玉溪市六年级上册数学试卷练习题应用题期末试卷(及答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉溪市六年级上册数学试卷练习题应用题期末试卷(及答案)(1)
一、六年级数学上册应用题解答题
1.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?
解析:57平方米
【解析】
【分析】
如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是
1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.
【详解】
连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:
每一条直角边都是圆的半径;
正方形的面积:1×1=1(平方米)
小等腰直角三角形的面积就是平方米
即:r2÷2=,r2=;
圆桌的面积:3.14×r2
=3.14×
=1.57(平方米);
1.57﹣1=0.57(平方米);
答:圆桌的面积比原来小方桌的面积多0.57平方米.
2.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这68名工人最合理?(请计算说明)
解析:(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x =48
加工大齿轮的人数是:68-x =68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
3.果园里有桃树、梨树、苹果树共700棵,桃树与梨树的比是2:3,梨树与苹果树的比是4:5.果园里有桃树、梨树、苹果树各多少棵?
解析:桃树160棵,梨树240棵,苹果树300棵
【解析】
【详解】
解:因为桃树与梨树的比是(2×4):(3×4)=8:12
梨树与苹果树的比是(4×3):(5×3)=12:15
所以桃树、梨树、苹果树的比是:8:12:15
所以700÷(8+12+15)
=700÷35
=20(棵)
桃树:20×8=160(棵)
梨树:20×12=240(棵)
苹果树:20×15=300(棵),
答:果园里有桃树160棵,梨树240棵,苹果树300棵
4.六年级举行“小制作比赛”,六(1)班同学上交32件作品,六(2)班比六(1)班多交14
,六(2)班交了多少件? 解析:40件
【分析】
由于六(2)班比六(1)班多交
14
,所以可利用乘法求出六(2)班交了多少件。
【详解】
13214⎛⎫⨯+ ⎪⎝⎭
=5324⨯ =40(件)
答:六(2)班交了40件。
【点睛】
本题考查了分数乘法的应用,已知一个数比另一个数多几分之几,求这个数,用乘法。
5.一个疏菜大棚里种植菜椒的面积是450平方米,西红柿的种植面积比菜椒少20%,比黄瓜多12.5%,这个大棚里种植黄瓜的面积是多少平方米?
解析:450×(1–20%)÷(1+12.5%)=320(平方米)
【详解】
略
6.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?
解析:12张
【分析】
第一张桌子可以坐6人;
拼2张桌子可以坐6+4×1=10人;
拼3张桌子可以坐6+4×2=14人;
故n张桌子拼在一起可以坐6+4(n-1)=4n+2.
【详解】
解:设第n张桌子可以坐50人.
4n+2=50
n=12
答:像这样12张桌子拼起来可以坐50人.
7.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,
岸上的只数是水中的4
5
,这群鸭子有多少只?
解析:567只【详解】
3:4=3 4
9÷(
4
45
+
-
3
34
+
)
=9÷(4
9
-
3
7
)
=9÷1 63
=567(只)
答:这群鸭子有567只.
8.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
解析:(1)
(2)0.285平方米【详解】
略
9.甲、乙二人同时从A地走向B地,当甲走了全程的5
7
时,乙走了全程的
3
5
;当甲离B
地还有1
7
时,乙离B地还有50米,A、B两地相距多少米?
解析:1250
7
米
【详解】
相同时间内:甲乙的速度比就是5
7
:
3
5
=25:21;
乙的速度就是甲的21
25
,相同时间内,已走的路程就是甲的
21
25
1﹣1
7
=
6
7
6 7×
21
25
=
18
25
50÷(1﹣18 25
)
=50÷7 25
=1250
7
(米)
答:A、B两地相距1250
7
米.
