中考数学—锐角三角函数的综合压轴题专题复习附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学—锐角三角函数的综合压轴题专题复习附答案解析
一、锐角三角函数
1.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.
(1)求证:四边形是菱形;
(2)若,,,求的值.
【答案】(1)证明见解析
(2)
【解析】
试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形
(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP
试题解析:(1)∵AE平分∠BAD BF平分∠ABC
∴∠BAE=∠EAF ∠ABF=∠EBF
∵AD//BC
∴∠EAF=∠AEB ∠AFB=∠EBF
∴∠BAE=∠AEB ∠AFB=∠ABF
∴AB=BE AB=AF
∴AF=AB=BE
∵AD//BC
∴ABEF为平行四边形
又AB=BE
∴ABEF为菱形
(2)作PH⊥AD于H
由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5
∴tan∠ADP=
考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数
2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,
∴BD=AF,BF=AD.
∵AC=BD,CD=AE,
∴AF=AC . ∵∠FAC=∠C=90°, ∴△FAE ≌△ACD ,
∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE ,

3AC CD
BD AE ==. ∵BD=AF ,

3AC CD
AF AE
==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,

3AC AD BF
AF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.
在Rt △EFB 中,tan ∠FBE=3
EF BF =
∴∠FBE=30°, ∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵3BD ,3AE ,

3AC CD
BD AE
==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,

3AD AC
AH EH
==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.
在Rt △DAH 中,tan ∠ADH=3AH
AD
= ∴∠ADH=30°, ∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
3.已知:如图,在Rt △ABC 中,∠ACB=90°,点M 是斜边AB 的中点,MD ∥BC ,且MD=CM ,DE ⊥AB 于点E ,连结AD 、CD . (1)求证:△MED ∽△BCA ; (2)求证:△AMD ≌△CMD ;
(3)设△MDE 的面积为S 1,四边形BCMD 的面积为S 2,当S 2=17
5
S 1时,求cos ∠ABC 的值.
【答案】(1)证明见解析;(2)证明见解析;(3)cos ∠ABC=57
. 【解析】 【分析】
(1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ; (2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以
2
114
ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25
S 1,由于1EBD S ME S EB =V ,从而可知
52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7
2,最后根据锐角三角函数的定义即可求出答案. 【详解】
(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;
(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,
∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,
∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,
MD MD AMD CMD AM CM =⎧⎪
∠=∠⎨⎪=⎩
, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM ,
∴AM=MC=MD=MB , ∴MD=2AB ,
由(1)可知:△MED ∽△BCA , ∴
2
114
ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =
1
2
S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=2
5
S 1, ∵
1EBD
S ME
S EB
=
V , ∴1125
S ME
EB S =


5
2
ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,

1
2MD ME AB BC ==, ∴BC=10x ,
∴cos ∠ABC=105
147
BC x AB x ==. 【点睛】
本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.
4.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:
如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成
立,请说明理由; (3)记
AC
BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为3
时,CPE V 总是等边三角形 【解析】 【分析】
(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有
EM FP
MC PB
=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC
BC
=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴
EM FP
MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴
DM FP
MC PB
=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵
AC k BC =,AC
BC
=tan30°, ∴k=tan30°=3
∴当k 3
△CPE 总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
5.问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.
【答案】(1)证明见解析,直径OP=2;
(2)证明见解析,MN的长为定值,该定值为2;
(3)①MN=;②证明见解析;
(4)MN取得最大值2.
【解析】
试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;
(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;
(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:
MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;
(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.
试题解析:(1)如图一,
∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;
(2)如图一,
∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,
∴MN=OP=2,∴MN的长为定值,该定值为2;
(3)①如图二,
∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,
P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.
∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;
②设四边形PMON的外接圆为⊙O′,连接NO′并延长,
交⊙O′于点Q,连接QM,如图三,
则有∠QMN=90°,∠MQN=∠MPN=60°,
在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,
∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.
(4)由(3)②得M N=OP•sin∠MQN=2sin∠MQN.
当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.
考点:圆的综合题.
6.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.
(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标
为;
(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
【答案】(1)(6,3). 30.(3,3)(2)
()
()()()243x 430x 33
31333x x 3x 5232S {23x 1235x 93
543x 9x
+≤≤-+-<≤=-+<≤> 【解析】
解:(1)(6,23). 30.(3,33).
(2)当0≤x≤3时,
如图1,
OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ;
由题意可知直线l ∥BC ∥OA ,
可得EF PE DC 31==OQ PO DO 333==,∴EF=13
(3+x ), 此时重叠部分是梯形,其面积为:
EFQO 14343S S EF OQ OC 3x x 43233
==+⋅=+=+梯形()() 当3<x≤5时,如图2,
)HAQ EFQO EFQO 221S S S S AH AQ 243331333 3x 3=∆=-=-⋅⋅=+---梯形梯形
当5<x≤9时,如图3,
12S BE OA
OC 312x 2323 =x 1233=+⋅=--+()()。

