曲线计算公式

合集下载

曲线计算公式

曲线计算公式
Ls---缓和曲线长
2、缓和曲线偏角公式:
δn=30Ln2/RπLs
3、切线长T=m+(R+P)tan(β/2)
4、曲线长:
L=(Rπ(β-2β0))/180+2Ls
5、外矢距E=(R+P)/cos(β/2Βιβλιοθήκη -R6、切曲差q=2T-L
7、切垂距m=Ls/2-Ls3/240R2
8、内移距P=Ls2/24R-Ls4/2688R3
一、圆曲线范围公式
已知:半径R.转向角β
1、切线长T=Rtan(β/2)
2、曲线长L=(Rπβ)/180
3、外矢距E=R(1/cos(β/2)-1)
4、切曲差q=2T-L
偏角公式δ=180C/2Rπ注C为所点弧长
二、缓和曲线范围公式
1、缓和曲线切线角βn=90Ln2/RπLs
Ln为所点n到直缓或缓直点曲线长
9、缓和曲线数学坐标公式:
X=Ls-Ln5/40R2Ls2
Y=Ln3/6RLs-Ln7/336R3Ls3
10、缓和曲线偏角公式:
δn=tan-1(y/x)
11、缓和曲线弦长公式:Ci=√(x2+y2)
Cc=Ln-Ln3/90R2+Ln5/3888R4(代数式
综合曲线中圆曲线范围坐标公式:
Xi=m+Li-Ls/2-(Li-Ls/2)3/6R2
Yi=p+(Li-Ls/2)2/2R-(Li-Ls/2)4/24R3
注:Li为圆曲线上任意点到ZH或HZ的曲线长(用于计算偏移值)
三、竖曲线计算公式
Y=X2/2R

各种曲线计算公式

各种曲线计算公式

一、公路平曲线坐标计算公式1、缓和曲线:Lb1 0{K,D}①T=A2/R ②L=J(K-O)+T ③B=T2 /2/A2 *180/π④M=(L-T)-(L5-T5)/40/A4+(L9-T9)/3456/A8-(L13-T13)/599040/A12+(L17-T17)/17542600/A165.N=(L3-T3)/6/A2-(L7-T7)/336/A6+(L11-T11)/42240/A10-(L15-T15) /9676800/A14+(L19-T19)/3530097000/A18⑥I=(L2-T2)*180/2/A2/π⑦X=C+Mcos(Q-ZB)-ZNsin(Q-ZB)+Dcon(Q+ZI+S)◢⑧Y=F+Msin(Q-ZB)+ZNcos(Q-ZB)+Dsin(Q+ZI+S)◢Goto 0注:A:缘和曲线参数 R:起点半径 J:曲率半径判定值(当曲率半径由小到大取1,否则取-1)(当起点半径到终点半径是由大或无穷大到小取+1,反之则取-1) K:欲求点里程 O:缘和曲线起点里程 C:缘和曲线起点X坐标Q:起始方位角(当J=-1时,方位角应+180。

) Z:偏角判定值(当J=1时,左偏为-1,右偏为1;当J=-1时,左偏为1,右偏为-1) D:距中桩的距离 S:斜交角度 F:缘和曲线起点Y坐标2、圆曲线Lb1 0{K,D}①L=K-0②X=C+R[sin(Q+L/R*180/π)-sinQ]+Dcos(Q+L/R*180/π+S)◢③Y=F-R[cos(Q+L/R*180/π)-cosQ]+Dsin(Q+L/R*180/π+S)◢ Goto 0注:K:欲求点里程 O:圆曲线起点里程 C:圆曲线起点X坐标 R:圆曲线半径 (左偏为负) Q:起始方位角 D:距中桩的距离 S:斜交角度 F:圆曲线起点Y坐标3、直线Lb1 0{K,D}①L=K-0②X=C+LcosQ+Dcos(Q+S)◢③Y=F+LsinQ+Dsin(Q+S)◢Goto 0注:K:欲求点里程 O:直线起点里程 C:直线起点X坐标 Q:起始方位角 D:距中桩的距离 S:斜交角度 F:直线起点Y坐标二、竖曲线计算公式Lb1 0①{K} ②L=K-(0-T)③H=M-IT+LI-ZL2 /2/R◢ Goto 0 注:K:欲求点里程;O:顶点里程;T:切线长;M:顶点高程;I:坡度;Z:竖曲线判定值三、预拱度计算公式Lb1 0①{K} ②H=D-(4D÷B2)×(B/2-(K-O)) 2◢ Goto 0注:D:跨中最大设计预拱度 H:要计算的预拱度 K:欲求点里程桩号(距支座的距离) O:起点桩号 B:本跨净长。