10.宝龙城市广场某商铺计划开展购物满千元即可参加飞镖投奖的活动,工作人员用一个半径60厘米的圆形木板制作了一个镖盘。
(本题 取3)
(1)如图1,这个镖盘的面积是________平方厘米。
(2)如图2,如果投中阴影部分获一等奖,投中空白部分获二等奖,如果没投中,可重新投掷,直至投中为止,求获一等奖的可能性大小是多少?(百分号前保留一位小数)(3)如图3,已知扇形AOB的圆心角是90 ,四边形ABCD是商家打算增设的一块“双倍奖金”区域,求获得1000元奖金的可能性大小是多少?(百分号前保留一位小数)
解析:(1)10800
(2)11.1%
(3)0.9%
【分析】
(1)利用圆的面积公式,列式计算出镖盘的面积;
(2)先将阴影部分面积求出来,再利用除法求出获一等奖的可能性大小;
(3)将四边形和一等奖的重叠区域的面积求出来,再除以镖盘的面积,得到获得1000元奖金的可能性大小。
【详解】
(1)3×602
=3×3600
=10800(平方厘米)
所以,这个镖盘的面积是10800平方厘米。
(2)阴影部分面积:
3×(60-40)2
=3×400
=1200(平方厘米)
1200÷10800×100%≈11.1%
答:获一等奖的可能性大小是11.1%。
(3)1200÷4-20×20÷2
=300-200
=100(平方厘米)
100÷10800×100%≈0.9%
答:获得1000元奖金的可能性大小是0.9%。
【点睛】
本题考查了圆的面积计算和可能性的大小,熟练运用可能性大小的求解方法是解题的关键。
11.北街小学六年级上学期男生人数占总人数的53%。
今年开学初转走了3名男生,又转入3名女生,这时女生占总人数的48%。
北街小学六年级现在有多少名学生?
解析:300人
【分析】
今年开学初转走了3名男生,又转入3名女生,说明这时总人数不变;上学期女生占总人数的1-53%=47%,这时女生占总人数的48%,说明转入的3名女生占总人数的48%-47%=1%,据此求出六年级总人数。
【详解】
3÷[48%-(1-53%)]
=3÷1%
=300(人)
答:北街小学六年级现在有300名学生。
【点睛】
本题考查百分数,解答本题的关键是理解两个时间段六年级总人数未发生变化。
12.食堂运来三种蔬菜,其中白菜的质量占28%,土豆的质量和其他两种蔬菜质量之和的比是2:3,土豆比白菜多24千克,食堂运来的三种蔬菜共多少千克?
解析:200千克
【分析】
将蔬菜总质量看作单位“1”,根据土豆的质量和其他两种蔬菜质量之和的比是2:3,可得土豆占总质量的
223+,用24千克÷对应分率即可。
【详解】
24÷(
223+-28%) =24÷325
=200(千克)
答:食堂运来的三种蔬菜共200千克。
【点睛】
关键是确定单位“1”,找到已知数量的对应分率。
13.世界卫生组织推荐的成人标准体重的计算方法是:
男性:(80)0.7-⨯=身高标准体重女性:(70)0.6-⨯=身高标准体重
下表是体重的评价标准:
(1)吴阿姨身高158cm,体重50kg。
请你通过计算说明她的体重等级。
(2)杜叔叔身高170cm,体重至少减掉10kg才算是“正常”体重,杜叔叔现在的体重是多少kg?
解析:(1)正常
(2)79.3千克
【分析】
(1)吴阿姨是女性,根据(身高-70)×0.6=标准体重,先代入数据求出吴阿姨的标准体重,再求出吴阿姨的标准体重与其体重的差,用差除以标准体重,求出差占标准体重的百分之几,从而得出结论;
(2)杜叔叔是男性,根据(身高-80)×0.7=标准体重,求出杜叔叔的标准体重,再加上10千克,就是杜叔叔现在的体重。
【详解】
(1)(158-70)×0.6
=88×0.6
=52.8(千克)
(52.8-50)÷52.8
=2.8÷52.8
≈5.3%
吴阿姨的体重比正常体重轻5.3%,属于正常范围。
答:吴阿姨的体重等级是正常。
(2)(170-80)×0.7
=90×0.7
=63(千克)
63×(1+10%)+10
=63×1.1+10
=69.3+10
=79.3(千克)
答:杜叔叔现在的体重是79.3千克。
【点睛】
解决本题先理解题目给出的标准体重的计算方法,然后根据已知数量代入公式计算。
14.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?
