原位水热合成法制备ZSM_5_堇青石整体式催化剂_刘一鸣

合集下载

微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能

微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 7 期微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能王达锐,孙洪敏,薛明伟,王一棪,刘威,杨为民(中石化(上海)石油化工研究院有限公司,绿色化工与工业催化国家重点实验室,上海201208)摘要:采用微波法高效合成含有100%活性组分的全结晶ZSM-5分子筛催化剂,并采用X 射线衍射、扫描/透射电子显微镜、固体核磁共振、比表面积及孔径分析以及机械强度测试等手段对样品进行综合表征分析。

结果表明:采用微波辐射的加热方式,在优化的合成配方条件下,经过8h 晶化,ZSM-5分子筛催化剂的相对结晶度已达到100%,其晶体形貌规整、97%铝原子为四配位状态,机械强度高达110N/cm ,完全满足工业应用需求。

此全结晶ZSM-5分子筛催化剂在接近工业装置的工艺条件下,在苯和乙烯气相烷基化反应中表现出优异的催化性能,其中乙烯转化率接近100%,乙基选择性大于99.6%,关键杂质二甲苯含量仅为450μL/L 左右,且长周期稳定性能良好。

关键词:微波法;全结晶;分子筛;催化剂;苯;乙苯中图分类号:O643.36 文献标志码:A 文章编号:1000-6613(2023)07-3582-07Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst bymicrowave method and its catalytic performanceWANG Darui ,SUN Hongmin ,XUE Mingwei ,WANG Yiyan ,LIU Wei ,YANG Weimin(State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute ofPetrochemical Technology Co., Ltd., Shanghai 201208, China)Abstract: Fully crystalline ZSM-5 zeolite catalyst with 100% active components was efficiently synthesized by the microwave radiation method, and the samples were characterized by X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM and TEM), solid-state nuclear magnetic resonance (NMR), specific surface area and pore size analysis, and mechanical strength measurement. The results showed that the relative crystallinity of the obtained catalyst reached 100% after 8h crystallization under the optimized synthesis condition and heated by microwave irradiation. And the crystal morphology of the obtained ZSM-5 zeolite catalyst was regular and 97% of the aluminum atoms were in tetrahedral coordination. The mechanical strength of the catalyst was as high as 110N/cm, which fully meets the industrial application requirements. Under the process conditions close to the industrial ones, the fully crystalline ZSM-5 catalyst exhibited excellent catalytic performance and long-term stability in the gas-phase alkylation reaction of benzene and ethylene to ethylbenzene. The ethylene conversion rate was about 100% and the ethide selectivity was higher than 99.6%, while the key impurity xylene content was about 450μL/L.Keywords: microwave radiation method; fully crystalline; molecular sieves; catalyst; benzene; ethylbenzene研究开发DOI :10.16085/j.issn.1000-6613.2023-0618收稿日期:2023-04-17;修改稿日期:2023-05-17。

ZSM-5分子筛的合成与表征

ZSM-5分子筛的合成与表征

ZSM-5分子筛的合成及表征摘要以正丁胺为模板剂,白炭黑为硅源,硫酸铝为铝源,采用水热法合成ZSM-5分子筛。

用X射线衍射(XRD)、热重分析(TGA)等手段对其进行了表征。

关键词ZSM-5分子筛;合成;水热法ZSM-5 型分子筛是目前重要的分子筛催化材料之一,广泛应用于石油加工、煤化工与精细化工等催化领域[1]。

高硅ZSM-5分子筛通常以有机胺为模板剂水热法进行合成,有机模板剂合成具有适用pH范围广,晶型规整等优点。

苏建明等[2]以正丁胺为模板剂,合成出高硅铝比的ZSM-5分子筛。

孙慧勇[3]等人分别以正丁胺、乙二胺和己二胺作模板剂,用水热合成法制备了粒径在200-1000nm的小晶粒ZSM-5分子筛。

本文采用直接配料的方法,以正丁胺为模板剂水热法合成出了ZSM-5沸石分子筛,并用XRD和TGA对其进行了表征。

1 实验部分1.1 试剂与仪器氢氧化钠(NaOH(A.R.));硫酸铝(Al2(SO4)3·18H2O),化学纯,97.0%, 天津市化学试剂三厂);白炭黑(C.P.);正丁胺(C4H11N(A.R.));氯化钠(A.R.);去离子水. X射线衍射仪;电热恒温箱;电磁搅拌器;吸虑装置;不锈钢反应釜;电子天平;烧杯等.1.2实验过程(1) 溶液的配制A溶液:称取0.375g氢氧化钠(NaOH)和3.21氯化钠(NaCl),溶于20mL去离子水中,然后加入2.47g白炭黑,以磁搅拌器搅拌成均匀胶体。

