安阳市第三中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安阳市第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1
. 已知向量=(﹣1,3),=(x ,2),且,则x=( )
A .
B .
C .
D .
2. 函数
是( )
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
3. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )
A .
B . C. D . 4. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
5. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )
A .2
B .1
C .
D .
6. 如图可能是下列哪个函数的图象( )
A .y=2x ﹣x 2﹣1
B .y=
C .y=(x 2﹣2x )e x
D .y=
7. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2
C .3
D .4
8. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
9. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3
B .增函数且最大值为3
C .减函数且最小值为﹣3
D .减函数且最大值为﹣3
10.△ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )
A .﹣3
B .﹣
C .
D .3
11.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=
被称为狄利克雷
函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个
12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )
A .等腰三角形
B .正三角形
C .直角三角形
D .钝角三角形
二、填空题
13.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
14.已知圆22
240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________.
【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
102项的系数为(结果用数值表示).
16.若执行如图3所示的框图,输入,则输出的数等于
17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为.18.设幂函数()
=的图象经过点()
f x kxα
4,2,则kα
+= ▲.
三、解答题
19.选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若恒成立,求k的取值范围.
20.已知椭圆C1:+=1(a>b>0)的离心率为e=,直线l:y=x+2与以原点为圆心,以椭圆C1的短
半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)抛物线C2:y2=2px(p>0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,
S与Q不重合),且满足•=0,求||的取值范围.
21.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方
程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.
22.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
23.(本小题满分13分)
设1
()1f x x
=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
)
24.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;
(Ⅱ)设g (x )=﹣x (x ﹣t
﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;
(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,
求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).
安阳市第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣. 故选:C .
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
2. 【答案】B
【解析】解:因为
=
=cos (2x+
)=﹣sin2x .
所以函数的周期为: =π.
因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.
故选B .
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
3. 【答案】A 【解析】
试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 4. 【答案】D
【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;
是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .
【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.
5.【答案】C
【解析】解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=﹣2x+z,
平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,
由,解得,
即C(1,﹣1),
∵点C也在直线y=a(x﹣3)上,
∴﹣1=﹣2a,
解得a=.
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
6.【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=e x>0恒成立,
∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;
D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y=<0,∴D中函数不满足条件.
故选:C.
【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.
7.【答案】A
【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,
∴f′(x)=﹣asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴a+b=1.
故选:A.
【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.
8.【答案】A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=∅,不合题意,排除C,
故选A.
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
9.【答案】D
【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,
则那么f(x)在区间上为减函数,且有最大值为﹣3,
故选:D
【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.
10.【答案】C
【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,
所以在方向上的投影为ACcos30°=2×=;
故选C.
【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.
11.【答案】D
【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0
∴当x为有理数时,f(f(x))=f(1)=1;
当x为无理数时,f(f(x))=f(0)=1
即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;
②∵有理数的相反数还是有理数,无理数的相反数还是无理数,
∴对任意x∈R,都有f(﹣x)=f(x),故②正确;
③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数
∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;
④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0
∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.
故选:D.
【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.
12.【答案】A
【解析】解:∵(acosB+bcosA)=2csinC,
∴(sinAcosB+sinBcosA)=2sin2
C,
∴sinC=2sin2
C,且sinC>0,
∴sinC=,
∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)
∵△ABC的面积的最大值S
△ABC=absinC≤=4,
∴a=b=4,
则此时△ABC的形状为等腰三角形.
故选:A.
二、填空题
13.【答案】15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
14.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 15.【答案】 180
【解析】解:由二项式定理的通项公式T r+1=C n r a
n ﹣r b r
可设含
x 2项的项是T r+1=C 7r (2x )r
可知r=2,所以系数为C 102
×4=180,
故答案为:180.
【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.
16.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。
17.【答案】 .
【解析】解:不等式组
的可行域为:
由题意,A (1,1),∴区域
的面积为
=(x3)
=,
由
,可得可行域的面积为:1=,
∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与
与坐标原点连线的斜率大于1的概率为: =
故答案为:.
【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.
18.【答案】3
2
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义
三、解答题
19.【答案】
【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;
当a >0时,,
∴a=2;
(Ⅱ)记
,
∴h(x)=
∴|h(x)|≤1
∵恒成立,
∴k≥1.