牛顿-莱布尼茨公式计算曲线的弧长

牛顿-莱布尼茨公式计算曲线的弧长

牛顿-莱布尼茨公式是微积分中一个非常重要的公式,它可以用来计算曲线的弧长。

在学习微积分的过程中,我们经常会遇到需要计算曲线弧长的情况,而牛顿-莱布尼茨公式提供了一个非常便捷和有效的方法。

让我们来看一下牛顿-莱布尼茨公式的表达式:\[ L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx \]这里,\( L \)代表曲线的弧长,\( f(x) \)代表曲线的函数,\( f'(x) \)代表函数的导数。

公式的核心是利用积分来求曲线的弧长,通过对曲线的微小线段进行求和,从而得到整条曲线的长度。

接下来,让我们以一条简单的曲线\( y = x^2 \)为例来演示牛顿-莱布尼茨公式的计算过程。

我们假设要计算曲线在区间[0, 1]上的弧长。

第一步,我们需要求出函数\( y = x^2 \)的导数\( f'(x) \),即\( 2x \)。

我们将\( f'(x) \)带入到公式中,得到:\[ L = \int_{0}^{1} \sqrt{1 + (2x)^2} dx \]接下来,我们可以利用定积分的性质来求解这个积分。

通过简单的换元和分部积分,我们最终可以得到曲线\( y = x^2 \)在区间[0, 1]上的弧长为\( \frac{\sqrt{5} + \ln(2 + \sqrt{5})}{4} \)。

这个结果非常直观地展现了牛顿-莱布尼茨公式的应用。

不仅如此,牛顿-莱布尼茨公式还可以应用于更加复杂的曲线和函数。

无论是求解圆的弧长、椭圆的弧长,还是一些特殊函数的弧长,牛顿-莱布尼茨公式都能够提供一个通用的计算方法。

牛顿-莱布尼茨公式是微积分中非常重要的一个公式,它可以有效地计算曲线的弧长。

通过对曲线的微小线段进行求和,利用积分来得到整条曲线的长度,这个公式为我们提供了一个非常便捷和实用的工具。

在实际应用中,只要我们掌握了牛顿-莱布尼茨公式的计算方法,并灵活运用积分的性质,就可以轻松地解决曲线弧长的计算问题。

曲线坐标计算公式

曲线坐标计算公式

一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosaa=(LP/R*(180/πx 、y :分别为切线横距和纵距R :曲线半径a :待定点到曲线起点沿曲线的弧长对应的圆心角LP :待定点到曲线起点的曲线长二、基本型单曲线(即有缓和曲线1、缓和曲线段内x=LP-(LP5/(40*R2*LS2y=(LP3/(6*R*LS-(LP7/(336*R3*LS32、纯圆曲线段内x=R*sina+qy=R*(1-cosa+pa=((LP-LS/R*(180/π+bb=LS/2R(弧度LP :测点至 ZH 或 HZ 曲线长LS :缓和曲线长b :缓和曲线角q :切线增长值 =LS/2-LS3/(240*R2p :内移值 =LS2/(24*R注:红色为次方,其余符号意义同前一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosaa=(LP/R*(180/πx 、y :分别为切线横距和纵距R :曲线半径a :待定点到曲线起点沿曲线的弧长对应的圆心角LP :待定点到曲线起点的曲线长二、基本型单曲线(即有缓和曲线1、缓和曲线段内x=LP-(LP5/(40*R2*LS2y=(LP3/(6*R*LS-(LP7/(336*R3*LS32、纯圆曲线段内x=R*sina+qy=R*(1-cosa+pa=((LP-LS/R*(180/π+bb=LS/2R(弧度LP :测点至 ZH 或 HZ 曲线长LS :缓和曲线长b :缓和曲线角q :切线增长值 =LS/2-LS3/(240*R2p :内移值 =LS2/(24*R注:红色为次方,其余符号意义同前。