B溶液:称取0.326g硫酸铝,置于100mL烧杯中,加入10mL去离子水,搅拌至全部溶解。

(2) 成胶过程将B溶液滴加至正在搅拌的A溶液中,搅拌10min至均匀为止,然后加入1.36mL正丁胺,搅拌均匀。

用广泛pH试纸测混合胶体的pH。

(3) 晶化与产物处理把成胶的混合物装入聚四氟乙烯釜套中,然后放入不锈钢反应釜中,拧紧釜盖,放入电热恒温箱中于180℃晶化7d左右,取出。

以水冷至室温后,将产物吸虑,水洗至pH=8~9,于110℃干燥得ZSM-5沸石分子筛原粉。

ZSM-5分子筛的结构及催化性能研究进展

ZSM-5分子筛的结构及催化性能研究进展

ZSM-5分子筛的结构及催化性能研究进展2005年l0月第24卷第5期绵阳师范学院JournalofMisnyangNormalUnivemityOct.,2005V o1.24No.5M—ZSM一5分子筛的结构及催化性能研究进展薛英,昊宇",万家义(1.I~;ll大学化学学院,四川成都610064;2.I~;ll省产品质量监督检验检测院,四川成都610031)摘要:撂宛了ZSM-5分子筛的晶体蛄构,孔结构及酸性质:对通过离子变换对其表面进行优化以提高催化活性方面的研究工作进行了阐迷;对Cu-ZSM-5分子筛上NO直接催化分解反应提出了:4CuO=2cO+O2,2Cu20+4NO=4CuO+2N2+02的反应机理.关键词:ZSM-5分子筛;x-射线衍射;孔结构;酸性质;综述中圈分类号:0643.32文献标识码:A文章编号:1672-612x(2005)05..0001-04O引言ZSM-5是一类硅铝酸盐沸石分子筛,其组成中的T-0(T=Si,A1)四面体构成内表面很大的空隙,并进一步连接成孔径均匀的直形孔道和正弦形孔道….这些孔道特定的孔径与某些分子的动力学直径相近,故ZSM-5分子筛容易吸附/脱附NOFCC汽油,苯,取代苯等小分子,并具有择形催化性能【2一J.ZSM-5为高硅/铝比分子筛,具有丰富的B酸位和L酸位,这些酸位形成强酸中心,中等强度酸中心和弱酸中心,它们的强度和分布具有可调节性,因此可以用作固体酸催化剂.通过改变合成条件和合成方法,离子交换,表面修饰,扩孔技术等改性方法得到的离子交换分子筛M—ZSM-5广泛用作DeNO.[5,芳构化[1圳,裂化¨,汽油邻氢降凝[2以及其它反应[3?22-24]的催化剂.ZSM-5分子筛白问世以来,已经对工业生产起了重要的作用,并且得到了广泛研究.本文结合本课题组以往及近期的研究工作[6-|】探究了近年来对ZSM-5分子筛进行表面修饰,对其酸性及孔结构进行优化,以提高其催化活性及稳定性方面的研究进展;强调催化剂的结构,表征与性能及用途的关联,并提出了Cu-ZSM-5分子筛上NO直接催化分解的反应机理.1ZSM_5分子筛的晶体结构与Ⅺ表征催化剂的性能和用途是由其结构决定的.x一射线衍射(XRD)单晶结构分析的结果表明:ZSM-5分子筛中的T-O四面体组成十元环,十元环共边连接形成螺旋链.螺旋链可经其图形中的2次对称轴旋转180.而得到.螺旋链进一步彼此连接则形成具有周期性结构的ZSM-5分子筛晶体.ZSM-5分子筛可由螺旋链按对称面的反映操作(相当于照镜子)而得到.O的离子半径为1.35A,据此可以推知,由T.O四面体彼此连接并周期性重复而在ZSM-5分子筛晶体中形成的直形孔道平行于(010)方向,孔径为5.6×5.4A;而沿着(too)方向的正弦形孔道孔径则为5.1×5.5A,两种孔道在(001)方向彼此重叠并扩大….这种骨架结构对应于ZSM-5分子筛XRD多晶粉末谱中20=8o附近的两个衍射峰,以及2O=25.附近的特征五指峰.不同制备条件,不同制备方法,不同Si/A1比的ZSM-5分子筛及其经改性的MZSM-5分子筛的粉末衍射谱图中一般都会保持这些特征峰.7I圳'.XRD结构分析还发现,ZSM-5分子筛有简单单斜(monoclinicP)和简单正交(orthorhombicP)两种晶型,这两种晶型的骨架结构类似,均如上所述,两种晶型的晶胞参数也比较接近.并且,粉末图中20=29.附近的单峰是正交晶系ZSM-5分子筛的特征峰,该位置的衍射峰分裂为双峰则是属于单斜晶系的ZSM-5分子筛的特征'.收稿日期:2005-08-08.作者筒介:薛荚(1962一),女,教授,博士导师.主持国家自然科学基金资助课题1项,作为主研人员参与完成国家自然科学基金九五重大课题,国家博士点基金课题,国家I然科学基金八五重大课题各1项,获各种奖励(成果)5项.迄今已在国内外重要学术刊物上发表学术论文22篇(其中,英文论文7篇,近两年米被scI收录的论文1O篇).主要从事理论化学研究.l?采用XRD结构分析技术,不仅可以确定催化剂的物相,还可以得到晶粒尺寸,晶胞中原子的位置,原子之间的距离,氢键键长和键角等结构信息.借助于量子化学理论计算,还可以确定催化剂的活性物种和活性位,并且可以探讨催化反应的历程和机理等蚓.总之,XRD技术对ZSM-5分子筛催化剂的表征是十分重要和非常有效的.2ZSM_5分子筛的酸性质及孑L结构研究表明,添加助剂,表面修饰,以及水热处理等可以对ZSM-5分子筛的酸性质及孔结构等进行优化.一般说来,ZSM-5分子筛催化剂的酸量随Si/A1比增大而减小,酸强度则随之降低.Si/A1比越大,ZSM-5分子筛催化剂的耐酸性和稳定性亦越强.作为烃类转化反应催化剂的ZSM一5分子筛,其酸性影响烃的转化率,产品分布和催化剂寿命则取决于酸强度的分布.分子筛的酸性较大较强,特别是适中的B酸有利于芳构化及芳烃和烯烃的烷基化.IR谱中1545cm和1635cm附近的吸收峰表征Cd—ZSM-5分子筛中B酸的存在,1454cm左右则是其L酸的特征吸收峰J,3610cm处的吸收峰表征CuC1/H-ZSM-5分子筛的B酸¨引.由朱向学等¨副计算所得丁烯裂解反应的热力学数据知,ZSM-5分子筛催化剂较强的酸性有利于氢转移及芳构化反应的进行,降低其酸性可以提高目的产物丙烯和乙烯的选择性和收率,合适的反应条件可以有效抑制氢转移等副反应.毛东森等副的研究表明,合成气直接制二甲醚反应的催化剂Cu-ZnO—A10一ZSM-5分子筛的弱和中等强度的酸性位是生成二甲醚的活性中心,强酸位则是生成烃类副产物的活性中心.高温水热处理可以减少催化剂的强酸中心,提高二甲醚的选择性,但同时也会使弱酸中心的数量减少而降低催化剂的活性.Mg常用于调节MZSM-5分子筛催化剂的酸性,添加适量MgO可明显降低HZSM-5分子筛中强酸中心的数量,并能将较强的B酸中心转化为较弱的L酸中心.NH3-TPD常用于表征催化剂的酸性质,其峰面积可以代表酸量,峰位置及峰高可以代表酸强度.催化剂表面的酸度还可以用电位滴定法确定,也可以用Hammer指示剂法确定催化剂总的和外表面的酸度分布.ZSM-5分子筛的孔结构是决定其择形催化性能的重要因素.除XRD技术是表征分子筛孔结构的强有力武器之外,一般还用比表面仪采用N:吸附法测定多相催化剂的孔径和孔容积等.研究表明,乙烯齐聚反应的最终产物将受分子筛孔结构和内表面酸性位和外表面酸性位双重作用的影响.为了提高直链烯烃产物的收率和选择性,除应选择适宜孔结构参数的ZSM-5分子筛外,还必须降低其外表面酸性位的活性.张君涛等报道NaZSM一5(26)(26=nsl/n.)分子筛催化剂经离子交换后得到的MZSM-5(M=Ba,Mo,Cd)分子筛的孔径有所扩大,有利于乙烯齐聚生成芳烃及稠环芳烃.MZSM-5经有机碱邻菲咯啉表面修饰后,产物中Ot一烯烃的选择性明提高,这是邻菲咯啉分子不仅可以在催化剂外表面吸附,而且还可以进人ZSM.5分子筛的较大孔道,并在其表面吸附使之大部分活性中心失活之故.郭新闻等的研究结果显示,对4.甲基联苯与甲醇的甲基化反应催化剂HZSM-5分子筛,采用添加金属氧化物进行改性,随MgO负载量的增加,样品的比表面积和微孑L比表面积逐渐减少,中孔的比表面积变化不大.同时,经金属氧化物改性后,减少了催化剂的酸性,抑制了产物4,4'一二甲基的异构化,脱烷基化及烷基化,使其选择性提高. 由上可见,载体ZSM-5分子筛的孑L结构及酸性质对催化剂的性能和用途起着决定性作用.3Cu—ZSM-5分子筛催化剂上NO直接分解的机理金属离子交换是对ZSM-5分子筛进行改性与优化的重要方法.改性分子筛MZSM.5中,Cu—ZSM一5分子筛尤其重要.研究发现,Cu—ZSM一5是容易达到超计量离子交换的体系¨引,这是由分子筛的结构决定的.铜离子交换的Cu—ZSM-5分子筛对NO直接分解反应有很高的活性[71].高Si/A1比,铜离子交换量超过ZSM-5分子筛的单层分散阈值等,有利于提高催化剂的活性.这是因为cu是NO直接分解的活性物种,cu与cu札之问可逆的氧化还原循环使NO的直接分解成为可能.一般是以cu(Ac):或Cu(NO,):等铜盐作为cu源,采用常规浸渍法或直接混合研磨的方法制备Cu7-.5~-5分子筛催化剂. 催化剂中cu是以[Cu(OH)]存在,在NO直接分解反应的条件下,发生如下反应:2[Cu(OH)]=cu'+CuO+H0由电荷补偿原则可以知道,cu趋向于由分子筛的孔道向两个[AIO]一四面体空隙之间迁移,这对高Si/Al比ZSM-5分子筛而言,原子之间的距离太大,不合适,故cu容易还原为cu,cu 向[AlO]一四面体2?空隙迁移,同时吸附NO.NO通过cu与cu+2之间可逆的氧化还原循环而分解:4CuO=2Cu2O+O22Cu2O+4NO=4CuO+2N2+O2因为具有不需要另外加入还原剂,不会产生新的污染物等特征,直接分解无疑是脱除大气污染物NO的关键起始物,并且还是脱除NO的良好方法.Cu—ZSM-5分子筛对NO直接分解具有优良性能是由其结构决定的,Cu由分子筛的孔道向AI—O四面体空隙迁移是关键步骤,Cu与Cu之间可逆的氧化还原循环起重要作用.因此,分子筛的Si/A1比是对其催化性能有较大影响的因素之一.4ZSM-5分子筛催化剂的其它表征方法及用途Cu-ZSM-5分子筛的Cu含量可以用原子吸收光谱法测定,Cu元素的表面形态可以用x射线光电子能谱(XPS)仪测定.此外,rI.PR,TPD,SEM等技术也常用于催化剂的表征.H2-TPR谱中,cu还原为cu的峰在209"附近,265.附近则是cu还原为Cu的还原峰【|¨.O—rPD方法¨刮显示,Cu-ZSM-5上有三个O脱附峰,最高峰温为700K的脱附峰对应的O:脱附与催化活性有直接关联.Cu—ZSM-5催化剂0吸附量明显高于co-zsM一5,Fe—zsM_5和H—ZSM-5的O吸附量,这是其催化活性在三者中为最高的原因之一.在Cu-ZSM-5的XPS谱中cu+2的结合能为942.7eV,Cu的结合能则为933.1eV【6.】引.我们近期的研究工作表明,nsi/n^l比分别为25,38和5O的Cu—ZSM-5,Cu—Ce—ZSM-5,Cu—La.ZSM-5以及Cu —Ag—ZSM5分子筛催化剂的XRD谱中,20=23—26.出现特征五指峰,9.附近有两个较强的衍射峰,这与前述结果一致. 南开大学李赫喧教授等用水热晶化法合成了ZSM-5分子筛.合成时不用胺类模板剂,而是用廉价易得的工业水玻璃,硫酸铝和硫酸为原料,成本仅为国外胺法合成的1/9.合成工艺简单,分子筛产率高,生产周期短,产品结晶度好,并且避免了胺对环境的污染.又因为不需要经过焙烧脱氨,可以直接进行离子交换,简化了催化剂制备工艺.该法突破了国际上合成ZSM-5分子筛必须用胺类作模板剂的传统理论和方法.南开大学在用乙二醇合成乙醚的生产中使用该法生产的ZSM-5分子筛催化剂取代三氟化硼催化剂后,产率提高20%,主要原料成本下降2l%,每吨产品成本降低2000元,并且消除了氟化硼对设备的腐蚀和对环境的污染.该项目获得国家教委科技进步二等奖.他们用ZSM-5分子筛催化剂由乙醇脱水制乙烯,与采用传统的氧化铝催化剂比较,反应温度降低100.C,空速高1—2倍,节省了能源,提高了生产效率.此项目获得国家发明奖四等奖.他们还将ZSM-5分子筛催化剂用在乙苯,乙醇合成对二乙苯的生产中,可使对二乙苯选择性达到95-98%,这是生产长期依靠进口的二甲苯分离吸附剂的一种催化合成新工艺,使我国"对乙二苯"的生产将很快实现国产化.此外,中国石化总公司抚顺石油科学研究院用该ZSM-5分子筛制的FDN一1无胺型临氢降凝催化剂,已经可以取代从美国莫尔比公司进口的降凝催化剂.胜利炼油厂在引进装置上采用ZSM一5分子筛催化剂后,每批催化剂可节约外汇126万美元.北京大学林炳雄教授等首次应用多晶x射线衍射方法,对国内外用典型方法制备的ZSM-5分子筛进行了体相结构和性能的研究,发现了该类型分子筛结构的易变性以及分子筛晶格内存在强度,酸度及稳定性不同的两类质子酸中心sj和S.i'两类质子酸中心的强度和空间位置不同,因而有各自的催化功能.由上可见,ZSM-5分子筛的结构决定了它优良的催化性能和广泛的用途.参考文献:[1]D.H.Ohon,C.T.KokotaUo,wton.Crystalstruetureandstructure-relatedproperti esofZSM-5[J].J.Phys.Chem.1981.85(15):2238-2243.[2]张培青,王祥生,郭洪臣,等.水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响[J].催化,2003,24(2).900—904.[3]郭新闻,王祥生,沈建平,等.改性HZSM-5上4一甲基联苯与甲醇的甲基化反应性能[J].催化,2003,24(5):333—337.[4]张君涛.张耀君,梁生荣.表面修饰对金属负载型HZSM-5催化剂乙烯齐聚性能的影响[J].分子催化,2005,19(2):121—124.[5]李哲,张海荣,黄伟,等.不同Si/AI比对Mo/ZSM-5催化性能的影响[J].分子催化.2005,19(2):104—108.[6]万家义.余林,陈豫.Cu?M/ZSM-5(M=ce,La.Ag)催化剂的表征及其对NO直接分解催化活性的研究[J].化学研究与应用,1999,11(1):8—12.-3?[7]万家义,余林,陈豫.Cu-ZSM-5上NO催化分解的研究[J].四川大学,1999,36(1):126—130.[8】高玉英,万家义,衰永明,等.CuCe./ZSM-5催化剂的TPR及动力学研究[J].化学研究与应用,2000,12(2);137—141.【9]M.1wamoto,H.Y ahiro,K.Tanda,eta1.Removalofnitmsenmonoxidethroughanovelc a~yticprocess.1.Decomposition onexcessivelyCopperionexchangedZSM-5zeolltesCJ].J.Phys.Chem.1991,95(9):3727-3730.[10]L.Yin.W.K.Hal1.Stoichlometriccatalyticdecomposition0f~tficoxideoverCu-ZSM-5Catalysts[J].J+Phys.Chem.1990,94(t6):6145—6149.[11]M.1wamoto,H.Yahlro.Novelca~ytlcdecompositionandreduction0fNO[J].Catalysis today,1994,22:5一l8.[12]王晓东,马磊,张涛,等.In/ZSM-5催化剂上cH-选择还原NO反应机理研究[c].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,7—8.[13]贾明君,王桂英,李雪梅,等.CuCI/ZSM-5上c3催化还原NO反应机理研究[c].环境友好催化—首届全国环境催化学术研讨会i仑文集.浙江:浙江大学出版社,1999,34—35.[14]徐秀峰,索掌环,李鑫恒,等,Cu-ZSM-5制备参数对N2O分解催化活性的影响[C].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,7—8.[15]王维家,卢立军,宗保宁,等.DeNOx催化剂FeZSM-5/RsneyFe的制备[J].催化,2003,24(10):739—743.[16]曾翔,陈继新,单学蕾.等.o2在Cu-ZSM-5上TPD与NO分解反应研究[c].环境友好催化一首届全国环境催化学术研讨会论文集.浙江:浙江大学出版社,1999,23—24.【17]薛全民,张永春.钴铜改性的ZSM-5对低浓度NO吸附性能的研究[J].环境科学研究,2004,17(6):63-65.[18】王红霞.谭大力,徐奕德.等.硅烷化处理对Mo/HZSM-5催化剂上甲烷脱氢芳构化活性的影响[J】.催化,2004,25(6):445—449.[19]郑海涛.棱辉,李影辉,等.Mo-Zn/HZSM-5催化剂上甲烷与丙烷混合物的无氧芳构化.[J].高等学校化学,2005.26(2):285.2Ji9.[20]陈会荚.李永刚,陈为,等.Mo/HZSM-5催化剂上甲烷芳构化反应行为的改善—催化剂制备因索及反应添加剂的考察[J].分子催化,2005.19(2):83—89.[21]朱向学,刘盛林.牛雄冒.等.ZSM-5分子筛上烯烃催化裂化制丙烯和乙烯[J].石油化工,2004,33(4):320—324.[22]毛东森,张斌.宋庆英,等,镁改性HZSM-5对Cu?ZnO-Al2A/HZSM-5催化合成气直接制二甲醚反应的影响[J]催化学报.2005,26(5):365-370.[23】赵掌,吕高盂,索继栓,等.Au/ZSM-5催化氧化环己烷制环己酮和环己醇的研究[J].分子催化.2005,19(2):l15—120.[24】李明慧,扬大伟,扬毅,等.纳米级HZSM-5分子筛催化合成异戊醇的研究[J】.精细石油化工进展,2005,6(4):22-24.[25]E.L.Wu,wtow,D.H.Olson.ZSM-5一Tapematerials,factoraffectingcrystalsynnnetry[J].J.Phys.Chem..1979,83(21):2777—2781.[26】A.Miyamoto,H.Himei,puter-aideddesignofcatalystsfortherelnov4~ofn itric耐de[J].Catalysistoday,1994.22:87—96.[27】潘晓名.谢有畅.x射线相定量法测定单层分散阈值[J].大学化学,2001,16(3):36—39.[2s]李郝喧.相寿鹤.刘述全,等."直接法合成ZSM.5分子筛"[P].04811,13P. ProgressinStructureandCatalysisPropertiesofZSM-5ZeolitesXUEYing,WUYu¨.W ANJia—yi(1.CollegeofChemistry,SichuanUniversityChengdu610064;2.SichuanInstituteofProductQualitySupervisionandInspection,Chengdu610031) Abstract:Theprogressinthecrystalstructure,catalysisandacidicpropertiesofMZSM-5was summarizedeny.Theeffectivethree?dimensionalchannelswerestudied.CoppercationexchangedZSM -5zeolitesareeffec—tivecatalystsfortheNOdecompositionreaction.Theredoxmechanismhasproposeda8follo ws:4CuO=2Cu20+022Cu20+4NO=4CuO+2N2+02Keywords:ZSM?5Zeolites;XRD;three-dimensionalChannel;acidicproperties;sununary。

