 中L 积蓄能量与释放能量相等()off o on t I E U t EI 11-=化简得:E t T E t t t U offoffoffon o =+=(1)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。

电力电子课程设计--MOSFET升压斩波电路设计

电力电子课程设计--MOSFET升压斩波电路设计

《电力电子课程综合实训》课程设计题目: MOSFET升压斩波电路设计专业:电气工程及其自动化班级:指导教师:2015年6月目录第一章前言...................................................................................错误!未定义书签。

1.1概述 (1)1.2 MOSFET介绍 (1)1.3 PWM控制芯片SG3525介绍 (1)第二章MOSFET升压斩波电路设计 (2)2.1 设计要求 (2)2.2设计课题总体方案介绍及工作原理说明 (2)2.1.1总体方案 (2)2.3 设计方案各电路简介 (2)2.3.1电容滤波单相不可控整流电路 (2)2.3.2 MOSFET斩波电路 (3)2.3.3触发电路 (3)2.3.3保护电路 (3)第三章MOSFET升压斩波主电路设计 (4)3.1电容滤波单相不可控整流电路 (4)3.1.1电路原理图 (4)3.1.2电路原理及其工作波形 (4)3.1.3主要的数量关系 (5)3.2 MOSFET升压斩波电路 (5)3.2.1 电路原理图 (5)3.2.2电路原理及其工作波形 (5)3.2.3主要的数量关系 (6)第四章控制电路与保护电路设计 (7)4.1 MOSFET驱动电路 (7)4.1.1驱动电路原理图 (7)4.1.2 电路工作原理 (7)4.2 保护电路 (8)4.1.1变压器的保护 (8)第五章总体电路原理图及其说明 (9)5.1总体电路原理图 (9)5.2 MATLAB仿真电路图 (9)5.3仿真波形图 (10)5.4波形分析 (11)参考文献 (13)第六章心得体会 (14)第1章前言1.1概述直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

升压斩波电路课程设计

升压斩波电路课程设计

升压斩波电路课程设计一、前言1. 课程设计背景由于发展的日新月异,升压斩波电路在电子工程中扮演者越来越重要的角色。

课程设计涉及到升压斩波电路原理,结构,实际建模及仿真等。

2. 课程设计目标通过本次课程设计,学习如何使用多芯片升压斩波电路的原理,掌握斩波电路设计过程,实现多芯片升压斩波电路的建模及仿真。

二、实验原理1.电路升压机理升压斩波电路的实现就是使用振荡器对原始输入电压实现升压,利用单位增量反馈,在交流振荡器的输出再经过斩波电路,将高频振荡信号净化成较高平均值的一个电压。

2.多芯片升压斩波电路基本结构多芯片升压斩波电路的基本结构包括振荡器、斩波电路及调节路。

斩波电路为半桥简易斩波电路,斩开频率为3.3MHz,有注意的是在使用斩波电路时应注意更改斩开频率来匹配相应电路的要求;调节路由缓冲器、激励电路及Vr偏置组成,其中Vr就是用来调节升压斩波电路输出电压的量。

三、电路设计1.电路建模基于多芯片升压斩波电路基本结构,将整个电路进行建模,首先根据原理分析和实验数据,确定各元器件参数;其次,根据实际的原理图、原理分析及相应的稳健设计原则,设计振荡器、斩波电路及调节路等模块;最后,将这些模块组合成完整的电路模型。

2.仿真设计仿真是对电路建模后的进一步分析。

仿真电路的目标是:根据输入电压的大小来最大化输出电压的大小,确定整个电路能否正常运行。

为了实现这一目标,仿真设计需要利用软件工具,如PSPICE、Cadence、Psim等,进行仿真分析,确定整个电路模型及参数设置满足设计要求及特性要求。

四、实验结果1.电路振荡状态根据仿真分析结果,升压斩波电路能够正常振荡。

斩开频率可以根据实际的需求来进行调节,以及斩波线性度也可以利用调整持续偏置,达到调节输出电压的目的。

2.电路性能本次课程设计实验中,升压斩波电路的输入电压为3.2V,输出电压为4.3V。

此外,斩波电路的斩开频率和线性度均能满足要求。

五、结论本次课程设计成功完成了多芯片升压斩波电路的建模及仿真,并达到了预期的效果,证明了我们给出的设计思路的可行性。

IGBT升压斩波电路的设计-2

IGBT升压斩波电路的设计-2

1 设计要求与方案设计要求=50V,输出功率P=300W ,利用IGBT设计一个升压斩波电路。

输入直流电压Ud开关频率为5KHz,占空比10%到50%,输出电压脉率小于10%。

设计方案根据升压斩波电路设计任务要求设计主电路、驱动电路。

其结构框图如图1所示。

图1在图1结构框图中,控制电路用来产生IGBT升压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在IGBT控制端与公共端之间,可以使其开通或关断的信号。