解析:420米
【分析】
第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72
米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的
4
43
+
,则72米对应的
分率是全长的
4
43
+
去掉两个20%,用分量÷分率即可求出全长。
【详解】
72÷(
4
43
+
-20%-20%)
=72÷6 35
=72×35 6
=420(米)
答:这条水渠长420米。
【点睛】
要分析找准单位“1”的量及72米所对应的分率。
15.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样合理安排这68名工人?请具体说明理由。
解析:(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x )=10×x÷3
1632-24x =10x
34x =1632
x =48
加工大齿轮的人数是:68-x =68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
16.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。
杏树有多少棵?
解析:120棵
【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
17.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了25时,防尘口罩刚好完成了37。
这时,为了提前完成医用口罩的生产任务,改进了生产工艺,效率提高了50%。
这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
解析:24500个
【分析】 根据题目可知,当医用口罩完成了25时,防尘口罩刚好完成了37
,此时两种口罩生产的时间是相同的,根据效率比等于完成的量的比,即生产医用口罩的效率∶生产防尘口罩的效率=25∶37=14∶15,即医用口罩的效率∶防尘口罩的效率=1415
,由此可知防尘口罩的生产效率是医用口罩生产效率的1514,假设医用口罩生产效率为1,防尘口罩生产效率:1514
;由于提高效率50%,即此时医用口罩的生产效率:1×(1+50%)=
32,则此时防尘口罩的生产效率为医用口罩的
1514÷32=57,提高生产效率后生产的防尘口罩量是提高效率后生产医用口罩的
57,即口罩总量×(1-25)×57,设:口罩总量为x 个,列方程:x -37x -x×(1-25
)×57=3500,解方程,即可解答。
【详解】
解:设原计划生产口罩x 个,由题意分析可列出方程:
325(1)3500757x x x ---⨯=
435
3500757
x x -⨯= 43
350077x x -= 1
35007
x = 24500x =
答:原计划生产医用口罩24500个。
【点睛】
本题主要考查的是比的应用以及列方程解决实际问题,解题的关键是找出提高效率之后医用口罩生产效率和防尘口罩之间的关系,再列方程计算。
18.一本书共100页,已经看了56页。
剩下的比全书页数的
2
5
多4页。
悦悦说的对吗?请通过计算说明理由。
解析:对;理由见详解 【分析】
总页数-已看页数=剩下的页数,将总页数看作单位“1”,总页数×
2
5
+4=剩下的页数,通过两种方式求出的剩下页数一样,说明悦悦说的对,不一样,说明说的不对。
【详解】 100-56=44(页) 100×
2
5
+4 =40+4 =44(页) 44=44
答:悦悦说的对。
【点睛】
确定单位“1”,整体数量×部分对应分率=部分数量。
19.修一段公路, 甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m 处相遇。
求这段公路长多少米? 解析:16500米 【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(11 2024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
20.六(1)班女生人数比全班人数的3
5
多2人,男生有22人,全班有多少人?
解析:60人【分析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-3
5
,用男生人数÷对应分率即
可。
【详解】
(22+2)÷(1-3
5
)
=24÷2 5
=60(人)
答:全班有60人。
【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。
21.一个书架上下两层共有图书450本,如果将上层书增加它的5
8
,下层书增加它的
3
10
,
这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?解析:上层200本,下层250本
【详解】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+5
8
)x=(450﹣x)×(1+
3
10
)
13 8x=(450﹣x)×
13
10
13 8x=585﹣
13
10
x
117
40
x=585
x=200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
22.农夫将苹果树种在正方形果园里,为了保护苹果树,他在苹果树周围种了一些针叶树。
下图表示了不同列数的苹果树和针叶树数量的变化情况。
(1)完成下面的表格。
n苹果树数针叶树数
8
4
5
n的值是多少?(3)农夫想用更多的树苗做一个更大的果园,当果园扩大时,哪一种树会增加的比较快?为什么?