模板剂对原位水热合成等级孔ZSM-5分子筛的影响

模板剂对原位水热合成等级孔ZSM-5分子筛的影响

第50卷第2期2028年2月应用化工Applied Chemical InUustuVoe550No52Feb.9068模板剂对原位水热合成等级孔ZSM-5分子筛的影响牛逢锂、,赵基钢、,苏越、,郭新宇4,丛梅、(3华东理工大学化工学院绿色能源化工国际联合研究中心,上海292437;0.江苏煤化工程研究设计院有限公司,江苏苏州013313)摘要:以正丁胺为模板剂制备硅铝摩尔比为40的ZSM-5分子筛,分别使用不同的介孔模板剂合成了等级孔ZSM-5分子筛,并采用XRD、NHBPD、BET等对合成的分子筛进行表征。

结果表明,采用不同介孔模板剂均可合成等级孔ZSM-5分子筛,其中以CTAB及P123为介孔模板剂合成的等级孔分子筛,介孔结构明显且保留了完整的微孔结构,微孔比表面在200m9/g以上,介孔比表面均达到了40m5/g,且孔径分布较广。

为等级孔分子筛的进一步研究提供了基础数据支持。

关键词:ZSM-5分子筛;等级孔结构;原位合成法;介孔模板剂中图分类号:TQ426.9文献标识码:A文章编号0978-3209(2068)06-0377-04^feca of templating ageei on in-sito hydrrthermaisynthesis hierophicai ZSM-SNIU Feng-yu,ZHA0Ji-gang8,SU Yue8,GUO Xin-yu9,CONG Mei8(8.1/emaSonsl Joint Research Center for Green已/©!/Chemical EngiueerOg,School of Chemical Engiueering,East China University of Science and Techu(Uoad,Shanghsi200237,Chins;2.Jiangsu Coal and ChemicalEngiuee/ng Research and Design Institute,Suzhou215313,Chins)AbshdcS:ZSMS molecolar sieve with sibcous/mOum molar mds of49was prepared by using g-butyl-amino as a templata agent.Hierarchical ZSM-5molecolar sievas were sydt0esizen using diOerent mpo-po/ss templata agents,gnd XRD,NH-SPD,BET were used to characte/zo tho molecolar sieve.Tha/-suits showed that hmm/hPal ZSM-5molecolar sievas can bo sydt0esizen with diOereut mesogo/ss tem­plata agents.Among them, Uiera/hical molecolar sievas sydt0esizen with CTAB and P105as mesogo/ss templata agents haU oSvioss mesogo/ss stmcturas and retained completa micmgo/ss stmctums.Tha ml-c/go/gs specific suUaca is aPovv220m2/g,tOa mesogo/ss specific suUaca all reachos106m0/g,sd tha pore siza distriduSos is widely distriduteP.Tha conclusion p/videb basic data suppo/for tha furthor /search of Uiera/hical molecolar sieve.Key W o P s:ZSMS molecolar sieve;hipqchPS stmctura;in-sito sydt0pis method;mesogoross tem­plata甲醇制汽油技术的核心技术在于催化剂的研究J s],ZSMS分子筛孔结构分布影响了较大分子在反应中的传输,易于引起积碳失活进而影响其活性及寿命J s]。

直接合成法制备ZSM-5分子筛及其催化性能的研究

直接合成法制备ZSM-5分子筛及其催化性能的研究
酸催 化剂 , 直 线 型 孔 道 尺 寸 为 0 5 m ×0 5 其 . 4n .6
Y Z字形 孔道 尺 寸 为 . 1 m×0 5 mL , 工 l m, 05 n . 4n l 与 j
烯 和环 己醇 的分子 直 径 相近 , 具 有 能 满 足水 合 反 并 应需 要 的酸度 , 因此 Z M- S 5分子 筛对 环 己烯 水合 反
成 法直接 制备 出 Z M一 子 筛 , S 5分 并对合 成的样 品进 行 X射 线衍 射 、 外光谱 照射 、 描 电镜 扫 描 , 红 扫
表 明该分 子 筛具 有典 型 的 Z M一 构 。该 分子 筛 经转 型后 , 过 T 检 测其 酸 性 , 用 于环 已烯 S 5结 通 G 并 水合 制备 环 己醇反 应 , 表现 出 良好 的催 化性 能 , 反应 4h后 , 己醇 的收 率达 到 9 4,, 环 . 并保持 较 高 9 6 的 对环 己醇 的选择 性 ( 4 左 右) 9 。
t e s n h sz d s mp e r n e tg t d b sn h y t e ie a l s we e i v si a e y u i g XRD,S EM n TI Th e u t n ia e i d o y ia S 一 t u - a d F R. e r s l id c t d a k n ft p c l M 5 s r t s Z t r .Afe n e c a c .TG s a p id t a u e t e a i i p o e t s o h S 5 z o i . Th a a y i c i iy o h ue t ri x h n e o wa p l O me s r h cd c r p r i f t e Z M一 e l e e e t e c t l t a tvt ft e c s n h s e r s as wa x mi e o h q e u y r x lt n o y lh x n . Th y t e ie e l e h ws a r ltv l y t e i d c y t l se a n d f r t e a u o s h d o ya i fc co e e e z o e s n h sz d z i s s o ea i ey o t h g a ay i a t iy Afe fr a t n t ihc tlt ci t. c v t r 4 h o e c i i 。t e yed o y l h x n li 9 4 。 h e e tvt fc co e a o s k p t o me h il fc co e a o s . t e s lc i i o y l h x n li e t a y