道路定线圆曲线计算公式

道路定线圆曲线计算公式

道路定线圆曲线计算公式
道路定线圆曲线是道路工程中常见的设计要素,它用于在道路
设计中确定道路的水平和垂直曲线。

在道路定线圆曲线设计中,我
们通常会用到以下几个公式:
1. 圆曲线半径(R)的计算公式:
R = (V^2) / (1279 f)。

其中,V为设计车速(单位,km/h),f为超高(单位,m)。

2. 圆曲线长度(L)的计算公式:
L = (R θ)。

其中,R为圆曲线半径(单位,m),θ为圆曲线的圆心角(单位,弧度)。

3. 圆曲线的过渡曲线长度(Ls)的计算公式:
Ls = (V^2) / (254 e)。

其中,V为设计车速(单位,km/h),e为过渡曲线的超高差(单位,m)。

这些公式是在道路设计中常用的计算公式,它们可以帮助工程师确定道路定线圆曲线的设计参数,确保道路的安全性和舒适性。

在实际应用中,还需要考虑到道路的地形、交通量、设计标准等因素,综合运用这些公式进行道路设计。

希望这些信息能够对你有所帮助。

曲线要素计算公式

曲线要素计算公式

曲线要素计算公式
曲线是数学中的基本概念,是指在平面上由无数个点连接而成的
连续曲线。

曲线具有许多重要的特征,如长度、弧度、曲率等。

而曲线的要素计算就是计算曲线的各种特征值。

下面,我们就来
介绍曲线要素的计算公式,帮助大家更深入地了解曲线的特征和性质。

一、曲线长度的计算公式:
曲线的长度指的是曲线上所有点之间的直线距离总和。

计算公式为:
L = ∫a b √[1+f’(x)²]dx
其中,a和b为曲线上的两个端点,f’(x)表示曲线的导数。

二、曲率的计算公式:
曲率是曲线某一点处曲线的弯曲程度的量度。

计算公式为:
k = |f’’(x)| / [1+f’(x)²]^(3/2)
其中,f’’(x)为曲线的二阶导数。

三、曲线斜率的计算公式:
曲线的斜率是指曲线在某一点处的切线斜率。

计算公式为:
f’(x) = lim Δx→0 [f(x+Δx)−f(x)] / Δx
四、曲线弧度的计算公式:
曲线的弧度是指曲线某一段的弧长对半径的比值。

计算公式为:θ = l / r
其中,l为曲线一段的弧长,r为曲线的半径。

以上就是曲线要素计算公式的详细介绍。

掌握这些公式可以涵盖曲线的多方面特征,并为实际问题的解决提供指导和依据。

曲线计算公式及例题

曲线计算公式及例题

一、圆曲线坐标计算公式β=180°/π×L/R(L= βπR/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ) ×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。

β/2是所谓的偏角(弦长与切线的夹角)△X 、△Y 代表增量值。

X 、Y 代表准备求的坐标。

X1、Y1代表起算点坐标值。

α代表起算点的方位角。

R 代表曲线半径二、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2L S 2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×C L 代表起算点到准备算的距离。

LS 代表缓和曲线总长。

X1、Y1代表起算点坐标值。

三、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。

L 代表起算点到准备算的距离。

1)左右边桩计算方法X 边=X中+cos(α±90°) ×LY 边=Y中+sin(α±90°) ×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。

如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。

例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029,求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″- 90°) ×3.75=86439.082Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″- 90°) ×3.75=886.384线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″+ 90°) ×7.05=86435.680Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″+90°) ×7.05=896.634四、例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY 点坐标, 也可以求ZH 点到HY 点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120) }×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时, 此公式只能从两头往中间推, 只能从ZH 点往HY 点推,HZ 点往YH点推算, 如果YH 往HZ 点推算坐标, 公式里的β为β2/3.五、例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH 点坐标, 也可以求QZ 点坐标或任意圆曲线一点坐标. 解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ) ×R△Y=(1-cos17°09′36.31″) ×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″-90°) ×3.75=87290.012 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″-90°) ×3.75=1032.155线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″+90°) ×7.05=87290.044 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″+90°) ×7.05=1042.955。

