2020-2021精选备战中考数学易错题专题复习一元二次方程组及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021精选备战中考数学易错题专题复习一元二次方程组及答案解析
一、一元二次方程
1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程
2
(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式221
6
k k k -+-的值.
【答案】0. 【解析】 【分析】
由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】
解:设方程①的两个实数根分别为x 1、x 2
则12123940
x x x x a a +-⎧⎪
⎨⎪-≥⎩V
=== , 由条件,知12
1212
11x x x x x x ++
==3, 即
33a -=,且94a ≤, 故a =-1,
则方程②为(k -1)x 2+3x +2=0,
Ⅰ.当k -1=0时,k =1,x =23-,则221
06
k k k -=+-.
Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则17
8
k ≤
, 又k 是正整数,且k≠1,则k =2,但使221
6k k k -+-无意义.
综上,代数式221
6
k k k -+-的值为0
【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
2.已知:关于x 的方程x 2-4mx +4m 2-1=0. (1)不解方程,判断方程的根的情况;
(2)若△ABC 为等腰三角形,BC =5,另外两条边是方程的根,求此三角形的周长.2
【答案】(1) 有两个不相等的实数根(2)周长为13或17
【解析】
试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;
(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5
代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.
试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.
(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.
将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.
当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;
当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴
该三角形的周长为5+5+7=17.
综上所述:此三角形的周长为13或17.
点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.
3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.
(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加
1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.
①润滑用油量为80kg,用油量的重复利用率为多少?
②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?
【答案】(1)28(2)①76%②75,84%
【解析】
试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;
(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;
②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.
试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,
答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用
4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.
月份
用水量(吨)
水费(元)
四月
35
59.5
五月
80
151
【答案】
5.已知关于x 的一元二次方程()2
20x m x m -++=(m 为常数)
(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;
(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=2
1
m + ,2t=m,最终解出关于t 和m 的方程组即可. 【详解】 (1)证明:
△=(m+2)2−4×1⋅m=m 2+4, ∵无论m 为何值时m 2≥0, ∴m 2+4≥4>0, 即△>0,
所以无论m 为何值,方程总有两个不相等的实数根. (2)设方程的另一个根为t ,
()220x m x m -++=
根据题意得2+t=2
1
m + ,2t=m , 解得t=0, 所以m=0,
即m 的值为0,方程的另一个根为0. 【点睛】
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.
6.已知关于x 的一元二次方程()2
2
11204
x m x m +++
-=. ()1若此方程有两个实数根,求m 的最小整数值;
()2若此方程的两个实数根为1x ,2x ,且满足22212121184
x x x x m ++=-,求m 的值.
【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】
(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】
(1)解:()2
2114124m m ⎛⎫∆=+-⨯⨯-
⎪⎝⎭
22218m m m =++-+
29m =+
Q 方程有两个实数根
0∴∆≥,即290m +≥
9
2
m ∴≥-
∴ m 的最小整数值为4-
(2)由根与系数的关系得:()121x x m +=-+,2
12124
x x m =- 由2
2
212121184x x x x m ++=-
得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭
13m ∴=,25m =-
9
2
m Q ≥-
3m ∴=
【点睛】
本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.
7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.
【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】
(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论. 【详解】
(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,
解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元. 【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
8.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
【答案】(1)见详解;(2)4或4+. 【解析】 【分析】
(1)根据关于x 的方程x 2-(m +2)x +(2m -1)=0的根的判别式的符号来证明结论. (2)根据一元二次方程的解的定义求得m 值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算. 【详解】
解:(1)证明:∵△=(m +2)2-4(2m -1)=(m -2)2+4, ∴在实数范围内,m 无论取何值,(m -2)2+4≥4>0,即△>0. ∴关于x 的方程x 2-(m +2)x +(2m -1)=0恒有两个不相等的实数根. (2)∵此方程的一个根是1,
∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3.
①当该直角三角形的两直角边是1、3
形的周长为1+3=4
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直
角边为1+3+=4+
9.已知关于x 的方程(x-3)(x-2)-p 2=0.
(1)求证:无论p 取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值. 【答案】(1)详见解析;(2)p=±1. 【解析】 【分析】
(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把
22
12123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,
解方程即可求解. 【详解】
证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0, x 2﹣5x+6﹣p 2=0,
△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2, ∵无论p 取何值时,总有4p 2≥0, ∴1+4p 2>0,
∴无论p 取何值时,方程总有两个不相等的实数根; (2)x 1+x 2=5,x 1x 2=6﹣p 2,
∵22
12
123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2, ∴52=5(6﹣p 2), ∴p=±1.
考点:根的判别式;根与系数的关系.
10.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈. (2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵. 【解析】
分析:根据规律求得图10中黑点个数是6×10=60个;图n 中黑点个数是6n 个; (1)第2个图中2为一块,分为3块,余1, 第2个图中3为一块,分为6块,余1;
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n 个点阵中有:n×3(n ﹣
1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,
…
第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.
11.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
【答案】共有35名同学参加了研学游活动.
【解析】
试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.
试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.
设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:
x[100﹣2(x﹣30)]=3150,
整理得x2﹣80x+1575=0,解得x1=35,x2=45,
当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.
当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动. 考点:一元二次方程的应用.
12.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根. (1)求k 的取值范围;
(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值. 【答案】(1)k >–1
4
;(2)7 【解析】 【分析】
(1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可. 【详解】
(1)∵方程有两个不相等的实数根, ∴
>0∆,即()2
2214410k k k +-=+>,解得14
k >-;
(2)当2k =时,方程为2x 5x 40++=, ∵125x x +=-,121=x x ,
∴()2
22121212225817x x x x x x +=+-=-=.
【点睛】
本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.
13.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有
多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费
用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多, 设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游. 【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.
14.如图,一艘轮船以30km/h 的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h 的速度由东向西移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km ,此时台风中心与轮船既定航线的最近距离AB=300km .
(1)如果这艘船不改变航向,那么它会不会进入台风影响区?
(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?
(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?
【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)15 【解析】 【分析】
(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.
(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.
(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.
【详解】
解:(1)如图易知AB′=300﹣10t ,AC′=400﹣30t ,
当B′C′=200时,将受到台风影响,
根据勾股定理可得:(300﹣10t )2+(400﹣30t )2=2002,
整理得到:t 2﹣30t +210=0,
解得t 15
由此可知,如果这艘船不改变航向,那么它会进入台风影响区.
(2)由(1)可知经过(1515h 就会进入台风影响区;
(3)由(1)可知受到台风影响的时间为15151515h .
【点睛】
此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x 的等式是解题关键.
15.已知关于x 的方程()()2
12310k x k x k -+-++=有两个不相等的实数根1x ,2x . ()1求k 的取值范围.
()2是否存在实数k ,使方程的两实数根互为相反数?
【答案】(1)13
12k <且1k ≠;(2) k 不存在,理由见解析 【解析】
【分析】
(1)因为方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2.得出其判别式△>0,可解得k 的取值范围;
(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k 的值.
【详解】
(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312
且k ≠1;
(2)假设存在两根的值互为相反数,设为 x 1,x 2. ∵x 1+x 2=0,∴﹣
231k k --=0,∴k =32. 又∵k <1312
且k ≠1,∴k 不存在. 【点睛】
本题主要考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q .。