ZSM-5_沸石的合成、再生及其对废水中有机物的吸附研究 

ZSM-5_沸石的合成、再生及其对废水中有机物的吸附研究 

第42卷第12期2023年12月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.12December,2023ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究杨露婷,刘㊀勇(天津大学环境与科学工程学院,天津㊀300350)摘要:针对高盐废水中的有机物去除问题,本文采用水热法合成了不同硅铝摩尔比(Si /Al)的ZSM-5沸石,并进行XRD㊁SEM㊁XRF 和BET 分析,考察了不同Si /Al 沸石对高盐废水有机物的去除效果,研究了沸石的煅烧再生温度,评价了沸石在高盐废水有机物吸附过程中的重复利用性能㊂结果表明,随着原料Si /Al 的增加,ZSM-5沸石粒径逐步减小,比表面积逐步增加,沸石对废水中有机物的吸附效率逐步增大㊂当原料Si /Al 为500时,合成的ZSM-5沸石对废水中有机物的吸附效果较佳,在15次再生重复利用过程中,废水总有机碳(TOC)的去除率均大于92.5%㊂ZSM-5沸石的最佳煅烧再生温度为650ħ㊂关键词:ZSM-5沸石;高盐废水;总有机碳;吸附;再生中图分类号:X703.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)12-4552-07Synthesis and Regeneration of ZSM-5Zeolite and Its Adsorption on Organic Matter in WastewaterYANG Luting ,LIU Yong(School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China)Abstract :For the removal of organic matter in high salinity wastewater,ZSM-5zeolites with different silicon aluminum molar ratios(Si /Al)were synthesized by hydrothermal method,and were analyzed using XRD,SEM,XRF and BET.The removal effects of zeolites with different silicon aluminum ratios on organic matters in high salinity wastewater were investigated.The temperature of the regeneration of zeolites through calcination were studied also,and the reuse performance of zeolites in the adsorption process of organic matter in high salinity wastewater was evaluated.The results show that with the increase of silicon aluminum ratio of raw material,the particle size of ZSM-5zeolite gradually decreases,the specific surface area gradually increases,and the adsorption efficiency of zeolite for organic matter in wastewater gradually increases.When silicon aluminum ratio of raw material Si /Al is 500,the synthesized ZSM-5zeolite has a better adsorption effect on organic matter in wastewater.During 15times of regeneration and reuse,the removal rate of total organic carbon (TOC)in wastewater is greater than 92.5%.The optimal calcination regeneration temperature of ZSM-5zeolite is 650ħ.Key words :ZSM-5zeolite;high salinity wastewater;total organic carbon;adsorption;regeneration 收稿日期:2023-06-26;修订日期:2023-07-31作者简介:杨露婷(1999 ),男,硕士研究生㊂主要从事废水资源化的研究㊂E-mail:156****2106@通信作者:刘㊀勇,博士,副教授㊂E-mail:lytju@0㊀引㊀言随着工业化的快速发展,煤化工㊁印染㊁钢铁及制药等行业产生了大量的高盐废水㊂高盐废水中的水资源以及无机盐资源的回收与循环利用是我国工业生产面临的重大难题㊂目前高盐废水的净化方式主要有生物法和物化法两大类[1-2]㊂生物法净化高盐废水的主要问题是微生物容易失活,导致系统不稳定和有机物去除率低[3-5]㊂物化法主要包括高级氧化法㊁电解法以及吸附法等㊂高级氧化法和电解法主要存在成本较高等问题[6-8]㊂吸附法因设备简单㊁条件温和及成本低廉而被广泛使用[9-11]㊂第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4553㊀活性炭是一种被广泛应用的吸附剂,其使用后需要进行更换或再生[12]㊂活性炭的再生方法通常有高温热解再生法㊁氧化还原化学再生法以及水溶液加热再生法,这些再生过程往往存在活性炭质量损耗㊁性能下降以及产生新的废水等问题[13-14]㊂ZSM-5(zeolit socony mobil number5)沸石为人工合成的硅铝酸盐材料,具有较高的比表面积㊁良好的热稳定性㊁耐酸碱㊁抗积碳以及较好的疏水性等特点,在吸附净化废水有机物和煅烧再生方面均具有良好优势[15]㊂本课题组前期[16-17]利用ZSM-5沸石吸附净化废水中的苯酚㊁喹啉和吲哚有机污染物,发现以ZSM-5沸石为载体的催化剂对废水中的苯酚㊁喹啉和吲哚有良好的净化效果㊂目前的研究大多围绕ZSM-5作为催化剂载体时对废水有机物的净化效果,关于ZSM-5沸石对废水有机物吸附净化效果的研究报道较少㊂本研究拟通过水热合成法制备不同硅铝摩尔比(Si/Al)的ZSM-5沸石,考察其对高盐废水中有机物的吸附去除性能,以及沸石煅烧再生条件和重复利用效果,以期为我国高盐废水中有机物的去除提供参考㊂1㊀实㊀验1.1㊀材料与表征实验所用废水为国内某一煤化工企业所产生的高盐废水,其理化特征如表1所示㊂废水的总溶解性固体含量(total dissolved solid,TDS)采用烘干称重法进行测定㊂废水的总有机碳含量(total organic carbon, TOC)采用总有机碳仪(TOC-VCPH,岛津,日本)测定㊂废水的化学需氧量(chemical oxygen demand,COD)采用重铬酸钾法测定㊂硫酸根离子(SO2-4)和氯离子(Cl-)采用离子色谱仪(ICS-1100离子色谱仪,Thermo,美国)测定㊂该高盐废水中所含盐分主要为NaCl和Na2SO4㊂硫酸(H2SO4,天津希恩思奥普德科技)㊁硅酸钠(Na2SiO3,天津光复精细化工研究所)㊁铝酸钠(NaAlO2,上海阿拉丁生化科技)㊁四丙基溴化铵(TPABr,天津希恩思奥普德科技)均为分析纯㊂水为市售蒸馏水㊂表1㊀煤化工高盐废水的理化性质Table1㊀Physicochemical properties of high salinity wastewater from coal chemical industrypH value SO2-4content/(mg㊃L-1)Cl-content/(mg㊃L-1)TDS content/(mg㊃L-1)TOC content/(mg㊃L-1)COD content/(mg㊃L-1)1.7013100795001680009905500通过扫描电子显微镜(SEM:4800,日立,日本)测定沸石形貌特征,电压为15kV,放大倍数为20倍;通过X射线衍射分析仪(XRD:D8FOCUS,布鲁克,德国)测定物相结构,扫描范围为5ʎ~50ʎ,扫描速度为5(ʎ)/min;通过X射线荧光光谱分析仪(XRF:S8TIGERⅡ,布鲁克,德国)测定元素含量;通过比表面积分析仪(BET:ASAP2460,麦克,美国)测定比表面积,吸脱附气体为氮气,温度为77.3K㊂1.2㊀ZSM-5沸石合成本研究中ZSM-5沸石采用水热法合成,流程如图1所示㊂Na2SiO3为硅源,NaAlO2为铝源,模版剂为TPABr㊂物料摩尔比为n(Si)ʒn(Al)ʒn(TPABr)ʒn(H2O)=xʒ1ʒ10ʒ5000㊂称取一定量的Na2SiO3㊁NaAlO2于烧杯中,加入蒸馏水溶解,搅拌混匀后加入相应质量的TPABr,室温下磁力搅拌至物料完全溶解后,缓慢加入2mol/L的硫酸溶液调节混合溶液pH值至11.2㊂混合体系在室温下陈化24h后转入水热反应釜,置于烘箱内120ħ下反应10h㊂反应结束后,过滤㊁洗涤固体至滤液呈中性,随后放入烘箱105ħ干燥4h,获得的产物在马弗炉中550ħ煅烧2h(升温速率为10ħ/min),自然冷却至室温,得到最终产品㊂其中x分别为50㊁100㊁150㊁200㊁250㊁300㊁350㊁400㊁450和500,对应产品编号为F1-F10㊂4554㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀ZSM-5的合成途径示意图Fig.1㊀Diagram of synthesis pathway of ZSM-51.3㊀ZSM-5沸石吸附废水有机物ZSM-5沸石对高盐废水的净化效果受到硅铝摩尔比㊁煅烧温度和循环利用次数等因素的影响,本研究采用废水总有机碳(TOC)的去除率作为评价指标㊂沸石吸附试验操作如下:在500mL 锥形瓶中加入200mL 高盐废水,并按照5%(质量分数)的比例加入相应质量的ZSM-5沸石,在25ħ恒温水浴环境中振荡150min,随后静置3h,取2mL 上清液测定废水TOC 含量㊂TOC 含量通过总有机碳分析仪(TOC-VCPH,岛津,日本)测定㊂TOC 去除率用式(1)计算㊂η=1-C t C 0()ˑ100%(1)式中:η为TOC 去除率,%;C t 和C 0分别为TOC 采样浓度和初始浓度,mg㊃L -1㊂1.4㊀ZSM-5沸石煅烧再生在目标沸石吸附高盐废水中有机物后,对其进行过滤㊁干燥,随后将沸石产品在马弗炉中不同温度下煅烧2h㊂本研究主要考察煅烧温度对沸石再生效果的影响㊂煅烧温度分别为550㊁600㊁650和700ħ㊂煅烧过程中的升温速度均为10ħ/min,随后自然冷却至室温㊂煅烧后的沸石用于高盐废水中总有机碳的吸附净化,重复测定3次,并通过吸附效率确定最佳的煅烧温度㊂在最佳煅烧温度下对ZSM-5重复进行15次煅烧再生-再利用,每次再生后将其作为吸附剂进行吸附试验㊂通过15次TOC 去除率评价ZSM-5再生效果及其吸附净化效率的稳定性㊂2㊀结果与讨论2.1㊀ZSM-5沸石表征图2㊀不同Si /Al 原料合成ZSM-5的XRD 谱Fig.2㊀XRD patterns of ZSM-5obtained from raw materials with different Si /Al图2显示了不同Si /Al 原料制备的样品F1~F10的XRD 谱㊂所有合成产物在2θ为7.5ʎ~10ʎ和22.5ʎ~24.5ʎ均可观察到5个不同强度的MFI(mobi five)特征峰㊂Jade 6.0软件分析结果证实,所有合成产品的XRD 数据均与ZSM-5(PDF#44-0003)沸石的XRD 谱相匹配,也与文献[18]报道的ZSM-5沸石的XRD 数据相似㊂这些信息确证合成产品均为ZSM-5沸石㊂图3为样品的SEM 照片㊂不同Si /Al 原料合成的ZSM-5沸石的形貌均为明显的六棱柱,且随着Si /Al 的增加ZSM-5沸石粒径有减小趋势㊂当Si /Al 增加时,颗粒的形态从较为 短㊁粗㊁厚 逐渐转变为㊀第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4555 长㊁细㊁薄 ㊂合成ZSM-5沸石的形态变化与其晶胞中的硅铝原子比例有关㊂图3㊀不同Si/Al原料合成ZSM-5的SEM照片Fig.3㊀SEM images of ZSM-5obtained from raw materials with different Si/Al随着原料Si/Al的增加,ZSM-5沸石产品中的Si/Al增加(见表2)㊂同时,随着原料Si/Al的增加,合成ZSM-5沸石产品中的比表面积也呈增加趋势(见表2),但当Si/Al大于400后沸石的比表面积变化不明显㊂2.2㊀ZSM-5吸附性能图4为F1~F10对高盐废水中有机物的吸附净化效果㊂TOC去除率随着Si/Al的增加而提高,Si/Al由50提高至500时,TOC去除率由F1的20.04%提高至F10的92.55%㊂在F8之前,这种趋势更为明显,当Si/Al为400时,其TOC去除率就已经达到91.84%㊂随着Si/Al的继续提高,其TOC去除率增加缓慢㊂当Si/Al由400提高至500时,TOC去除率由91.84%升高至92.55%㊂当原料Si/Al大于等于400后废水TOC4556㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷吸附去除效率增加缓慢与沸石产品中的Si/Al对比表面积的影响有一定内在联系㊂即当原料Si/Al大于等于400后,沸石产品的比表面积变化不大,约在340m2㊃g-1(表2)㊂表2㊀合成样品的Si/Al和比表面积Table2㊀Si/Al