解析:(1)
n苹果树数针叶树数
(1)(1)8
(2)4(16)
5(25)(40)
(3)当n<4时,针叶树的数量会增加的比较快。
当n>4时,苹果树的数量会增加的比较快。
因为,果园扩大时,列数每增大1列,由n增加到n+1;苹果树的数量会增加(n+1)2-
n2=2n+1棵,针叶树的数量总是固定增加8棵。
那么当2n+1<8,即n<4时,针叶树的数量会增加的比较快;当2n+1>8,即n>4时,n越大苹果树的数量会增加的越快。
【详解】
略
23.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
解析:上层48本;下层42本
【详解】
8÷(
8
87
+
﹣
4
45
+
)
=8÷(
8
15
﹣
4
9
)
=8÷ 4 45
=90(本)
则原来上层有书:90×
8
87
+
=48(本)
下层有书:90×
7
87
+
=42(本)
答:原来上层有书48本,下层有书42本。
24.一辆客车和一辆货车上午8:00同时分别从甲、乙两地出发相向而行,客车每小时行
驶60千米,当行驶了全程的
7
12
时与货车相遇。
已知货车行驶完全程要8小时,两车相遇
是什么时刻?甲、乙两地间的路程是多少千米?
解析:11时20分;2400
7
千米
【分析】
根据题意可知,相同的时间内,客车行驶了全程的
7
12
,货车行驶了全程的
5
12
,则两车行
驶的路程比为7∶5;当时间一定是,路程比和速度比相同,则两车的速度比也为7∶5,用60÷7×5即可求出货车的速度,用货车的速度乘时间即可求出全程;用总路程除以它们的速度和即可求出相遇的时间,再加上开始的时间,即可求出相遇的时刻。
【详解】
根据题意可知,两车的速度比为7∶5;
60÷7×5
=60
7
×5
=300
7
(千米);
300 7×8=
2400
7
(千米);
2400 7÷(60+
300
7
)
=2400
7
÷
720
7
=31
3
(小时);
8时+31
3
小时=11
1
3
时,即11时20分;
答:两车相遇是11时20分,甲、乙两地间的路程是2400
7
千米。
【点睛】
根据题意,先求出两车的速度比是解答本题的关键,进而求出货车的速度和全程,从而解答。
25.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。
小圆的半径是2cm,大圆的半径是6cm。
(1)当小圆从大圆上的点A出发,沿着大圆滚动,第一次回到点A时,小圆的圆心走过路线的长度是多少厘米?
(2)小圆未滚动时,小圆上的点M与大圆上的点A重合,从小圆滚动后开始计算,当点M第10次与大圆接触时,点M更接近大圆上的点()。
(括号里填A、B、C或D。
)
解析:(1)50.24厘米
(2)B
【分析】
(1)当小圆从大圆上的点 A 出发,沿着大圆滚动,第一次回到点 A 时,小圆的圆心走过路线的长度是半径为6+2=8厘米的圆一周的长度;
(2)小圆的半径是 2cm ,大圆的半径是 6cm,则小圆滚动3圈后才能回到A点,这个过程中M点与大圆接触3次;M第9次与大圆接触时,小圆又回到A点,小圆第10次与大
圆接触时,是走了大圆一周的1
3
,即12.56厘米,更接近于B点。
【详解】
(1)2×3.14×(2+6)
=2×3.14×8
=50.24(厘米)
答:小圆的圆心走过路线的长度是50.24厘米。
(2)根据分析可得,当点 M 第10次与大圆接触时,点 M 更接近大圆上的点B。
【点睛】
本题考查圆的周长,解答本题的关键是分析圆的运动轨迹。
26.仙居目前的居民用电电价是0.55元/千瓦时。
为了倡导建设“节约型社会”,鼓励市民安
装分时电表实行峰谷时谷电价,具体收费标准如下:
时段峰时(8:00~22:00)谷时(22:00~次日8:00)每千瓦时电价(元)0.630.43
分时电表,一年能节约多少钱?
解析:176元
【分析】
根据单价×数量=总价,求出孔强家安装分时电表的费用;根据比的意义,用总用电量÷峰
时和谷时用电量总份数,求出一份数对应用电量,一份数用电量分别乘峰时和谷时对应份
数,求出峰时和谷时用电量,峰时用电量×单价+谷时用电量×单价=安装分时电表总费
用,再求出安装前和安装后的费用差即可。
【详解】
4800×0.55=2640(元)
4800÷(5+7)
=4800÷12
=400(千瓦时)
400×5=2000(千瓦时)
400×7=2800(千瓦时)
2000×0.63+2800×0.43
=1260+1204
=2464(元)
2640-2464=176(元)
答:装分时电表,一年能节约176元钱。
【点睛】
关键是理解比的意义,按比例分配应用题关键是先求出一份数。
27.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑
瓷砖。
(如图所示)
(1)填写下列表格。
想一想,这些数量之间有什么关系?
