【初三数学】孝感市九年级数学上期末考试单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学期末考试题及答案
一、选择题(每小题2分,共20分)
1.下列物体的左视图是圆的是()
A.足球B.水杯
C.圣诞帽D.鱼缸
2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()
A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0
C.k≥﹣D.k>﹣且k≠0
4.下列命题正确的是()
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相互垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互垂直平分且相等的四边形是正方形
5.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()
A.45度B.30度C.22.5度D.20度
6.在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()
A .①②③④
B .②③④①
C .③④①②
D .④③①② 7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .
C .
D .
8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )
A .2:3
B .2:5
C .3:5
D .3:2
9.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )
A .①②③
B .①②③④
C .②③④
D .①③④
10.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =的图象经过A 、B 两点,则菱形ABCD 的面积是( )
A.4B.4C.2D.2
二、填空题(每小题2分,共16分)
11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.
12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.
13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为.
14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.
15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.
16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是.
17.分解因式:xy2﹣4x=.
18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)
三、解答题(每小题5分,共10分)
19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.
四、解答题(共8分)
21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:
①打9.8折销售;
②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
五、解答题(共12分)
22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
六、(共10分)
24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形.
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.
(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.
26.(12分)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
参考答案
一、选择题
1.下列物体的左视图是圆的是()
A.足球B.水杯
C.圣诞帽D.鱼缸
【分析】左视图是从物体左面看,所得到的图形.
解:A、球的左视图是圆形,故此选项符合题意;
B、水杯的左视图是等腰梯形,故此选项不合题意;
C、圆锥的左视图是等腰三角形,故此选项不合题意;
D、长方体的左视图是矩形,故此选项不合题意;
故选:A.
【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()
A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.
解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,
方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,
配方得(x﹣2)2=2.
故选:A.
【点评】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0
C.k≥﹣D.k>﹣且k≠0
【分析】由二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.
解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,
∴,
解得:k≥﹣且k≠0.
故选:B.
【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.
4.下列命题正确的是()
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相互垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互垂直平分且相等的四边形是正方形
【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;
B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;
C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;
D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;
故选:D.
【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
5.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()
A.45度B.30度C.22.5度D.20度
【分析】由AB=AE,在正方形中可知∠BAC=45°,进而求出∠ABE,又知∠ABE+∠ECB =90°,故能求出∠EBC.
解:∵正方形ABCD中,
∴∠BAC=45°,
∵AB=AE,
∴∠ABE=∠AEB=67.5°,
∵∠ABE+∠ECB=90°,
∴∠EBC=22.5°,
故选:C.
【点评】本题主要考查正方形的性质,等腰三角形的性质等知识点.
6.(2分)在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()
A.①②③④B.②③④①C.③④①②D.④③①②
【分析】根据从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.
解:西为②,西北为③,东北为④,东为①,
∴将它们按时间先后顺序排列为②③④①.
故选:B.
【点评】此题考查了平行投影的特点和规律.在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.
7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .
C .
D .
【分析】由于a ≠0,那么a >0或a <0.当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.
解:∵a ≠0,
∴a >0或a <0.
当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,
当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限.
A 、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A 选项错误;
B 、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B 选项正确;
C 、图中直线经过第二、三、四象限,故C 选项错误;
D 、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D 选项错误. 故选:B .
【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y =kx +b 、双曲线y =,当k >0时经过第一、三象限,当k <0时经过第二、四象限.
8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )
A .2:3
B .2:5
C .3:5
D .3:2
【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:10:25即可得出其相似比,由相似三角形的性质即可求出的值,由AB =CD 即可得出结论.
解:∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠EAB =∠DEF ,∠AFB =∠DFE ,
∴△DEF ∽△BAF ,
∵S △DEF :S △ABF =4:25,
∴=,
∵AB =CD ,
∴DE :EC =2:3.
故选:A .
【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.
9.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )
A .①②③
B .①②③④
C .②③④
D .①③④
【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.
解:因为l 是四边形ABCD 的对称轴,AB ∥CD ,
则AD =AB ,∠1=∠2,∠1=∠4,
则∠2=∠4,
∴AD =DC ,
同理可得:AB =AD =BC =DC ,
所以四边形ABCD是菱形.
根据菱形的性质,可以得出以下结论:
所以①AC⊥BD,正确;
②AD∥BC,正确;
③四边形ABCD是菱形,正确;
④在△ABD和△CDB中
∵,
∴△ABD≌△CDB(SSS),正确.
故正确的结论是:①②③④.
故选:B.
【点评】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.
10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()
A.4B.4C.2D.2
【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.
解:作AH⊥BC交CB的延长线于H,
∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,
∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,
由勾股定理得,AB==2,
∵四边形ABCD是菱形,
∴BC=AB=2,
∴菱形ABCD的面积=BC×AH=4,
故选:A.
【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.
二、填空题(每小题2分,共16分)
11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是1.
【分析】直接根据根与系数的关系求解即可.