曲线计算公式

曲线计算公式

一、圆曲线范围公式
已知:半径R.转向角β
1、切线长T=Rtan(β/2)
2、曲线长L=(Rπβ)/180
3、外矢距E=R(1/cos(β/2)-1)
4、切曲差q=2T-L
偏角公式δ=180C/2Rπ注C为所点弧长
二、缓和曲线范围公式
1、缓和曲线切线角βn=90Ln2/RπLs Ln为所点n到直缓或缓直点曲线长Ls---缓和曲线长
2、缓和曲线偏角公式:
δn=30 Ln2/RπLs
3、切线长T=m+(R+P)tan(β/2)
4、曲线长:
L=(Rπ(β-2β0))/180+2Ls
5、外矢距E=(R+P)/cos(β/2)-R
6、切曲差q=2T-L
7、切垂距m=Ls/2-Ls3/240R2
8、内移距P=Ls2/24R- Ls4/2688R3
9、缓和曲线数学坐标公式:
X=Ls-Ln5/40R2Ls2
Y= Ln3/6RLs- Ln7/336 R3Ls3
10、缓和曲线偏角公式:
δn=tan-1(y/x)
11、缓和曲线弦长公式:Ci=√(x2+y2) Cc=Ln-Ln3/90R2+Ln5/3888 R4(代数式综合曲线中圆曲线范围坐标公式:Xi=m+Li-Ls/2-(Li-Ls/2)3/6R2
Yi=p+(Li- Ls/2)2/2R-(Li- Ls/2)4/24R3注:Li为圆曲线上任意点到ZH或
HZ的曲线长(用于计算偏移值)三、竖曲线计算公式
Y=X2/2R。

曲线的参数方程与曲率计算

曲线的参数方程与曲率计算

曲线的参数方程与曲率计算曲线是我们生活中常见的一种形态,它们可以是自然界中的山脉、河流,也可以是人工构建的建筑物、道路等。

曲线的形状和特征对于我们理解和描述事物的运动和变化具有重要意义。

在数学中,我们可以通过参数方程来描述曲线的运动轨迹,而曲率则是衡量曲线弯曲程度的重要指标。

一、曲线的参数方程曲线的参数方程是一种描述曲线运动轨迹的方式。

它由一组参数方程组成,每个参数对应曲线上的一个点。

以二维平面上的曲线为例,我们可以将曲线上的每个点表示为(x, y),其中x和y分别是该点在x轴和y轴上的坐标。

而参数方程则是通过引入一个参数t,将x和y表示为t的函数,即x=f(t),y=g(t)。

通过不同的参数取值,我们可以得到曲线上的不同点。

例如,我们可以通过参数方程x=cos(t),y=sin(t)来描述单位圆的运动轨迹。

当t取0时,对应的点坐标为(1, 0),即单位圆上的起点。

随着t的增大,曲线逐渐绕着原点旋转,最终回到起点。

通过参数方程,我们可以清晰地描述出单位圆的运动轨迹。

二、曲线的曲率计算曲率是衡量曲线弯曲程度的指标。

在曲线上的每一点,曲率可以通过计算曲线在该点处的切线与曲线的弯曲程度来得到。

具体地,我们可以通过曲线的参数方程来计算曲率。

曲线的曲率计算可以分为两步:首先计算曲线的切向量,然后通过切向量来计算曲率。

对于曲线的参数方程x=f(t),y=g(t),我们可以分别求出x和y对t的导数,即dx/dt和dy/dt。

这两个导数分别表示曲线在该点处x和y坐标的变化率,也就是切向量的两个分量。

然后,我们可以通过切向量的两个分量来计算曲线的切向量的模长。

切向量的模长表示曲线在该点处的切线的斜率,也就是曲线的斜率。

最后,通过对切向量的模长求导,我们可以得到曲线的曲率。

曲率的计算公式为k=|dy/dt * d^2x/dt^2 - dx/dt * d^2y/dt^2| / (dx/dt^2 +dy/dt^2)^(3/2),其中d^2x/dt^2和d^2y/dt^2分别表示x和y对t的二阶导数。