通过控制IGBT的开通和关断来控制IGBT升压斩波电路工作。

控制电路中保护电路是用来保护电路,防止电路产生过电流、过电压现象而损坏电路设备。

、\2 升压斩波电路设计方案升压斩波主电路电路工作原理原理图本设计为直流升压斩波(boost chopper)电路,该电路是本系统的核心。

应为输出电压比较大,故斩波器件选用能够承受大电压和导通内阻小,开关频率高,开关时间小的大功率IGBT管。

在IGBT关断时给负载中电感电流提供通道,设置了续流二极管VD。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

原理图如下图1所示:|$图1 主电路仿真图左边E为输入直流50V电压,右边为U斩波电压输出。

I G为SG3525输出的PWM斩波信号。

V为IGBT,VD为电力二极管,L为电感,C为电容,R为负载。

o n o f f 0o f f o f f t t T U E Et t+==T offt =βE -11E 1U 0αβ==off t T "原理分析:首先假设电感L 值很大,电容C 值也很大。

当I G 为高电平时,V导通,50V 电源向L 充电,充电基本恒定为,同时电容C 上的电压向负载R 供电,因C 值很大,基本保持输出电压ou为恒值,记为o U 。

设V 处于通态的时间为o n t ,此阶段电感L 上积储的能量为1o n E I t 。

当V 处于段态时E 和L 共同向电容C 充电,并向负载R 提供能量。

IGBT升压斩波电路设计

IGBT升压斩波电路设计

IGBT升压斩波电路设计引言在工业、能源和交通等领域中,高稳定性的直流电源得到广泛应用。

而升压斩波电路是一种常见的直流电源升压技术,在短时间内将直流电压升高到所需电压水平,同时保证电路稳定性和高效性。

因此,设计一种合理可行的IGBT升压斩波电路对于实际应用有非常重要的意义。

1.升压斩波电路原理升压斩波电路是通过改变输入电流的波形来实现电压的升高,使电压高于输入电压。

其实现原理是利用三极管的导通与截止控制,将电压进行放大、升压和限流的过程。

具体原理如下:1.在升压周期内,当输入电压低于输出电压,将三极管S1导通,使电感L储存能量。

2.当电压达到一定值时,开关S1关闭,而三极管S2导通,以使储存在电感L中的能量释放,从而产生高电压。

3.在降压周期内,当输入电压高于输出电压时,电感L将存储电流,而电容C通过三极管S2连接会被放电,以使电路中的电流保持稳定。

4.当电压下降到一定程度后,开关S2关闭,而三极管S1导通,使剩余能量继续储存于电感L中,以进行下一次升压。

2.IGBT升压斩波电路设计在设计IGBT升压斩波电路之前,需要考虑一些参数和特性,如输出电压、电流、升压斜率、升压率、升压时间、谐振频率、效率和稳定性等因素。

在设计过程中,需要根据实际需求进行合理参数选择和参数调整,针对性优化设计,以达到最佳的工作效果。

2.1 设计参数选择在设计IGBT升压斩波电路时,首先需要考虑输出电压和电流的大小,以确定升压斩波电路的类型和参数。

在选择输出电压和电流时,需要考虑实际应用环境中所需的电压范围和电流稳定性,选择合适的交流输入电压和电容参数。

此外,根据所选择的参数,还需要适当调整升压斜率、升压率和升压时间等因素,以提高效率和稳定性。

2.2 升压斩波电路拓扑结构设计针对不同的电压和电流要求,升压斩波电路有多种不同的拓扑结构,如单臂斩波、全桥斩波、半桥斩波和反平衡斩波等。

在选择拓扑结构时,需要考虑它们的优缺点和适用规律,确定最佳的设计方案。

500W升压斩波电路设计与仿真

500W升压斩波电路设计与仿真

500W升压斩波电路设计与仿真I.引言在电源设计中,升压斩波电路被广泛应用于需要高电压输出的场景中。

本文将介绍一种500W的升压斩波电路的设计与仿真。

II.设计目标本设计的目标是实现一个满足以下条件的升压斩波电路:1.输入电压:220V交流电2.输出电压:500V直流电3.输出功率:500W4.转换效率:大于90%5.输出电压稳定性:小于1%III.电路结构本设计采用单端反激变压器斩波电路结构,原理图如下所示:(请参考上传的图片)IV.电路参数计算1.变压器参数计算:根据输入电压和输出电压,可以计算出变压器的变比。