and specific surface area of synthesized samplesSample No.Si/Al of raw material Si/Al of sample Specific surface area/(m2㊃g-1)F15047.6108.7F210067.4160.5F3150105.1185.6F4200122.2204.8F5250153.4220.9F6300184.6263.9F7350284.4287.6F8400358.5338.9F9450395.7336.7F10500422.3340.5提高ZSM-5样品的Si/Al可以显著增加其比表面积㊂比表面积的增加为ZSM-5沸石提供了更多的吸附位点,进而增强其对废水有机物的吸附性能[19-20]㊂依据沸石对高盐废水中总有机碳的吸附净化效果,本研究认为Si/Al为500时合成的ZSM-5沸石较佳㊂下面均围绕原料Si/Al为500时合成的ZSM-5沸石开展研究㊂2.3㊀ZSM-5沸石煅烧再生及稳定性图5为不同温度下煅烧再生后沸石的XRD谱,在550㊁600㊁650和750ħ下样品均表现出了ZSM-5所具有的特征峰,与图2中的XRD数据相似(ZSM-5,PDF#44-0003),这一结果表明煅烧再生后其物相组成未发生改变㊂图6为不同温度下煅烧再生后样品的SEM照片,4个温度下ZSM-5的形貌特征均保持稳定,未出现晶体熔融或坍塌现象㊂图4㊀样品F1~F10的TOC去除率Fig.4㊀TOC removal rate of sample F1~F10图5㊀不同煅烧温度下再生后样品的XRD谱Fig.5㊀XRD patterns of samples after regeneration atdifferent calcination temperatures㊀㊀不同温度下煅烧再生后的沸石进行3次新鲜废水吸附后,高盐废水中有机物的去除率如图7所示㊂4个煅烧再生温度下,TOC去除率都在650ħ时最佳,分别为92.72%㊁79.98%和63.71%㊂煅烧温度过低或过高时ZSM-5沸石对废水TOC的去除率均有所降低,这与煅烧温度对有机物的去除效果以及煅烧后的残余碳含量有关㊂总体上,ZSM-5沸石的最佳煅烧温度为650ħ㊂ZSM-5在650ħ下煅烧后进行再生-再利用吸附试验,废水的TOC去除效率随沸石重复利用次数的变化趋势如图8所示㊂结果表明,煅烧再生沸石在15次循环使用过程中,废水的TOC去除率均大于92.5%,有机物的净化效率比较稳定㊂这一结果表明所合成的高Si/Al的ZSM-5沸石在煅烧再生后对废水有机物的吸附净化效果依然非常稳定,证明本文合成的ZSM-5沸石可以重复煅烧再生并循环用于废水有机物的吸附净化㊂第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4557㊀图6㊀不同煅烧温度下样品的SEM 照片Fig.6㊀SEM images of samples at different calcinationtemperatures 图7㊀不同煅烧温度下再生后ZSM-5的TOC 去除率Fig.7㊀TOC removal rate of ZSM-5after regeneration at different calcinationtemperatures 图8㊀TOC 去除率随再生次数的变化曲线Fig.8㊀Curve of TOC removal rate changing with regeneration number3㊀结㊀论1)通过水热合成法合成了Si /Al 不同的ZSM-5沸石,随着Si /Al 增加,ZSM-5的粒径减小,比表面积增大,形貌由 短㊁粗㊁厚 转变为 长㊁细㊁薄 ㊂2)TOC 去除率随着ZSM-5的Si /Al 增加而提高,原料Si /Al 为500时合成的ZSM-5沸石对高盐废水有机物具有良好去除率,废水TOC 的去除率大于92.5%㊂3)550~700ħ下煅烧再生后的ZSM-5均保持了良好的物相构成和形貌特征,650ħ为最佳煅烧再生温度㊂4)再生ZSM-5沸石对高盐废水TOC 的去除率均保持在92.5%以上㊂ZSM-5表现出良好的再生性能和优异的废水有机物去除率㊂4558㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷参考文献[1]㊀LEFEBVRE O,MOLETTA R.Treatment of organic pollution in industrial saline wastewater:a literature review[J].Water Research,2006,40(20):3671-3682.[2]㊀SHI J X,HUANG W P,HAN H J,et al.Review on treatment technology of salt wastewater in coal chemical industry of China[J].Desalination,2020,493:114640.[3]㊀LI J,SHI W S,JIANG C W,et al.Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater[J].BioresourceTechnology,2018,266:68-74.[4]㊀CAO T N,BUI X T,LE L T,et al.An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbialand treatment performance[J].Bioresource Technology,2022,363:127831.[5]㊀MARATHE D,SINGH A,RAGHUNATHAN K,et al.Current available treatment technologies for saline wastewater and land-based treatment asan emerging environment-friendly technology:a review[J].Water Environment Research,2021,93(11):2461-2504.[6]㊀LI W S,LI Y M,GU G W.Application of advanced oxidation processes in the treatment of persistent organic pollutants[J].Industrial WaterTreatment,2004,24(11):9-12.[7]㊀LIU X Y,LI H M,JIA Y,et al.Progress in the application of advanced oxidation process in the treatment of drilling wastewater[J].AppliedChemical Industry,2021,50(8):2275-2279.[8]㊀王㊀韬,李鑫钢,杜启云.含酚废水治理技术研究进展[J].化工进展,2008,27(2):231-235.WANG T,LI X G,DU Q Y.Research progress of phenol-containing waste water disposal technique[J].Chemical Industry and Engineering Progress,2008,27(2):231-235(in Chinese).[9]㊀单㊀宇.电解处理腌制工业有机废水的实验研究[D].沈阳:东北大学,2009.SHAN Y.Experimental study on electrolytic treatment of organic wastewater from pickling industry[D].Shenyang:Northeastern University, 2009(in Chinese).[10]㊀李蕊宁,杨㊀磊,杨㊀帅,等.煤基活性炭对高盐废水中有机物的去除探究[J].山东化工,2021,50(12):230-231+234.LI R N,YANG L,YANG S,et al.Study on removal of organic matter from high salinity wastewater by coal-based activated carbon[J].Shandong Chemical Industry,2021,50(12):230-231+234(in Chinese).[11]㊀刘晓晶,李㊀俊,朱海晨,等.活性炭吸附高盐废水COD的影响因素及应用[J].应用化工,2020,49(6):1519-1522.LIU X J,LI J,ZHU H C,et al.The influence factors and application of activated carbon adsorbing COD in high salt wastewater[J].Applied Chemical Industry,2020,49(6):1519-1522(in Chinese).[12]㊀王倩雯,张㊀丽,刘东方,等.改性活性炭吸附湿法冶金高盐废水中有机物的研究[J].工业水处理,2020,40(6):64-67.WANG Q W,ZHANG L,LIU D F,et al.Study on adsorption of organic matter in hydrometallurgical high-salt wastewater by modified activated carbon[J].Industrial Water Treatment,2020,40(6):64-67(in Chinese).[13]㊀YUEN F K,HAMEED B H.Recent developments in the preparation and regeneration of activated carbons by microwaves[J].Advances inColloid and Interface Science,2009,149(1/2):19-27.[14]㊀GAZIGIL L,ER E R,YONAR T.Determination of the optimum conditions for electrochemical regeneration of exhausted activated carbon[J].Diamond and Related Materials,2023,133:109741.[15]㊀NGUYEN D K,DINH V P,NGUYEN H Q,et al.Zeolite ZSM-5synthesized from natural silica sources and its applications:a critical review[J].Journal of Chemical Technology&Biotechnology,2023,98(6):1339-1355.[16]㊀LIU Y,LU H.Synthesis of ZSM-5zeolite from fly ash and its adsorption of phenol,quinoline and indole in aqueous solution[J].MaterialsResearch Express,2020,7(5):055506.[17]㊀LIU Y,LU H,WANG G D.Preparation of CuO/HZSM-5catalyst based on fly ash and its catalytic wet air oxidation of phenol,quinoline andindole[J].Materials Research Express,2021,8(1):015503.[18]㊀XING M J,ZHANG L,CAO J,et al.Impact of the aluminum species state on Al pairs formation in the ZSM-5framework[J].Microporous andMesoporous Materials,2022,334:111769.[19]㊀WU J,WANG C,MENG X,et al.Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTAreaction by Si/Al ratio regulation[J].Chinese Journal of Chemical Engineering,2023,56:314-324.[20]㊀WANG Y L,ZHANG X C,ZHAN G G,et paring the effects of hollow structure and mesoporous structure of ZSM-5zeolites on catalyticperformances in methanol aromatization[J].Molecular Catalysis,2023,540:113044.。