曲线任意点值计算公式

曲线任意点值计算公式

曲线任意点值计算公式在数学和物理学中,曲线是一种具有连续性和光滑性的对象,它可以描述出物体在空间中的运动轨迹或者函数的图像。

曲线的性质和特征对于理解和解决实际问题具有重要意义,因此曲线任意点值的计算公式是一个非常重要的工具。

曲线的方程通常可以用代数方程或参数方程来表示。

在代数方程中,曲线通常被描述为$x$和$y$之间的关系式,例如$y=f(x)$。

而在参数方程中,曲线的位置由参数$t$的函数来描述,例如$x=x(t)$和$y=y(t)$。

无论是代数方程还是参数方程,我们都可以通过公式来计算曲线上任意点的值。

首先,让我们来看一下代数方程的情况。

对于曲线$y=f(x)$,我们可以通过给定的$x$值来计算对应的$y$值。

这个过程其实就是将给定的$x$值代入方程中,得到对应的$y$值。

例如,如果我们有曲线$y=x^2$,我们可以通过计算$x=2$时的$y$值来得到对应的点坐标。

即$y=2^2=4$,所以点$(2,4)$就是曲线上的一个点。

对于参数方程$x=x(t)$和$y=y(t)$,我们需要给定参数$t$的值来计算对应的$x$和$y$值。

这个过程也可以通过代入公式来完成。

例如,如果我们有参数方程$x=2t$和$y=3t$,我们可以通过给定$t=3$时来计算对应的$x$和$y$值。

即$x=23=6$,$y=33=9$,所以点$(6,9)$就是曲线上的一个点。

除了直接代入公式计算外,我们还可以利用微积分的知识来计算曲线上任意点的值。

例如,对于代数方程$y=f(x)$,我们可以通过求导来得到曲线在某一点的斜率,进而计算切线方程,从而得到曲线上任意点的值。

对于参数方程$x=x(t)$和$y=y(t)$,我们可以通过求导来得到曲线在某一点的切线斜率,然后利用切线方程来计算曲线上任意点的值。

在实际问题中,曲线任意点值的计算公式可以帮助我们解决很多问题。

例如,在物理学中,我们可以利用曲线的任意点值来描述物体的运动轨迹,从而计算出物体在某一时刻的位置和速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、曲线要素计算
已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长)
1、求ZH 点(或ZY 点)坐标及方位角
⎪⎩

⎨⎧-=-=-=11sin cos A
T JDY ZHY A T JDX ZHX T
JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角
⎪⎩

⎨⎧+=+=+-=22sin cos A
T JDY HZY A T JDX HZX L T JDZH HZZH H
3、求解切线长T 、外距E 、曲线长L
(1)圆曲线
⎪⎩

⎨⎧=-==180/)1)2/cos(/1()
2/tan(απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan()(02
0R l l l Rl l R p R E l R L q
p R T s s s H
s
H H ===⎪⎩⎪⎨⎧-+=+⨯-=+⨯+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ⎪⎩⎪⎨⎧+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ⎪⎩

⎨⎧⨯-+=⨯++=⨯⨯-==-=-=1111121132
125cos sin sin cos /180)2/()
6/()40/(A
y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π
四、圆曲线上各桩号点坐标及方位角计算
已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1)
⎪⎩

⎨⎧⨯-+=⨯++=⨯+⨯-=⎪⎩
⎪⎨⎧=-==++-=-++=--=11111212311102
1123
1111
cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A
y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中
五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯--=⨯+-=⨯⨯+==-=-=222222223
2
225cos sin sin cos /180)2/()6/()
40/(A
y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH
HZZH L s s s π
六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负)
⎪⎩

⎨⎧-=-=+=T N Y BDY T N X BDX T T sin cos α
七、纵断面高程计算
(1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i )
)(*ZH DZH i H DH -+=
(2) 竖曲线上高程计算
已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) )
2/(2
R l k il H DH ZH
DZH l ⨯-+=-=
注:
JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标
R 、L S1、L S2:半径、缓和曲线1、缓和曲线2
LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。

DLJJ :道路交角(右夹角α)。

BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值
i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1
曲线超高计算公式为:h=11.8*V⒉/R
h——外轨超高量.
V——通过曲线时的列车速度(km/h);
R——曲线半径(m)。

实际设置超高时,取其整数到5毫米,最大超高为150毫米.单线上下行速度悬殊时,不超过125毫米. 计算公式适用于改建铁路。

相关文档
最新文档