假设变压器的变比为N,有N = Vout / Vin = 500 / 220 = 2.27另外,为了保证变压器工作在饱和区以提高转换效率,需要选择一个合适的磁芯材料。

根据输出功率和输出频率,可以计算出变压器的输入电流,然后根据输入电流和工作磁通密度,可以选择合适的磁芯材料。

2.斩波电路参数计算:为了实现稳定的输出电压,可以采用三段滤波电路。

首先是输入电容C1,用于滤去交流电的干扰;然后是输出电容C2,用于平滑直流输出电压;最后是输出电阻R1,用于稳定输出电流。

3.斩波电路元件选取:根据计算结果,选择合适的电容和电阻。

需要注意的是,在高功率输出情况下,应选择能承受大电流的电容和电阻。

V.电路仿真使用仿真软件如LTspice等进行电路仿真。

在仿真中,可以通过改变输入电压和负载来验证电路的性能,并进行优化。

VI.性能评估和优化根据仿真结果评估电路的性能并进行优化。

可以通过调整电路参数、改变电容和电阻的数值等方式来提高电路的转换效率和输出电压稳定性。

VII.结论本文介绍了一种500W的升压斩波电路的设计与仿真。

通过合理的电路结构设计和参数选择,可以实现稳定的输出电压和高转换效率。

通过仿真和优化,可以进一步提高电路性能,满足实际应用需求。

升压斩波电路课程设计报告

升压斩波电路课程设计报告

《电力电子技术课程设计》报告设计题目:升压斩波电路的设计英文题目:The Design of Boost Chopper院系:电气工程与自动化年级专业:2011级电气工程及其自动化姓名:)))2014年6月30日目录目录 (1)1. 设计的题目 (4)1.1引言 (4)1.2升压斩波电路的应用 (4)2.设计的任务: (4)2.1课程设计要求 (5)2.2Boost电路技术参数及要求 (5)3.设计的依据: (5)3.1总体构思依据 (5)3.2理论计算依据 (6)4.设计的内容: (7)4.1主电路的选择与计算过程 (7)4.1.1直流斩波电路由直流电源、MOSFET、电感、电容、续流二极管以及负载组成。

具体原理电路图如下: (7)4.1.2主电路的理论计算: (7)4.1.3主电路的仿真 (8)4.1.4主电路的仿真输出波形 (8)4.2控制电路的选型与计算过程 (9)4.2.1NE555的引脚图及引脚 (9)4.2.2 NE555工作原理 (9)4.2.3控制电路原理图 (10)4.2.4控制电路理论计算过程 (10)4.2.5控制电路的仿真与波形输出 (10)4.3带tlp250光耦合器的驱动电路的选型 (11)4.3.1 tlp250引脚图及引脚 (11)4.3.2采用tlp250的原理 (11)4.4绘制原理图和PCB (12)4.4.1主电路原理图 (12)4.4.2主电路PCB图 (13)4.4.3 555电路图 (13)4.4.4 光耦tlp250原理图 (13)4.4.5稳定光耦tlp250输出电压原理图 (14)4.4.6控制电路pcb图 (14)4.5列出元器件的规格、型号和明细表 (14)4.6PCB实物制作和调试过程 (15)4.6.1主电路实物图 (15)4.6.2控制电路实物图 (16)4.6.3调试过程 (16)4.6.4调试结果为:占空比为30%时, (16)4.6.5理论值与实际值的比较 (17)4.7实验结果分析和处理 (17)5.心得体会 (18)6.主要参考文献 (19)1.设计的题目1.1引言随着电力电子技术的迅速发展,高压开关稳压电源已被广泛用于计算机、通信、工业加工和航空航天等领域。

升压斩波电路课程设计

升压斩波电路课程设计

课程设计说明书升压直流斩波院、部:电气与信息工程学院学生姓名:唐浩指导教师:肖文英职称副教授专业:电气工程及其自动化班级:电气本1205班完成时间: 2015年5月26日摘要斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可5调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta 斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