大正方形每边的块数3
黑瓷砖块数8
解析:(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。
【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4
=9×4
=36(块);
答:黑瓷砖用了36块。
【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。
28.在新农村的建设中,小强到修路现场做调查。
他问工人叔叔要修的路有多长,工人叔叔说:“已经修好的和还没修的长度的比是2∶5,再修450米,已经修好的和还没修的长度的比是1∶2”,要修的路总长多少米?
解析:9450米
【分析】
根据两个已经修好的和还没修的长度的比,再修450米前,修好的占总长度的
2
25
+
,再修
450米后,修好的占总长度的
1
12
+
,前后相差
1
12
+
-
2
25
+
,相差450米,用450米÷对应
分率=路的总长。
【详解】
450÷(
1
12
+
-
2
25
+
)
=450÷(1
3
-
2
7
)
=450÷
121
=9450(米)
答:要修的路总长9450米。
【点睛】
关键是理解比的意义,通过两个比确定对应分率,部分数量÷对应分率=总体数量。
29.小红读一本故事书,第一天读了全书的1
6
,第二天读了36页。
这时已读页数与剩下页
数的比是5∶7,小红再读多少页就能读完这本书? 解析:84页 【分析】
设这本书有x 页,通过已读页数与剩下页数的比可知,已读页数占总页数的5
57
+,未读页数占总页数的
7
57
+,根据总页数×第一天读的对应分率+第二天读的页数=总页数×已读页数的对应分率,列出方程求出全书总页数,用全书总页数×未读页数的对应分率即可。
【详解】
解:设这本书有x 页。
15366571536612
51
361261
364
x x x x x x x +=++=-==
144x =
77
144144845712
⨯
=⨯=+(页) 答:小红再读84页就能读完这本书。
【点睛】
关键是找到等量关系,理解分数乘法和比的意义。
30.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3,第二周加工了总任务的1
3
,已知两周一共加工了140个零件。
王叔叔
接到的任务是一共要加工多少个零件? 解析:240个 【分析】
根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的
131+=1
4
,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总个数,据此列式解答。
【详解】 第一周完成了131+=14
140÷(14
+13) =140÷712 =140×
127
=240(个)
答:王叔叔接到的任务是一共要加工240个零件。
【点睛】
题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。
31.聪聪读一本故事书,读完的页数比这本书总页数的1
3
还多20页。
此时,读完的页数与
未读页数的比是5:7,这本书一共有多少页? 解析:240页 【分析】
可设这本书一共有x 页,根据读完的页数与未读页数的比是5:7可知,已读的页数是整本书的
557+;据此根据已读的页数又是这本书总页数的1
3
还多20页列方程,求解即可。
【详解】
解:设这本书一共有x 页。
1520357x x +=+ 1
2012
x = 240x =
答:这本书一共有240页。
【点睛】
列方程解应用问题,认真读题,找出等量关系,列出方程是解题关键。
32.三角形ABC 的三条边都是6厘米,高AH 为5.2厘米,分别以A 、B 、C 三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。
(π取3.14)
解析:32平方厘米
【分析】
根据题干三角形ABC是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。
【详解】
一个小扇形的面积是:
60
360
×3.14×62
=60
360
×3.14×36
=18.84(平方厘米)
等边三角形的面积为:
6×5.2÷2=15.6(平方厘米)
这三段弧所围成的图形的面积是:
18.84×3﹣15.6×2
=56.52﹣31.2
=25.32(平方厘米)
答:这三段弧所围成的图形的面积是25.32平方厘米。
【点睛】
此题考查了扇形的面积公式与三角形的面积公式的灵活应用,根据题干,将这个组合图形的面积问题转化成求扇形和三角形的面积问题是解决本题的关键。
33.某赛车的左、右轮的距离是2m,因此在转弯时,外侧的轮子比内侧的轮子要多走一些路。
当赛车绕下面的运动场跑一圈时,外轮比内轮多走多少米?