【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.20.【答案】
【解析】解:(1)由直线l:y=x+2与圆x2
+y2=b2相切,∴=b,解得b=.
联立解得a=,c=1.
∴椭圆的方程是C1:.
(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,
∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.
易知Q(0,0),设R(,y1),S(,y2),
∴=(,y1),=,
由•=0,得,
∵y1≠y2,∴,
∴=64,当且仅当,即y1=±4时等号成立.
又||===,
当=64,即y
=±8时,||min=8,
2
故||的取值范围是[8,+∞).
【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
21.【答案】
【解析】解:(I)曲线C1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos2θ﹣sin2θ)+3=0,可得直角坐标方程:x2﹣y2+3=0.
曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x﹣2y﹣m=0.
(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,
∴△=16m2﹣12(m2+3)>0,解得m<﹣3或m>3,
∴m<﹣3或m>3.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.
22.【答案】
【解析】
【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;
(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;
(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.
【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.
因为ABCD是正方形,所以AC⊥BD,
从而AC⊥平面BDE.…(4分)
解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.
因为BE与平面ABCD所成角为600,即∠DBE=60°,
所以.
由AD=3,可知,.
则A(3,0,0),,,B(3,3,0),C(0,3,0),
所以,.
设平面BEF的法向量为=(x,y,z),则,即.
令,则=.
因为AC⊥平面BDE,所以为平面BDE的法向量,.
所以cos.
因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)
(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).
则.
因为AM∥平面BEF,
所以=0,即4(t﹣3)+2t=0,解得t=2.
此时,点M坐标为(2,2,0),
即当时,AM∥平面BEF.…(12分)
23.【答案】
【解析】解:证明:2
()10
f x x x x
=⇔+-=,∴
2
11
2
22
10
10
λλ
λλ
⎧+-=
⎪
⎨
+-=
⎪⎩
,∴
2
11
2
22
1
1
λλ
λλ
⎧-=
⎪
⎨
-=
⎪⎩
.∵
12
1111111
1
2
12222222
2
1
11
11
1
n n n n n
n n n n
n
a a a a a
a a a a
a
λ
λλλλλλ
λ
λλλλλλλ
λ
+
+
-
-+----
====⋅
-----
-
+
,(3分)
11
12
a
a
λ
λ
-
≠
-
,1
2
λ
λ
≠,
∴数列12n n a a λλ⎧⎫
-⎨
⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设m =
()f m m =. 由112a =及111n n
a a +=+得223a =,335a =,∴130a a m <<<.
∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<.
①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
24.【答案】
【解析】解:(Ⅰ)∵f (x )=e ﹣x (x 2
+ax ),
∴f ′(x )=﹣e ﹣x (x 2+ax )+e ﹣x (2x+a )=﹣e ﹣x (x 2
+ax ﹣2x ﹣a );
则由题意得f ′(0)=﹣(﹣a )=2, 故a=2.
(Ⅱ)由(Ⅰ)知,f (x )=e ﹣x (x 2
+2x ),
由g (x )≥f (x )得,
﹣x (x ﹣t
﹣)≥e ﹣x (x 2
+2x ),x ∈[0,1];
当x=0时,该不等式成立;
当x ∈(0,1]时,不等式﹣
x+t+≥e ﹣x
(x+2)在(0,1]上恒成立, 即t ≥[e ﹣x
(x+2)+x
﹣]max .
设h (x )=e ﹣x
(x+2)+x
﹣,x ∈(0,1],
h ′(x )=﹣e ﹣x (x+1)+1, h ″(x )=x •e ﹣x >0,
∴h ′(x )在(0,1]单调递增, ∴h ′(x )>h ′(0)=0,
∴h(x)在(0,1]单调递增,
∴h(x)max=h(1)=1,
∴t≥1.
(Ⅲ)证明:∵a n+1=(1+)a n,
∴=,又a1=1,
∴n≥2时,a n=a1••…•=1••…•=n;
对n=1也成立,
∴a n=n.
∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,
∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.
又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,
∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),
∴[f()+f()+…+f()]=[f()+f()+…+f()]
<f(x)dx.
又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,
∴f(x)dx≤g(x)dx=+,
∴[f()+f()+…+f()]<+,
∴f()+f()+…+f()<n(+).
【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.。