关键字:直流斩波;升压斩波;变压器ABSTRACTCurrent chopper circuit as a fixed voltage or DC into another adjustable voltage DC - DC converter, including direct and indirect DC DC converter circuit converter circuit. Dc converter circuit is also called directlyChopper circuit, its function is to change the dc into another fixed voltage or 5 adjustable voltage direct current (dc), generally refers to the directly to the direct current into another, this kind of circumstance not isolation between the input and output. Indirect dc converter circuit is in the dc converter circuit increases the communication link, usually in the communication link between the input and output is realized by using transformer isolation, therefore also calls the dc dc converter circuit with isolation or rectangular straight circuit. Kinds of dc chopper circuit has a lot of, including six basic chopper circuit: buck chopper circuit, boost chopper circuit, buck chopper circuit, Cuk chopper circuit, Sepic chopper circuit and ZetaChopper circuit, using a combination of different chopper circuit can conform to the chopper circuit, such as current reversible chopper circuit, bridge type reversible chopper circuit, etc. Using basic chopper circuit on the structure of the same combination, can constitute a heterogeneous multiple chopper circuit.Keywords: dc chopper; boost chopper; transformer目录第1章绪论 (1)第2章升压直流斩波电路的设计思想 (3)2.1升压直流斩波电路原理 (3)2.2参数计算 (4)第3章升压直流斩波电路驱动电路设计 (5)第4章升压直流斩波电路保护电路设计 (6)4.1过电流保护电路 (6)4.2过电压保护电路 (6)第5章升压直流斩波电路总电路的设计 (8)第6章升压直流斩波电路仿真 (9)6.1仿真模型的选择 (9)6.2仿真结果及分析 (9)第7章设计总结 (12)参考文献 (13)致谢 (15)附录 (16)第1章绪论升压直流电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

电力电子课程升压斩波电路

电力电子课程升压斩波电路

电力电子学课程设计报告书题目: 升压斩波电路设计专业:电子信息科学与技术班级:学号:学生姓名:指导教师:2012 年 05 月 09日信息工程学院课程设计任务书学生姓名王哲学号030841004 成绩设计题目升压斩波电路设计设计内容直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.直流波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

本次需要设计一个升压斩波电路,并符合下面的设计要求。

设计要求1、输入直流电压:Ud=40V2、开关频率100KHz3、输出电压范围80V-120V4、输出电压纹波:小于1%5、最大输出电流:5A6、具有过流保护功能,动作电流:6A7、具有稳压功能8、效率不低于70%时间安排参考资料[1]陈坚. 电力电子学—电力电子变换和控制技术(第二版)北京:高等教育出版社,2004[2]王兆安,刘进军.电力电子技术(第5版).北京:机械工业出版社,2009.5[3]林飞,杜欣. 电力电子应用技术的MATLAB仿真.北京:中国电力出版社,2008[4] 赵良炳.现代电力电子技术基础.北京:清华大学出版社,1995[5]贾好来. EXB841对IGBT的过流保护研究. 太原理工大学学报,1007-9432(1999)06-0610-04[6] 纪相普,于谅.基于SIMULINK的BUCK型PFC装置仿真上海大学学报(自然科学版) 1007-2861(2001)05-0461-04目录目录 (2)摘要 (3)1 设计任务与方案 (4)1.1设计任务 (4)1.2设计方案 (4)2 总体设计 (5)2.1 主电路设计 (5)2.1.1原理分析 (5)2.2.2参数计算 (6)2.2 保护电路 (7)3 SimPowerSystem仿真 (8)3.1仿真波形 (9)3.1.1占空比为50% (9)3.1.2占空比为58.33% (10)3.1.3占空比为66.67% (10)3.2 结果分析 (11)4 总结 (12)参考文献 (13)附录: (14)仿真报告 (14)元器件清单 (15)摘要直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic 斩波电路,Zeta斩波电路,前两种是最基本电路。

升压斩波电路设计

升压斩波电路设计

电力电子技术课程设计报告题目:升压斩波电路设计学院:专业:学号:姓名:指导教师:完成日期:升压斩波电路设计(一) 设计任务书(二)设计说明书目录一matlab仿真原理1 升压斩波电路工作原理1.1主电路工作原理1.2 IGBT驱动电路选择2 仿真实验2.1仿真模型2.2仿真实验结果及分析2.3仿真实验结论2.4 最优参数选择二硬件实验2.1 硬件电路2.1.1整流电路2.1.2斩波信号产生电路2.1.3斩波电路2.1.4总原理图2.1.5元器件列表2.2 PCB印刷电路板2.3 制造输出——final三课程设计总结参考文献摘要本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。

Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。

通过设置参数分析输出与电路参数和控制量的关系,最后进行了GUI编程,利用图形可视化界面的直观易懂的特点,使设计摒弃了繁琐难懂的单一波形和控制方式,从而具有友好界面,非常方便的就可进行控制参数输入,和输出图像显示。

第二部分是电路板,它可以通过BluePrint、Kicad 、Protel等软件设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。

本设计也采用Protel设计原理图,和进行PCB板布线。

它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。

升压斩波(boost+chopper)电路设计

升压斩波(boost+chopper)电路设计

电力电子技术课程设计报告题目:升压斩波(boost chopper)电路设计学院:专业:学号:姓名:指导老师:时间:目录前言******************************************************* ****2MATlAB仿真设计***********************************************6硬件实验******************************************************* **14参考文献******************************************************* **19附录一设计任务书*************************************20 附录二PROTEL简介****************************************21 附录三MATLAB简介****************************************24升压斩波电路(Boost Chopper )设计 一、前言1.Boost Chopper 工作原理:图 1.1升压斩波电路图图 1.1中假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I 1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。

设V 通的时间为t o n ,此阶段L 上积蓄的能量为E I 1t o nV 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为t o f f ,则此期间电感L 释放能量为()o f f o t I E U 1- 稳态时,一个周期T 中L 积蓄能量与释放能量相等()off o on t I E U t EI 11-=化简得:E t T E t t t U offoffoffon o =+=(1)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。

升压斩波电路设计

升压斩波电路设计

湖南工程学院课程设计任务书课程名称电力电子技术题目升压斩波电源设计专业班级电气工及其自动化学生姓名王振林学号 2指导老师颜渐德审批谢卫才任务书下达日期2010 年5 月17 日设计完成日期2010 年5 月28 日摘要本设计是基于3525芯片为核心控制的升压斩波电路().设计由仿真和两大部分构成。

主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到控制输出电压的曲线图。

通过设置参数分析输出与电路参数和控制量的关系。

第二部分是电路板,它可以通过设计完成,其中原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用电路板设计软件中占了绝大部分比重。

本设计也采用设计原理图,和进行板布线。

它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。

引言直流斩波电路作为将直流电变成另一种固定电压或可调电压的变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

但以为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。

1.逆变电源工作原理1.1 变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频滤波。

电力电子升压斩波电路课程设计.(DOC)

电力电子升压斩波电路课程设计.(DOC)

目录摘要 (2)1.主电路设计 (3)1.1 MOSFET升压斩波电路原理图 (3)1.2 MOSFET升压斩波电路工作原理 (3)1.3 MOSFET升压斩波电路元器件选择、参数确定 (5)1.4 MOSFET升压斩波电路典型波形 (6)1.5 晶闸管的触发电路 (6)1.6 驱动电路 (8)1.7升压斩波电路的主电路设计 (9)2.控制电路设计 (10)2.1控制电路原理图 (10)2.2控制电路工作原理 (10)3.仿真结果 (12)4.心得体会 (14)5. 参考文献 (15)摘要直流直流升压电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压电路、升降压电路、复合电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

早期的直流装换电路,电路复杂、功率损耗、体积大,使用不方便。

晶闸管的出现为这种电路的设计又提供了一种选择。

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

它电路简单体积小,便于集成;功率损耗少,符合当今社会生产的要求;所以在直流转换电路中使用晶闸管是一种很好的选择。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。

利用不同的基本斩波电路进行组合,可构成复合斩波电路。

本文着重解决用MOSFET作开关的升压斩波电路。

1.主电路设计设计一个MOSFET 升压斩波电路(纯电阻负载)设计要求:1)输入直流电压:Ud=50V ;2)输出功率: 300W ;3)开关频率: 5KHz ;4)占空比: 10%-50%;5)输出电压脉动率:小于10%。

升降压斩波电路

升降压斩波电路

升降压斩波电路之勘阻及广创作
一、问题
输入电压20V, 输出电压10V~40V, 纹波电压0.2%, 开关频率20kHz, 负载10Ω, 电感电流连续, 求L, C.
二、电路分析
1、 工作原理:
可控开关V 处于通态时, 电源E 经V 向电感L 供电使其贮存能量.同时, 电容C 维持输出电压基本恒定并向负载R 供电.电感电流的增量为
使V 关断, 电感L 中贮存的能量向负载释放, 负载电压上负下正, 与电源电压极性相反.电感电流的减小量为
当电流连续处于稳态时, L L i i +-∆=∆.输出电压为 2、 电感电流连续临界条件:
电感电流及电源的平均值分别为
如果V 、VD 为没有损耗的理想开关时, 则输出功率与输入功率相等.
从而获得电感的临界值为
3、 纹波电压:
电压的最年夜变动量和纹波电压分别为
三、计算:
1、占空比:
2、电感值:
为坚持电流连续性, 取较高电感值L=0.12mH.
3、电容值:
四、电路图
图1升降压斩波电路图五、仿真结果
U U I波形图
图2 降压电路,,
L o o
U U I波形图
图3 升压电路,,
L o o。

