精选数学物理方法第四版梁昆淼期末总结讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
z
1
n
cos
2kπ n
i sin
2kπ n
i
2k
n e n
( k 0, 1, 2, , n 1 )
复数的乘、除、乘方和开方运算,采用三角式 或指数式往往比代数式来得方便。
二、六种初等复变函数:
1. 幂函数 w z n
2 .指数函数 w e z
周期为2i,
3. 三角函数
cos z eiz eiz , 2
v y v
y x
2、解析函数性质

u
极坐标系:
1
v
1
u
v
(1)、若 f (z) u(x, y) iv(x, y) 是解析函数,则u v 0 。
(2)、若函数 f (z) u iv 在区域 B上解析,则 u和v 必为B上的相互共轭调和函数。
3、构建解析函数:
给出一个二元调和函数作为解析函数的实部 或虚部,通过C—R条件求出该解析函数的虚部或 实部,从而写出这个解析函数。
)
0 arg z 2 ,
辐角:Argz arg z 2k (k 0,1,2,)
共轭复数: z x iy z* x iy
2、复数的运算: 加、减、乘、除、乘方、开方 (1)、加法和减法
z1 x1 iy1 z2 x2 iy2
z1 z2 (x1 x2 ) i( y1 y2 )
① 算偏导
③ 求积分
② u或v 的全微分
④ 表成 f (z)
例 3:已知解析函数 f (z) 的实部u(x, y) x2 y2 xy, f (0) 0 , 求虚部和这个解析函数。
解:
u 2x y, u x 2 y
x
y
根据C-R条件,
v u 2 y x, v u 2x y
(2)、乘法和除法
z1z2 (x1 iy1 )( x2 iy2 )
(x1x2 y1 y2 ) i(x1 y2 x2 y1 )
z1 z2
z1
z
* 2
z2
z
* 2
(x1 iy1 )( x2 iy2 )
x
2 2
y
2 2
x1x2 y1 y2 i x2 y1 x1 y2
x22
y
2 2
2
2
1
2 (cos i sin )2 C
1
2[(cos i sin)]2 C
2z C
第二章 复变函数积分
一、复变函数积分的性质: ——P23
二、计算复变函数回路积分
1、单通区域柯西定理:P24 2、复通区域柯西定理:P25
x y
y x
v
v x
dx
(
y)
(2
y
x)dx
(
y)
2
xy
1 2
x
2
(
y)
v
v x
dx
(
y)
(2
y
x)dx
(
y)
2
xy
1 2
x2
(
y)
v 2x ( y)
y
( y) y
( y) 1 y2 C
2 v 2xy 1 ( y2 x2 ) C
2
f (z) u iv x2 y2 xy i[2xy 1 ( y2 x2 )] iC 2
)
2 cos R()
2
其中 R( ) 为 的任意函数。 将上式两边对 求导,
u 1 cos R() 2 2
1 cos 2 2
u 1 cos R() 2 2
1 cos 2 2
R() 0 R() C
u 2 cos C
2
f (z)
2
cos
C
i
2 sin
2
2
2 (cos i sin ) C
例1:已知 z 2 3i ,则 zz 13

zz 2 x2 y2 13
例2:复数ez 的模为 ex ,辐角为 y 2k , k 0, 1, 2,
.
ez exiy exeiy
三、解析函数 f (z) u(x, y) iv(x, y) 1、柯西-黎曼方程
u
直角坐标系:
x u
周期为2
eiz eiz
sin z
,
2i
4、双曲函数
shz e z ez 2
5、根式函数
chz e z ez 2
z ei
2k i
w n e n
k 0,1,2,(n 1)
周期为2i
6、对数函数
w ln z ln z iArgz
Argz arg z 2k k 0,1,
(优选)数学物理方法第四版 梁昆淼期末总结
第一章 复变函数
一、复数
1、复数的定义
z x iy ——代数式
z (cos i sin) ——三角式
z ei ——指数式
*复数三种表示式之间的转换
实部:x Re z 虚部:y Im z
模: z x2 y2
主辐角:arg
z
arctg(
y x
22 2 2
Hale Waihona Puke Baidu u
1
v
1
u
v
u 1 v 1
cos
22
1 cos 2 2
u v 1 sin sin
2 2
22
u
1
cos
2 2
u sin 2 2
将上面第二式对 积分, 视作参数,有
u
u
d
R(
)
sin d R()
22
2
sin
2
d
R(
2 ) i sin(1
2 )]
e 1 i(12 ) 2
两复数相除就是把模数相除, 辐角相减。
(3) 复数的乘方和开方
z n (ei )n
n ein
( n为正整数的情况)
或 n (cos n i sin n)
棣莫弗公式: (cos i sin)n cos n i sin n
(x iy)2 i 1 (x iy)2 iC 2
z2 i 1 z2 iC 2
v 2y x, x v 2x y y
f (0) 0 C 0
f (z) z2 i 1 z2 2
例4:已知解析函数 f (z)的虚部 v(x, y) x x 2 y 2 ,
求实部 u(x, y)和这个解析函数 f (z) 。
x22 y22
(2)、乘法和除法
z1 1(cos1 i sin1) 1ei1 z2 2 (cos2 i sin2 ) 2ei2
z1z2 12[cos(1 2 ) i sin(1 2 )]
ei(12 ) 12
• 两复数相乘就是把模数相乘, 辐角相加;
z1 z2
1 2
[c
os(1
提示:当给定的 u 或 v 中含有因子x2+y2,这种情 况下采用极坐标处理比较方便,即令 2 x 2 y 2 。
解: v cos 2
cos
(1 cos)
2sin 2
2
2 sin
2
v 2 sin
2
v
2
sin
1
1 2
1 sin
22
2 2
v 2 cos 1 cos
相关文档
最新文档