当x >9时,如图4,
111833S OA AH 6=22x x
=⋅=⋅⋅. 综上所述,S 与x 的函数关系式为:
))))243x 430x 33
313333x 5S {23x 1235x 93
543x 9+≤≤+<≤=-+<≤>. (1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标:
∵四边形OABC 是矩形,∴AB=OC ,OA=BC , ∵A (6,0)、C (0,3∴点B 的坐标为:(6,3
②由正切函数,即可求得∠CAO 的度数:
∵OC 233tan CAO OA ∠=∴∠CAO=30°. ③由三角函数的性质,即可求得点P 的坐标;如图:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,
∵∠PQO=60°,D (0,33),∴PE=33.
∴0PE
AE 3tan 60==.
∴OE=OA ﹣AE=6﹣3=3,∴点P 的坐标为(3,33).
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.
7.如图,二次函数y =x 2+bx ﹣3的图象与x 轴分别相交于A 、B 两点,点B 的坐标为(3,0),与y 轴的交点为C ,动点T 在射线AB 上运动,在抛物线的对称轴l 上有一定点D ,其纵坐标为23,l 与x 轴的交点为E ,经过A 、T 、D 三点作⊙M .
(1)求二次函数的表达式;
(2)在点T 的运动过程中,
①∠DMT 的度数是否为定值?若是,请求出该定值:若不是,请说明理由;
②若MT =12
AD ,求点M 的坐标; (3)当动点T 在射线EB 上运动时,过点M 作MH ⊥x 轴于点H ,设HT =a ,当OH≤x≤OT 时,求y 的最大值与最小值(用含a 的式子表示).
【答案】(1)y =x 2﹣2x ﹣3(2)①在点T 的运动过程中,∠DMT 的度数是定值②(0,3)(3)见解析
【解析】
【分析】
(1)把点B 的坐标代入抛物线解析式求得系数b 的值即可;
(2)①如图1,连接AD .构造Rt △AED ,由锐角三角函数的定义知,tan ∠DAE
=.即∠DAE =60°,由圆周角定理推知∠DMT =2∠DAE =120°;
②如图2,由已知条件MT =12AD ,MT =MD ,推知MD =12
AD ,根据△ADT 的外接圆圆心M 在AD 的中垂线上,得到:点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12
AD .根据点A 、D 的坐标求得点M 的坐标即可; (3)如图3,作MH ⊥x 于点H ,则AH =HT =
12
AT .易得H (a ﹣1,0),T (2a ﹣1,0).由限制性条件OH≤x≤OT 、动点T 在射线EB 上运动可以得到:0≤a ﹣1≤x≤2a ﹣1. 需要分类讨论:(i )当2111(1)211a a a -⎧⎨----⎩……,即413a <„,根据抛物线的增减性求得y 的极值.
(ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩
„,即43<a≤2时,根据抛物线的增减性求得y 的极值. (iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值.
【详解】
解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32+3b ﹣3=0,
解得b =﹣2,
则该二次函数的解析式为:y =x 2﹣2x ﹣3;
(2)①∠DMT 的度数是定值.理由如下:
如图1,连接AD .
∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.
∴抛物线的对称轴是直线x =1.
又∵点D 的纵坐标为
∴D (1,
由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),
∴A (﹣1,0),B (3,0).
在Rt △AED 中,tan ∠DAE

DE AE ==. ∴∠DAE =60°.
∴∠DMT =2∠DAE =120°.
∴在点T 的运动过程中,∠DMT 的度数是定值;
②如图2,∵MT =12
AD .又MT =MD ,
∴MD=1
2
AD.
∵△ADT的外接圆圆心M在AD的中垂线上,
∴点M是线段AD的中点时,此时AD为⊙M的直径时,MD=1
2
AD.∵A(﹣1,0),D(1,
∴点M的坐标是(0
(3)如图3,作MH⊥x于点H,则AH=HT=1
2 AT.
又HT=a,
∴H(a﹣1,0),T(2a﹣1,0).
∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a﹣1≤x≤2a﹣1.
∴0≤a﹣1≤2a﹣1.
∴a≥1,
∴2a﹣1≥1.
(i)当
211
1(1)211
a
a a
-