IGBT升压斩波电路设计 精品

IGBT升压斩波电路设计 精品

IGBT升压斩波电路设计目录1 引言 (3)1.1 电力电子技术的介绍 (3)1.2 电力电子技术的应用 (3)1.3 电力电子技术中的直流变化技术 (4)2 系统方案与主电路设计 (4)2.1 系统方案 (4)2.2 主电路设计 (4)2.3 参数计算 (5)2.3.1 RLC的计算 (5)2.3.2 额定参数的计算 (6)3 控制电路的设计 (6)3.1 芯片SG3525的介绍 (6)3.2 控制电路原理图 (7)4 系统仿真 (8)4.1 仿真模型的建立 (8)4.2 系统仿真结果与分析 (11)5 结论 (12)参考文献 (13)1 引言1.1 电力电子技术的介绍电力电子技术(Power Electronics)也称为。

利用电力电子开关器件组成电力开关电路,利用晶体管集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,可以经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。

是综合了电子技术、控制技术和电力技术的新兴交叉学科。

现已成为现代电气工程与不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。

(Power Electronics)这一名称是在上世纪60年代出现的。

1974年,的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、和三个学科交叉而形成的。

这一观点被全世界普遍接受。

“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。

1.2 电力电子技术的应用电力电子技术是一个全新的技术平台,它由电路技术、功率半导体技术、计算机技术以及现代化的控制技术组成。

从电力电子技术出现算起,它已经走过了50年的发展历程,也从电子技术中分离出来,成为了一门独立的科学技术。

随着科学技术的发展,电力电子技术广泛应用于国民经济的每个工业领域。

新千年后,电力电子技术的相关技术得到长足发展,再加上与微电子技术的结合,将使电力电子技术应用前景更为广阔。

升降压斩波电路

升降压斩波电路

升降压斩波电路一、问题输入电压20V ,输出电压10V~40V ,纹波电压%,开关频率20kHz,负载10Ω,电感电流连续,求L,C;二、电路分析1、 工作原理:可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量;同时,电容C 维持输出电压基本恒定并向负载R 供电;电感电流的增量为011on t L i Edt TE L Lα+∆==⎰ 使V 关断,电感L 中储存的能量向负载释放,负载电压上负下正,与电源电压极性相反;电感电流的减小量为011(1)off t L o o i U dt TU L Lα-∆==-⎰当电流连续处于稳态时,L L i i +-∆=∆;输出电压为1o U E αα=- 2、 电感电流连续临界条件: 电感电流及电源的平均值分别为1122LB L I i TE Lα+=∆=E LB I I α=如果V 、VD 为没有损耗的理想开关时,则输出功率与输入功率相等;2o E U EI R=从而得到电感的临界值为21(1)2L RT α=-3、 纹波电压:电压的最大变化量和纹波电压分别为01o U Q U T C C Rα∆∆== 00U T U RCα∆= 三、计算:1、占空比:1o U E αα=- 1110201V V αα=- 2240201V V αα=- 113α= 223α=2、电感值:21(1)2L RT α=-119L mH = 2136L mH =为保持电流连续性,取较高电感值L=; 3、电容值:00U TU RCα∆= 156C mF = 253C mF =四、电路图图1升降压斩波电路图五、仿真结果U U I波形图图2 降压电路,,L o oU U I波形图图3 升压电路,,L o o。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术课程设计报告题目:升压斩波电路设计学院:专业:学号:姓名:指导教师:完成日期:升压斩波电路设计(一) 设计任务书(二)设计说明书目录一matlab仿真原理1 升压斩波电路工作原理1.1主电路工作原理1.2 IGBT驱动电路选择2 仿真实验2.1仿真模型2.2仿真实验结果及分析2.3仿真实验结论2.4 最优参数选择二硬件实验2.1 硬件电路2.1.1整流电路2.1.2斩波信号产生电路2.1.3斩波电路2.1.4总原理图2.1.5元器件列表2.2 PCB印刷电路板2.3 制造输出——final三课程设计总结参考文献摘要本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。

Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。

通过设置参数分析输出与电路参数和控制量的关系,最后进行了GUI编程,利用图形可视化界面的直观易懂的特点,使设计摒弃了繁琐难懂的单一波形和控制方式,从而具有友好界面,非常方便的就可进行控制参数输入,和输出图像显示。

第二部分是电路板,它可以通过BluePrint、Kicad 、Protel等软件设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。

本设计也采用Protel设计原理图,和进行PCB板布线。

它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。

关键字升压斩波; SG3525;SIMULINK ; PWM;Protel引 言直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

但以 IGBT 为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问; (2)栅极电阻;(3)驱动电路实现过流过压保护的问题。

一 matlab 仿真原理 1. 升压斩波工作原理1.1 主电路工作原理假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。

设V 通的时间为ton ,此阶段L 上积蓄的能量为E I 1t o nV 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为t off ,则此期间电感L 释放能量为稳态时,一个周期T 中L 积蓄能量与释放能量相等 (1-1) 化简得:(1-2)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。

也称之为boost chooper 变换器。

off t T /——升压比,调节其即可改变U o。

将升压比的倒数记作β,即Tt off =β。

和导通占空比,有如下关系:1=+βα(1-3)因此,式(1-2)可表示为(1-4)()offo on t I E U t EI 11-=E t T E t t t U offoffoffon o =+=( ) off o t I E U 1- E E U o ==11升压斩波电路能使输出电压高于电源电压的原因:① L储能之后具有使电压泵升的作用②电容C可将输出电压保持住1.2 IGBT驱动电路选择IGBT的门极驱动条件密切地关系到他的静态和动态特性。

门极电路的正偏压u GS、负偏压-u GS 和门极电阻RG的大小,对IGBT的通态电压、开关、开关损耗、承受短路能力及du/dt电流等参数有不同程度的影响。

其中门极正电压u GS的变化对IGBT的开通特性,负载短路能力和du GS/dt电流有较大的影响,而门极负偏压对关断特性的影响较大。

同时,门极电路设计中也必须注意开通特性,负载短路能力和由du GS/dt电流引起的误触发等问题。

根据上述分析,对IGBT驱动电路提出以下要求和条件:(1)由于是容性输出输出阻抗;因此IBGT对门极电荷集聚很敏感,驱动电路必须可靠,要保证有一条低阻抗的放电回路。

(2)用低内阻的驱动源对门极电容充放电,以保证门及控制电压u GS有足够陡峭的前、后沿,使IGBT的开关损耗尽量小。

另外,IGBT开通后,门极驱动源应提供足够的功率,使IGBT不至退出饱和而损坏。

(3)门极电路中的正偏压应为+12~+15V;负偏压应为-2V~-10V。

(4)IGBT 驱动电路中的电阻RG对工作性能有较大的影响,RG较大,有利于抑制IGBT 的电流上升率及电压上升率,但会增加IGBT 的开关时间和开关损耗;RG较小,会引起电流上升率增大,使IGBT 误导通或损坏。