解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,
∴x1•x2=1.
故答案为:1.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.
12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=14.
【分析】根据题意列出三元一次方程组,求得a,b,c的值后,代入代数式求值.
解:由于==,3a﹣2b+c=9,
∴,
解得:b=7,a=5,c=8,
把a,b,c代入代数式得:
2a+4b﹣3c=2×5+4×7﹣3×8=14,
故本题答案为:14,
另解:设:===x,
则:a=5x,b=7x,c=8x
3a﹣2b+c=9可以转化为:15x﹣14x+8x=9,解得x=1
那么2a+4b﹣3c=10x+28x﹣24x=14x=14.
故答案为:14.
【点评】本题利用了三元一次方程组的解法求解.
13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为1:4.
【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF 的面积之比.
解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,
∴AB:DE=OA:OD=1:2,
∴△ABC与△DEF的面积之比为:1:4.
故答案为:1:4.
【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为12m.
【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.解:因为BE∥CD,所以△AEB∽△ADC,
于是=,即=,解得:CD=12m.
旗杆的高为12m.
【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.
15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于(10﹣10)厘米.
【分析】由黄金矩形的定义,可知黄金矩形的宽与长之比为,设所求边长为x,代入已知数据即可得出答案.
解:设所求边长为x,由题意,
得=,
解得x=(10﹣10)cm.
故答案为(10﹣10).
【点评】本题主要考查了黄金分割点的概念,需要熟记黄金比的值,难度适中.
16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是4.
【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=1,再根据线段垂直平分线的性质可知AM=OM,由此推出△AMC的周长=OC+AC.
解:∵点A(3,n)在双曲线y=上,
∴n==1,∴A(3,1),
∴OC=3,AC=1.
∵OA的垂直平分线交OC于M,
∴AM=OM,
∴△AMC的周长=AM+MC+AC=OM+MC+AC=OC+AC=3+1=4.
故答案为:4.
【点评】本题主要考查了反比例函数的图象性质和线段中垂线的性质,将求△AMC的周长转换成求OC+AC是解题的关键.
17.分解因式:xy2﹣4x=x(y+2)(y﹣2).
【分析】原式提取x,再利用平方差公式分解即可.
解:原式=x(y2﹣4)=x(y+2)(y﹣2),
故答案为:x(y+2)(y﹣2)
【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)
【分析】利用相似三角形的性质求出B n∁n,再利用三角形的面积公式计算即可;
解:∵B n∁n∥B1C1,
∴△M n B n∁n∽△M m B1C1,
∴=,
∴=,
∴B n∁n=,
∴S n=××=,
故答案为.
【点评】本题考查相似三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
三、解答题(每小题5分,共10分)
19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.
解:原式=(+)÷
=•
=,
当x=tan45°+()﹣1=1+2=3时,
原式==﹣.
【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.
【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.
解:(2x﹣1)2=x(3x+2)﹣7,
4x2﹣4x+1=3x2+2x﹣7,
x2﹣6x=﹣8,
(x﹣3)2=1,
x﹣3=±1,
x1=2,x2=4.
【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.
四、解答题(共8分)
21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:
①打9.8折销售;
②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
【分析】(1)设求平均每次下调的百分率为x,由降低率问题的数量关系建立方程求出其解即可;
(2)分别求出两种优惠方法的费用,比较大小就可以得出结论.
(1)解:设平均每次下调的百分率为x,由题意,得
6000(1﹣x)2=4860,
解得:x1=0.1,x2=1.9(舍去)
答:平均每次下调的百分率为10%;
(2)由题意,得
方案①优惠:4860×100×(1﹣0.98)=9720元,
方案②优惠:80×100=8000元.
∵9720>8000
∴方案①更优惠.
【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,降低率问题的数量关系的运用,解答时列一元二次方程解实际问题是难点.
五、解答题(共12分)
22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;
(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验,此题要求画树状图,要按要求解答.解:(1)从箱子中任意摸出一个球是白球的概率是;
(2)记两个白球分别为白1与白2,画树状图如右所示:
从树状图可看出:事件发生的所有可能的结果总数为6,
两次摸出球的都是白球的结果总数为2,因此其概率.
【点评】本题考查了列表法与树状图法,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端
D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
【分析】(1)延长DC交AN于H.只要证明BC=CD即可;
(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;
解:(1)延长DC交AN于H.
∵∠DBH=60°,∠DHB=90°,
∴∠BDH=30°,
∵∠CBH=30°,
∴∠CBD=∠BDC=30°,
∴BC=CD=10(米).
(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
∴DH=15,
在Rt△ADH中,AH===20,
∴AB=AH﹣BH=20﹣8.65≈11.4(米).
【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
六、(共10分)
24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,
连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形.
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:
∵点O为AB的中点,
∴OA=OB
∵OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,矩形AEBD是正方形.
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴∠ABD=∠BAD=45°,
∴AD=BD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.
25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.