Ni@ZSM-5催化剂的制备及其甲烷部分氧化反应性能的研究

Ni@ZSM-5催化剂的制备及其甲烷部分氧化反应性能的研究

近年来,甲烷作为一种清洁高效的能源受到了广泛的关注。

甲烷部分氧化(POM )反应是一种合成气的生产方式[1,2]。

相比于传统的水蒸气重整,甲烷部分氧化是一种温和的放热反应,具有反应速率快、甲烷转化率高、反应器小等特点。

此外,约为2的H 2/CO 比有利于甲醇合成和费托合成反应[3,4]。

镍基催化剂以其优异的性能和较低的成本成为POM 研究的热点[5]。

然而,镍基催化剂在高温下存在积炭和烧结失活的问题[6]。

长期以来,研究者多依靠引入助剂,提高活性组分与载体的作用力,进而增加其抗烧结能力,该方法可在一定程度上延缓烧结,但是作用有限[7鄄9]。

近年来,研究者提出了采用沸石分子筛对金属原子进行封装的思路。

加州大学伯克利分校Iglesia E 教授课题组采用原位晶化技术,成功将Pt 、Pd 、Ir 、Rh 、Ag 、Au 贵金属封装于SOD 、GIS 、ANA 、LTA 分子筛内部[10鄄12]。