RG的具体数据与驱动电路的结构及IGBT 的容量有关,一般在几欧~几十欧,小容量的IGBT 其RG值较大。

(5)驱动电路应具有较强的抗干扰能力及对IGBT 的自保护功能。

IGBT 的控制、驱动及保护电路等应与其高速开关特性相匹配,另外,在未采取适当的防静电措施情况下,IGBT的G~E极之间不能为开路。

IGBT驱动电路分类驱动电路分为:分立插脚式元件的驱动电路;光耦驱动电路;厚膜驱动电路;专用集成块驱动电路。

本文设计的电路采用的是专用集成块驱动电路。

IGBT驱动电路分析随着微处理技术的发展(包括处理器、系统结构和存储器件),数字信号处理器以其优越的性能在交流调速、运动控制领域得到了广泛的应用。

一般数字信号处理器构成的控制系统,IGBT驱动信号由处理器集成的PWM模块产生的。

而PWM接口驱动能力及其与IGBT的接口电路的设计直接影响到系统工作的可靠性。

因此本文采用SG3525设计出了一种可靠的IGBT驱动方案。

2. matlab仿真实验物理仿真需要进行大量的设备制造、安装、连接及调试工作,其投资大、周期长、灵活性差、改变参数难、模型难以重用,且实验数据处理也不方便。

但是计算机仿真却可以很好的解决这个问题。

只要有一台计算机就可以对不同的控制系统进行仿真和研究,而且进行一次仿真实验研究的准备工作也比较简单,主要是控制系统的建模、控制方式的确立和计算机编程。

本系统采用Matlab自带的动态仿真集成环境-Simulink进行仿真。

Simulink是一个用来对动态系统进行仿真和分析的软件包。

它支持连续、离散、及两者混合的线性和非线性系统。

它为用户提供了一个图形化得用户界面(GUI)。

它与用微分方程和差分方程建模的传统仿真相比具有更直观、更方便、更灵活的优点。

2.1 仿真模型Mdl文件是simulinkg仿真工具箱仿真所设计的文件。

它具有功能强大,而且包含了常用的大部分元器件仿真数学模型,形象易懂,便于设计。

该设计的仿真模型如图1所示:图1 simulink 仿真模型图simulink 仿真模型图中DC voltage source 是电压源,提供50V点直流电压。

L为电感。

Diode 为电力二极管,单项导通,阻止电流反向流动。

C为电容。

IGBT为斩波器件,R为负载。

Current Measurement1 用来测量流经L的电流。

Current Measurement2用来测量负载电流。

Current Measurement3用来测量流经电容C的电流。

current 为流经IGBT的电流,IGBT voltage 为IGBT两段的电压。

Scope 为示波器。

Pulse Generator 为PWM 脉冲发生器,调节其占空比就可以控制输出电压的大小。

2.2 仿真实验结果及分析⑴ 周期设为1KHz ,占空比为50%,电感为10mH,电容为2200uF,负载为100Ω时进行仿真,仿真结果如下:图2-0-1 负载电压98.2V图2-0-2 流经电感L 的电流值为0.982A由图2-0-1中V1可以看到负载两端的电压与输入电压基本上成2倍的关系。

即11*501001150%outin V V α===--(V )满足理论计算公式( 1-4 ),由仿真结果知,原理图设计是对的。

⑵ 负载不变为100Ω,频率1KHz ,占空比从5%到95%以等百分比递增时,输出电压,与输入电压和电路参数之间的关系。

① 占空比5%图2-1-1 负载电压51.8V图2-1-2 流经电感L 的电流值为0.518A从图2-1-1负载电压可以看出负载电压约为51.8V ,基本上符合理论计算:(V )② 占空比15%图2-2-1 负载电压57.4V11*5052.6115%out in V V α===--图2-2-2 流经电感L 的电流值为0.57A从图2-2-1负载电压可以看出负载电压约为51.8V ,基本上符合理论计算:(V )④ 占空比25%图2-3-1负载电压65.5V图2-3-2 流经电感L 的电流值为0.65A从图2-3-1负载电压可以看出负载电压约为65.5V ,基本上符合理论计算:11*5058.81115%out in V V α===--(V )④占空比35%图2-4-1 负载电压75.6V图2-4-2 流经电感L 的电流值为0.75A从图2-4-1负载电压可以看出负载电压约为75.6V ,基本上符合理论计算:(V )⑤ 占空比45%图2-5-1 负载电压89.3V11*5076.91135%out in V V α===--11*5066.61125%outin V V α===--图2-5-2 流经电感L 的电流值为0.89A从图2-5-1负载电压可以看出负载电压约为89.3V ,基本上符合理论计算:(V )⑥ 占空比55%图2-6-1 负载电压109.1V图2-6-2 流经电感L 的电流值为1.09A从图2-6-1负载电压可以看出负载电压约为109.1V ,基本上符合理论计算:11*50911145%out in V V α===--(V )⑦ 占空比65%图2-7-1负载电压140.2V图2-7-2 流经电感L 的电流值为1.042A从图2-7-1负载电压可以看出负载电压约为140.2V ,基本上符合理论计算:(V )⑧占空比75%图2-8-1 负载电压196.2V11*501111155%outin V V α===--11*50142.51165%out in V V α===--图2-8-2 流经电感L 的电流值为1.962A从图2-8-1负载电压可以看出负载电压约为196.2V ,基本上符合理论计算:(V )⑨ 占空比85%图2-9-1 负载电压325V图2-9-2 流经电感L 的电流值为3.25A从图2-9-1负载电压可以看出负载电压约为325V ,基本上符合理论计算: 11*502001175%outin V V α===--( 1-5 )(V )⑩ 占空比为95%图2-10-1 负载电压942V图2-10-2 流经电感L 的电流值为9.42A从图2-10-1负载电压可以看出负载电压约为942V ,基本上符合理论计算:(V )2.3 仿真实验结论由图(图2-0),在占空比为50%时,输出电压可以看到负载两端的电压与输入电压基本上成2倍的关系。

相关文档
最新文档