解析:56m
【详解】
(50÷2+2)×2=54(m)
3.14×54-3.14×50=12.56(m)
34.“外方内圆”是中国建筑中经常能见到的设计,而且“外方”与“内圆”的面积比是固定的。
(1)如图所示,“内圆”的半径是r,它的面积是________;“外方”的面积是________。
(用含有字母的式子表示以上结果)
(2)所以,S外方:S内圆=________:________。
(3)如图中正方形的面积是20平方厘米,那么图中“内圆”的面积是多少平方厘米?
解析:(1)πr2;4r2
(2)4;π
(3)20÷4×π=5π=15.7(cm2)
【分析】
(1)已知圆的半径,那么内圆的面积=πr2;外方的面积=4×r2;
(2)化简比时,用比的基本性质作答即可,即比的前项和后项同时乘或除以相同的数(0除外),比值不变;
可
【详解】
(1)“内圆”的半径是r,它的面积是πr2;“外方”的面积是4r2;
(2)由(1)得S外方:S内圆=πr2:4r2=4:π。
(3)内圆的面积=正方形的面积×π÷4,据此作答即
35.甲、乙两车同时从A、B两地相向而行,两车在离中点20千米处相遇,已知甲车每小时行50千米,乙车每小时比甲车多行20%,求A、B两地间的路程。
解析:440千米
【分析】
已知甲车每小时行50千米,乙车每小时比甲车多行20%,则乙车的速度是50×(1+20%)=60(千米/时),两车在离中点20千米处相遇,由此可知,乙车比甲车多行了20×2=40(千米),用乙车行驶的路程-甲车行驶的路程=40,据此列方程、解方程即可。
【详解】
解:设甲、乙两车行驶了x小时。
50×(1+20%)x-50x=20×2
60x-50x=40
10x=40
x=4
(50+60)×4
=110×4
=440(千米)
答:A、B两地间的路程是440千米。
【点睛】
本题考查相遇问题,明确等量关系是解题的关键。
36.一杯盐水,第一次加入一定量的水后,盐占盐水的20%;第二次又加入同样多的水,盐水的含盐百分比变为15%;
(1)第二次又加入同样多的水,盐水的含盐百分比变为15%,则盐:盐水=(________:________)。
(2)若第三次再加入同样多的水,含盐率为百分之几?
解析:(1)3;20
(2)解:将原来有盐水看成单位1,设第一次加入水x,则第一次加入水x后,盐占盐水的20%,此时含盐(1+x)×20%。
同理,第二次加入同样多的水x,含盐(1+x+x)×15%。
因为盐的量没有发生变化,所以(1+x)×20%=(1+x+x)×15%,x=0.5
则第三次再加入同样多的水,含盐率:(1+0.5)×20%÷(1+0.5×3)=0.12=12%。
【详解】
(1)盐水的含盐率=盐的质量÷(盐的质量+水的质量),所以将含盐率写成分数的形式,然后化成比即可;
(2)可以用分数作答,即设第一次加入水x,把原来有盐水看成单位“1”,那么第一次加水后,盐的质量=(原来盐水的质量+水的质量)×第一次加水后的含盐率,第二次加水后,盐的质量=(原来盐水的质量+水的质量+水的质量)×第二次加水后的含盐率,由于整个过程中,盐的质量没有发生变化,所以第一次加水后盐的质量=第二次加水后盐的质量,据此可以解得x的值,那么第三次再加入同样多的水后的含盐率=盐的质量÷(原来盐水的质量+每次加入水的质量×3),据此作答即可。
37.一辆汽车从甲地开往乙地,行了一段路程后,离乙地还有180km,接着又行了全程的20%,这时已行路程与未行路程的比是3:2.甲、乙两地相距多少千米?
解析:300千米
【详解】
180÷(
2
32
+20%)=300(千米)
答:甲、乙两地相距300千米.
38.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
解析:174个
【详解】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个。