----



,即1
4
a
3
剟时,
当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.
(ii)当
011
211
1(1)211
a
a
a a
<-


->

⎪--<--


,即
4
3
<a≤2时,
当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.
(iii)当a﹣1>1,即a>2时,
当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.
8.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)
【答案】95m
【解析】
【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..
【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.
在△ACE中,AC=40m,∠CAE=30°
∴CE=FN=20m,AE=3
设MN=x m,则AN=xm.FC3,
在RT△MFC中
MF=MN-FN=MN-CE=x-20
FC=NE=NA+AE=x+3
∵∠MCF=30°
∴FC3MF,
即x+33-20)
解得:x 403 31
=60+3
答:电视塔MN的高度约为95m.
【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.
9.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .
(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;
(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .
①求证BDE DBA ∆≅∆;
②求点H 的坐标.
(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).
【答案】(Ⅰ)点D 的坐标为5472(
,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258
);(Ⅲ)60α=︒或300︒.
【解析】
【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得
答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.
【详解】
(Ⅰ)∵点()30A ,
,点()04C ,, ∴3,4OA OC ==.
∵四边形OABC 是矩形,
∴AB=OC=4,
∵矩形DAFE 是由矩形AOBC 旋转得到的
∴3AD AO ==.
在Rt OAB ∆中,225OB OA AB =+=, 过A D 、分别作B,DN OA AM O ⊥⊥
在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠=
==, ∴9OM 5
= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5
==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠=
=,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25
=. ∴点D 的坐标为5472,2525⎛⎫ ⎪⎝⎭
.
(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,
∴OA AD 3,ADE 90,DE AB 4∠===︒==.
∴OD AD =.
∴DOA ODA ∠∠=.
又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒
∴ABD BDE ∠∠=.
又∵BD BD =,
∴ΔBDE ΔDBA ≅.
②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,
又∵BHE DHA ∠∠=,
∴ΔBHE ΔDHA ≅.
∴DH=BH ,
设AH x =,则DH BH 4x ==-,
在Rt ΔADH 中,222AH AD DH =+,
即()222x 34x =+-,得25x 8=, ∴25AH 8
=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭
. (Ⅲ)如图,过F 作FO ⊥AB ,
当0<α≤180°时,
∵点B 与点F 是对应点,A 为旋转中心,
∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,
∵FA=FB ,FO ⊥AB ,
∴OA=12
AB=2, ∴cos ∠BAF=
OA AF =12
, ∴∠BAF=60°,即α=60°,
当180°<α<360°时, 同理解得:∠BAF′=60°,
∴旋转角α=360°-60°=300°.
综上所述:α60=︒或300︒.
【点睛】
本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.
10.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.
(1)求证:CD是⊙O的切线;
(2)若AB=6,∠ABE=60°,求AD的长.
【答案】(1)详见解析;(2)9 2
【解析】
【分析】
(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.
∴∠EAB =30°,
在Rt △ABE 中,AE =AB·cos30°=6×3=33, 在Rt △ADE 中,∠DAE =∠BAE =30°,
∴AD=cos30°×AE=
3×33=92. 【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
11.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .
(1)求证:△PAC ∽△PDF ;
(2)若AB =5,¼¼AP BP
=,求PD 的长.
【答案】(1)证明见解析;(2310 【解析】
【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶AD
AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;
(2)连接OP ,由¶¶AP
BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC
,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED
=,然后根据勾股定理即可得到结果.
【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径,
∴¶¶AD
AC =,
∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,
∴∠ACD=∠FPC,
∴∠APC=∠ACF,
∵∠FAC=∠CAF,
∴△PAC∽△CAF;
(2)连接OP,则OA=OB=OP=15 22 AB=,
∵¶¶
AP BP
=,
∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,
∴∠ACB=90°,
∵AC=2BC,
∴tan∠CAB=tan∠DCB=BC
AC


1
2 CE BE
AE CE
==,
∴AE=4BE,
∵AE+BE=AB=5,
∴AE=4,BE=1,CE=2,
∴OE=OB﹣BE=2.5﹣1=1.5,
∵∠OPG=∠PDC,∠OGP=∠DGE,
∴△OPG∽△EDG,∴OG OP GE ED
=,