(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.
【分析】(1)根据点E是AB中点,可求出点E的坐标,将点E的坐标代入反比例函数解析式可求出k的值,再由点F的横坐标为4,可求出点F的纵坐标,继而得出答案;(2)证明∠GED=∠CDF,然后利用两角法可判断△EGD∽△DCF,设点E坐标为(,2),点F坐标为(4,),即可得CF=,BF=DF=2﹣,在Rt△CDF中表示出CD,利用对应边成比例可求出k的值.
解:(1)∵点E是AB的中点,OA=2,AB=4,
∴点E的坐标为(2,2),
将点E的坐标代入y=,可得k=4,
即反比例函数解析式为:y=,
∵点F的横坐标为4,
∴点F的纵坐标==1,
故点F的坐标为(4,1);
(2)由折叠的性质可得:BE=DE,BF=DF,∠B=∠EDF=90°,
∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,
∴∠CDF=∠GED,
又∵∠EGD=∠DCF=90°,
∴△EGD∽△DCF,
结合图形可设点E坐标为(,2),点F坐标为(4,),
则CF=,BF=DF=2﹣,ED=BE=AB﹣AE=4﹣,
在Rt△CDF中,CD===,
∵=,即=,
∴=1,
解得:k=3.
【点评】本题考查了反比例函数的综合,解答本题的关键是利用点E的纵坐标,点F的横坐标,用含k的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.
26.(12分)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
【分析】(1)当t=2时,可求出CP,CQ的长,根据勾股定理即可求出线段即斜边PQ的长;
(2)由三角形面积公式可建立关于t的方程,解方程求出t的值即可;
(3)延长QE交AC于点D,若PE⊥AB,则QD∥AB,所以可得△CQD∽△CBA,由相似
三角形的性质:对应边的比值相等可求出DE=0.5t,易证△ABC∽△DPE,再由相似三角形的性质可得,把已知数据代入即可求出t的值.
解:
(1)当t=2时,
∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,
∴AP=2厘米,QC=4厘米,
∴PC=4,在Rt△PQC中PQ==厘米;
(2)∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B 点以2厘米/秒的速度匀速移动,
∴PC=AC﹣AP=6﹣t,CQ=2t,
∴S△CPQ=CP•CQ=,
∴t2﹣6t+5=0
解得t1=1,t2=5(不合题意,舍去)
∴当t=1秒时,△PCQ的面积等于5cm2;
(3)能垂直,理由如下:
延长QE交AC于点D,
∵将△PQC翻折,得到△EPQ,
∴△QCP≌△QEP,
∴∠C=∠QEP=90°,
若PE⊥AB,则QD∥AB,
∴△CQD∽△CBA,
∴,
∴,
∴QD=2.5t,
∵QC=QE=2t
∴DE=0.5t
易证△ABC∽△DPE,

∴,
解得:t=(0≤t≤4),
综上可知:当t=时,PE⊥AB.
【点评】此题考查了勾股定理、三角形的面积公式、相似三角形的判定性质与判定等知识以及折叠的性质,综合性很强,比较难,内容比较多,也是一个动点问题,对于学生的能力要求比较高,是一道不错的中考题.
人教版九年级第一学期期末模拟数学试卷(含答案)
一、选择题(每小题3分,共24分)
1.(3分)﹣的相反数是()
A.3B.﹣3C.D.﹣
2.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()
A.44×105B.4.4×106C.0.44×107D.4.4×105
3.(3分)不等式组的解集为()
A.x<﹣2B.x≤﹣1C.x≤1D.x<3
4.(3分)如图中几何体的主视图是()
A.B.C.D.
5.(3分)方程x2﹣3x﹣2=0的根的情况是()
A.有两个相等的实数根B.只有一个实数根
C.没有实数根D.有两个不相等的实数根
6.(3分)如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
7.(3分)下列命题中,正确的是()
A.所有的等腰三角形都相似
B.所有的直角三角形都相似
C.所有的等边三角形都相似
D.所有的矩形都相似
8.(3分)如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、
B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()
A.1B.C.2D.3
二、填空题(每小题3分,共18分)
9.(3分)分解因式:2m2﹣8=.
10.(3分)一次函数y=3x+2的图象与x轴交点的坐标是.
11.(3分)在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为km.
12.(3分)顺次连接矩形各边中点所得四边形为形.
13.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.
14.(3分)如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C 在x轴正半轴上,抛物线y=a(x﹣1)2+c(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为.
三、解答题(本大题共10小题,共78分)
15.(10分)解方程:
(1)2x﹣5=3(x﹣2)
(2)x2﹣3x+2=0.
16.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.
17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.
18.(6分)如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】
19.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:
(A)对各班班长进行调查;
(B)对某班的全体学生进行调查;
(C)从全校每班随机抽取5名学生进行调查.
在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.
(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);
(2)被调查的学生每天做作业所用时间的众数为小时;
(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.。

相关文档
最新文档