实验表明,分子筛封装可有效提高金属纳米颗粒的稳定性。

近两年,各种类型的分子筛封装金属催化剂(Cu@MOR 、Fe@SSZ 鄄13、Cu@ZSM 鄄5、Fe@BEA )被开发出来,并成功用于催化甲烷制甲醇的反应体Ni@ZSM 鄄5催化剂的制备及其甲烷部分氧化反应性能的研究丁传敏1,马自立1,李宇峰1,原沁波2,赵鸣2,上官炬1,王俊文1(1.太原理工大学化学化工学院,山西太原030024;2.清创人和生态工程技术有限公司,山西太原030031)摘要:采用N 鄄(2鄄氨乙基)鄄3鄄氨丙基三甲氧基硅烷(TPE )作为配体,通过水热合成法将Ni 金属原位封装在ZSM 鄄5沸石中的催化剂Ni@ZSM 鄄5,并考察了镍引入量和晶化温度对催化剂的甲烷部分氧化(POM )催化性能的影响。

结果表明:两段晶化法制备的ZSM 鄄5结晶度更高,有更规整的孔道结构;Ni@ZSM 鄄5中金属颗粒分散较为均匀,载体孔道限制作用能有效抑制金属晶粒的长大,催化剂更加稳定;相比浸渍法制备的Ni/ZSM 鄄5催化剂,原位合成的Ni@ZSM 鄄5催化剂具有更高的POM 反应性能,甲烷转化率达95%。

简单水热合成法制备介孔ZSM-5分子筛

简单水热合成法制备介孔ZSM-5分子筛

简单水热合成法制备介孔ZSM-5分子筛周颖;张利雄【摘要】本文以NaOH、四丙基溴化铵(TPABr)、Al2(SO4)3·18H2O和硅溶胶(SiO2-sol)为原料,采用水热合成法,通过简单的原料比例调变,制备具有介孔结构的ZSM-5分子筛,考察合成配方中水含量、Si含量、A1含量和TPABr含量对介孔、形貌的影响.采用X线衍射仪(XRD)、傅里叶变换红外光谱仪(FT IR)、扫描电子显微镜(SEM)和N2吸附-脱附等对样品进行表征.结果表明:在前驱液摩尔配比n(SiO2)∶n(Al2O3)∶n(Na2O)∶n(TPABr)∶n(H2O)=100∶1∶8.75∶12∶2 600的情况下,于180 ℃下反应36 h,可制得直径为18~20 μm的球形ZSM-5分子筛,分子筛表面由二级纳米晶粒堆砌而成,总比表面积为371 m2/g,介孔率为32.1%,介孔孔径为2.0nm.水含量的增加和Si含量的降低分别有助于二级晶粒更为紧密地堆积和向长条状生长,而Al和TPABr含量的增加则会导致颗粒难以成型且颗粒的尺寸的减小.另外,水和Al含量的增加及Si含量的降低会导致样品总孔容、介孔率和孔径的减小,而样品比表面积则随水含量的降低及Al、Si含量的增加而减小.TPABr 含量的调变对样品介孔性质影响不大.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2016(038)001【总页数】9页(P19-26,32)【关键词】ZSM-5沸石;介孔分子筛;水热合成【作者】周颖;张利雄【作者单位】南京工业大学化工学院材料化学工程国家重点实验室,江苏南京210009;南京工业大学化工学院材料化学工程国家重点实验室,江苏南京210009【正文语种】中文【中图分类】O643.3沸石分子筛以独特的微孔结构和优良的催化性能被广泛应用于精细化工和石油化工等领域[1~2],但微孔结构不利于大分子的扩散[3],限制了它在大分子参与的催化反应中的应用,同时狭小的孔道结构也增加了在催化反应过程中积碳的可能性。