2.5
2 OE GE OP
GE CE
-
==,
∴GE=2
3,OG=
5
6

∴PG
5 6 =,
GD
2
3 =,
∴PD=PG+GD
【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.
12.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.
【答案】(1)233384y x x =-
++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334
y x =--. 【解析】
【分析】
(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式
PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45
PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=
185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即
∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可
【详解】
解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)
∴y =a (x+2)(x ﹣4)
把点C (0,3)代入得:﹣8a =3
∴a =﹣38
∴抛物线解析式为y =﹣
38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D
∴∠CDP =∠COB =90°
∵∠DCP =∠OCB
∴△CDP ∽△COB ∴PC PD BC OB
= ∵B (4,0),C (0,3)
∴OB =4,OC =3,BC
∴PD =45
PC ∴5PA+4PC =5(PA+
45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小
∵A (﹣2,0),OC ⊥AB ,AE ⊥BC
∴S △ABC =
12AB•OC =12BC•AE ∴AE =631855
AB OC BC ⨯==n ∴5AE =18
∴5PA+4PC 的最小值为18.
(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆
当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°
∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个
此时,连接FQ ,过点Q 作QG ⊥x 轴于点G
∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点
∴F (1,0),FQ =FA =3
∵T (﹣4,0)
∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =
∴FG =35FQ =95
∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭
①若点Q 在x 轴上方,则Q (41255
-,)
设直线l 解析式为:y =kx+b ∴404125
5k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334
y x =+ ②若点Q 在x 轴下方,则Q (41255--,
) ∴直线l :334
y x =-- 综上所述,直线l 的解析式为334y x =+或334
y x =--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论
13. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】主塔BD 的高约为86.9米.
【解析】
【分析】
根据直角三角形中由三角函数得出BC 相应长度,再由BD=BC+CD 可得出.
【详解】
在Rt △ABC 中,∠ACB =90°,
sin BC A AB
=. ∴sin 152sin311520.5279.04BC AB A ︒=⨯=⨯=⨯=.
79.047.986.9486.9BD BC CD =+=+=≈(米)
答:主塔BD 的高约为86.9米.
【点睛】
本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.
14.已知:如图,直线y =-x +12分别交x 轴、y 轴于A 、B 点,将△AOB 折叠,使A 点恰好落在OB 的中点C 处,折痕为DE .
(1)求AE的长及sin∠BEC的值;
(2)求△CDE的面积.
【答案】(1)52,sin∠BEC=3
5
;(2)
75
4
【解析】
【分析】
(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得
∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,2
设AE=CE=x,则222-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(2)2+(2)2,
解得:2
故可得sin∠BEC=
3
5
CF
CE
,2
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
AD•AE×sin45°=
2
4
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=15
2
,即AD=
15
2

故S△CDE=S△AED=
2
4
AD×AE=
75
4

【点睛】
本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.
15.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为,抛物线的解析式为;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
【答案】(1),;
(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.
【解析】
【分析】
(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;
(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;
(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.
【详解】
解:(1)把点坐标代入直线表达式,
解得:,则:直线表达式为:,令,则:,
则点坐标为,
将点的坐标代入二次函数表达式得:,
把点的坐标代入二次函数表达式得:,
解得:,
故:抛物线的解析式为:,
故:答案为:,;
(2)①∵在线段上,且轴,
∴点,,
∴,
∵,
∴抛物线开口向下,
∴当时,有最大值是3,
②当时,点的纵坐标为-3,
把代入抛物线的表达式得:,解得:或0(舍去),∴;
当时,∵,两直线垂直,其值相乘为-1,
设:直线的表达式为:,
把点的坐标代入上式,解得:,则:直线的表达式为:,
将上式与抛物线的表达式联立并解得:或0(舍去),
当时,不合题意舍去,
故:使为直角三角形时的值为3或;
(3)∵,,
在中,,则:,,
∵轴,
∴,
若抛物线上有且只有三个点到直线的距离是,
则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.
当过点的直线与抛物线有一个交点,
点的坐标为,设:点坐标为:,
则:,过点作的平行线,
则点所在的直线表达式为:,将点坐标代入,
解得:过点直线表达式为:,
将拋物线的表达式与上式联立并整理得:,

将代入上式并整理得:,
解得:,则点的坐标为,
则:点坐标为,则:,
∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,
即:过点与平行的直线与抛物线的交点为另外两个点,即:、,
直线的表达式为:,将该表达式与二次函数表达式联立并整理得:
,解得:,
则点、的横坐标分别为,,
作交直线于点,
则,
作轴,交轴于点,则:,,

则:,
同理:,
故:点,,,构成的四边形的面积为:6或或.
【点睛】
本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.。

相关文档
最新文档