低硅铝比ZSM-5分子筛的水热稳定性能及P改性研究

低硅铝比ZSM-5分子筛的水热稳定性能及P改性研究

低硅铝比ZSM-5分子筛的水热稳定性能及P改性研究低硅铝比ZSM-5分子筛的水热稳定性能及P改性研究近年来,随着工业的发展和社会的进步,环境污染问题日益突出。

为了改善空气质量和减少污染物的排放,研究人员致力于开发新型催化剂,其中低硅铝比ZSM-5分子筛成为了关注的热点。

低硅铝比ZSM-5分子筛具有良好的催化性能和较高的水热稳定性,对于催化反应的提高和长期稳定性的保持具有重要意义。

首先,我们需要了解低硅铝比ZSM-5分子筛的制备方法。

一种常见的制备方法是采用水热合成法,将硅源(硅酸钠)和铝源(硝酸铝)与模板剂(十六甲基季铵溴)和碱性剂(氢氧化钠)混合,在高温高压的条件下反应数小时。

通过控制反应的时间、温度和质量比,可以制备出不同硅铝比的ZSM-5分子筛。

接下来,我们关注低硅铝比ZSM-5分子筛的水热稳定性能。

水热稳定性是催化剂在高温高湿的环境中保持长期稳定性的能力。

在现实应用中,催化剂常常需要经受高温高湿的条件,因此水热稳定性是评价催化剂性能的重要指标之一。

研究表明,低硅铝比ZSM-5分子筛具有较高的水热稳定性能,表现出很好的长期稳定性。

这一特点使得低硅铝比ZSM-5分子筛在石油化工和环保领域具有广阔的应用前景。

然而,低硅铝比ZSM-5分子筛的改性仍然是研究的热点。

改性可以进一步提高其催化性能和水热稳定性。

其中一种改性方法是添加P(磷)元素。

磷元素在催化反应中具有一定的催化活性和稳定性,可以改善催化剂的性能。

研究表明,适量添加磷元素可以降低低硅铝比ZSM-5分子筛的硅铝比,增加酸性位点密度,提高催化活性。

同时,添加磷元素也可以提高低硅铝比ZSM-5分子筛的水热稳定性,延长其使用寿命。

值得一提的是,低硅铝比ZSM-5分子筛不仅在石油化工领域有着广泛的应用,还在环保领域具有很大的潜力。

由于其优异的吸附性能和催化性能,低硅铝比ZSM-5分子筛可以用于污染物的吸附和降解,对治理大气污染和水污染问题具有重要意义。

不同形貌的ZSM-5的制备及其性能研究

不同形貌的ZSM-5的制备及其性能研究
The results showed thatthedifferent morphology and particle size of ZSM-5 zeolites can be got by controlling the solution PH,rotary evaporationor not. The ZSM-5 zeolites with the different morphology structure had different acidity.
纳米ZSM-5沸石分子筛作为一种新的催化材料,在合成、改性、物化性能表征及其催化性能方面的研究倍受学者们的关注。
Long等[14]采用水热法合成纳米Na/HZSM-5分子筛,考察了在不同的反应温度和时间下纳米ZSM-5分子筛上的催化裂解正辛烷的催化性能。在200℃时,主要是正辛烯的异构化反应,也发生少量氢转移反应,但产物以链烷烃和环烯烃为主而不是芳烃。随着反应温度的增加,芳烃的选择性逐渐增大。在300℃~350℃,异链烷烃选择性最大。丙烯、丁烯和戊烯是主要裂解产物。通过烯烃低聚、裂化所产生的烯烃碳原子数分布广泛。在高温下,这些中间体通过氢转移在酸中心处迅速转化成芳烃和烷烃,而丙烷和丁烷可以转化成甲烷。
本人签名:
日期:年月日
不同形貌的ZSM-5的制备及其性能研究
摘要
ZSM-5沸石分子筛因为其具有独特的晶体结构、催化活性、择形性以及很好的水热稳定性,在分离和催化裂化领域具有广泛应用。但ZSM-5分子筛孔径小,酸强度分布不均,容易积碳失活,在大分子催化领域的应用受到限制,故需对其进行改性。目前主要用活性中心调控,孔径的调控及分子筛的纳米化三种方法来改善分子筛的性能。影响ZSM-5分子筛性能的主要因素有SiO2/Al2O3、形貌结构等。研究分子筛的形貌结构在分离和催化领域都有着重要的意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原位水热合成法制备 ZSM-5/堇青石整体式催化剂
刘一鸣,刘华彦,张泽凯,卢晗锋,陈银飞
(浙江工业大学化学工程学院,浙江省绿色化学合成与技术重点实验室,杭州 310014) 摘 要:以蜂窝状堇青石为载体,采用原位水热合成法制备了 ZSM-5/堇青石整体式催化剂。考察了四丙基氢氧化铵(TPAOH) 含量、水硅摩尔比和晶化温度等对 ZSM-5 分子筛在堇青石载体上负载量的影响。结果表明:模板剂 TPAOH 的含量对负载量 有显著影响,当摩尔比 n(TPAOH)/n(SiO2) ≤ 0.2 时,改变晶化温度和水硅摩尔比均可获得较佳的分子筛负载量;当 n(TPAOH)/n(SiO2)>0.2 时,较高的碱度导致前驱体溶胶的溶解,使分子筛多在溶液中晶化,显著减小分子筛在堇青石载体上 的负载量。当 n(TPAOH)/n(SiO2)≤0.2 时,水硅比减小,ZSM-5 分子筛负载量逐渐增大,最大负载量可达 42.8%。晶化温度 降低,分子筛的负载量和晶粒均减小。整体式催化剂用于 NO 的催化氧化活性研究表明,堇青石载体上分子筛的负载量越高, 整体式催化剂的比表面积越大,催化活性越好。 关键词:ZSM-5 分子筛;整体式催化剂;原位水热合成法;一氧化氮氧化
温下催化氧化的研究[17],进一步考察了堇青石载体 表面 ZSM-5 分子筛的负载量与 NO 催化氧化活性的 关系。
1 实验
ZSM-5/堇青石整体式催化剂的制备 采用原位水热合成法制备 ZSM-5/堇青石整体 式催化剂。具体步骤为:常温下,将一定量 Al2(SO4)3·18H2O 溶解于去离子水中,待完全溶解, 加入四丙基氢氧化铵(TPAOH,25%水溶液,国药集 团化学试剂有限公司)混合均匀, 然后逐滴加入正硅 酸乙酯(TEOS, 28.4%, 国药集团化学试剂有限公司) 并搅拌。待 TEOS 完全水解后,将前驱体溶液倒入 内衬聚四氟乙烯的晶化釜, 将已称量的堇青石(开孔 横截面直径 1 cm 率为 58.3%, 载体被切割成高 5 cm, 的圆柱状。质量记为 m0)垂直放置其中,在设定温 度下晶化 48 h。晶化结束后,将堇青石连同釜底的 分子筛粉末一起过滤、洗涤,110 ℃干燥,550 ℃焙 烧 6 h,得到分子筛/堇青石整体式催化剂。焙烧完 成后称量堇青石的质量(m1),计算分子筛负载量 m: (1) m=(m1-m0)/m0 式中:m0 为晶化前堇青石的质量。制备所采用的原 料 摩 尔 比 为 n(SiO2):n(Al2O3):n(TPAOH):n(H2O)= 1:0.0033:X:Y,具体反应条件见表 1。 1.2 ZSM-5/堇青石整体式催化剂的牢固度测试 将已经负载了 ZSM-5 分子筛的整体式催化剂 用超声波清洗器洗涤 30 min,120 ℃干燥 20 min, 550 ℃焙烧 4 h,称量,计算涂层损失率 Δm,以表 征涂层的牢固度[18]。Δm 计算公式为: (2) Δm=(m1-m2)/(m1-m0) 式中:m0 为空白载体的质量;m1 和 m2 分别为涂覆 涂层载体洗涤前后的质量。结果见表 1。 1.3 ZSM-5/堇青石整体式催化剂的表征 采用 Themal ARL 公司 SCINTAG X’ TRA 型 X 射线衍射仪分析样品的相组成, Cu Kα 射线(λ= 0.154 nm),管电压为 45 kV,管电流为 40 mA,扫描范围 2θ=5°~50°,步长 0.04(°)/s,Ni 滤波。用 Hitachi 公 司 JSM-6301F 型场发射扫描电子显微镜观察堇青石 和整体式催化剂的表面形貌,加速电压为 15 kV, 测试前,为增加试样的导电性,将试样放在特制的 试样架上,喷金 1 min 左右。采用 Micromeritics 公 司的 3Flex 型表面性质分析仪分析空白堇青石和负 载了分子筛的整体式催化剂样品的比表面积,测试 前催化剂在 300 ℃条件下真空脱气 10 h。 1.1
In-situ Hydrothermal Synthesis of ZSM-5/Cordierite Monolith Catalyst
LIU Yiming, LIU Huayan, ZHANG Zekai, LU Hanfeng, CHEN Yinfei (College of Chemical Engineering, Zhejiang University of Technology, Zhejiang Province Key Laboratory of Green Chemistry and Technology, Hangzhou 310014, China) Abstract: ZSM-5/cordierite monolith catalyst was synthesized by an in-situ hydrothermal method. The effects of amount of tetrapropyl ammonium hydroxide (TPAOH), n(H2O)/n(SiO2) ratio and crystallization temperature on the deposition of ZSM-5 on cordierite supporter were investigated. The results reveal that the deposition of ZSM-5 on the cordierite supporter is related to the amount of TPAOH. When n(TPAOH)/n(SiO2)≤0.2, a desired deposition of ZSM-5 zeolite can be obtained via the adjustment of temperature or n(H2O)/n(SiO2) ratio. When n(TPAOH)/n(SiO2)>0.2, a high alkalinity leads to the dissolution of the precursor sol, making that zeolite tends to grow in solution rather than on the cordierite surface, and thus decrease the deposition of zeolite on the cordierite. When n(TPAOH)/n(SiO2≤0.2, the deposition of ZSM-5 increases with the decrease of n(H2O)/n(SiO2) ratio, and the maximum deposition amount is 42.8%. The crystal particle size and the loading amount decrease with the decrease of the crystallization temperature. According to the catalytic activity of monolith catalysts for NO, a high loading amount and a small crystal particle size of ZSM-5 zeolite on the surface of the monolith catalyst lead to a high specific surface area, which can favor the NO catalytic oxidation. Key words: ZSM-5 zeolite; monolith catalyst; in-situ hydrothermal synthesis; nitric oxide oxidation
第 43 卷第 7 期 2015 年 7 月





Vol. 43,No. 7 July,2015
JOURNAL OF THE CHINESE CERAMIC SOCIETY
DOI:10.14062/j.issn.0454-5648.2015.07.12
Received date: 2015–01–12. E-mail: 412034426@ Correspondent author: LIU Huayan (1969–), male, Ph.D, Associate Professor. E-mail: hyliu@ Revised date: 2015–03–02.
· 927 ·
甲烷蒸汽转化、加氢脱氢反应、Fischer-Tropsch 合 成以及甲醇部分氧化制备甲醛等方面的研究[8]。 整体式催化剂的制备方法主要有浸渍法、涂覆 法和原位水热合成法。目前研究最多的主要是浸渍 法和涂覆法[9−11],这两种方法操作相对简单,但分 子筛在载体上的牢固度低, 容易脱落且负载不均匀, 应用于高温气体高空速冲击条件下易发生活性组分 流失。原位水热合成法是将载体置于配置好的分子 筛前驱体溶液中在一定温度下进行原位晶化,使分 子筛直接“生长”在载体上,其优点是可以通过制备 条件的调控控制分子筛在载体表面的“生长”,分子 筛在载体表面牢固度高,不易剥落,适合工业化应 用环境[12]。但是目前使用此方法制备整体式催化剂 的研究报道较少。同时 Heck 等也提出,目前整体 式催化剂的制备仍然存在着分子筛在载体上的负载 量低,难以满足催化反应要求等问题[13]。Li 等[14] 研究了无模板剂条件下 ZSM-5 在堇青石表面的生 长机理,认为晶化温度、晶化时间等对 ZSM-5 在堇 青石上的生长有重要影响,随着晶化时间的延长, ZSM-5 的负载量显著增大, 其制备的 ZSM-5/堇青石 整 体 式 催 化 剂 的 ZSM-5 分 子 筛 的 负 载 量 达 到 16%~25%。文章同时提出了 ZSM-5 在堇青石表面 生长的可能机理,认为堇青石载体中铝原子的表面 被 OH−活化,活化后的铝原子和溶液中的硅、铝原 子构成了分子筛的初级骨架[14]。Öhrman 等[15]分别 在 75 ℃和 150 ℃晶化温度下制备了 ZSM-5/堇青石 整体式催化剂,在 150 ℃条件下,得到了厚度 9 μm 的沸石膜,发现温度越高,晶体生长速度越快,通 过多次合成可以得到较厚的膜。Lai 等[16]研究了前 驱体溶液中铝元素对 ZSM-5 沸石膜凝胶形成和沸 石晶化的影响,发现载体中铝的存在会加速沸石的 晶化,而溶液中铝的存在一方面诱导沸石凝胶层在 载体表面的形成,另一方面会阻碍凝胶层的晶化。 总体来说, 使用原位水热合成法制备 ZSM-5/堇青石 整体式催化剂报道中关于前驱体溶液的原料配比对 ZSM-5 分子筛在载体上负载量的影响报道较少,需 要进一步考察影响分子筛在载体上生长的关键因素 以得到较高的分子筛负载量来满足催化反应的 需求。 本实验采用原位水热合成法制备了 ZSM-5/堇 青石整体式催化剂。考察了模板剂含量、水硅比、 晶化温度等对 ZSM-5 分子筛在蜂窝状堇青石陶瓷 载体上负载的影响,以期找到影响分子筛在载体表 面生长的关键因素。根据本课题组前期关于 NO 常
相关文档
最新文档