高考理科数学试题及答案2180

合集下载

完整word版四川省高考数学试卷理科答案与解析

完整word版四川省高考数学试卷理科答案与解析

2021年四川省高考数学试卷〔理科〕参考答案与试题解析一、选择题:每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕〔2021?四川〕〔1+x〕7的展开式中x2的系数是〔〕A.42B.35C.28D .21考点:二项式定理.专题:计算题.分析:由题设,二项式〔1+x〕7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是,计算出答案即可得出正确选项解答:解:由题意,二项式〔1+x〕7的展开式通项是Tr+1=xr故展开式中x2的系数是=21应选D点评:此题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键2.〔5分〕〔2021?四川〕复数=〔〕A.1 B.﹣1 C.i D.﹣i考点:复数代数形式的混合运算.专题:计算题.分析:由题意,可先对分子中的完全平方式展开,整理后即可求出代数式的值,选出正确选项解答:解:由题意得,应选B点评:此题考查复合代数形式的混合运算,解题的关键是根据复数的运算规那么化简分子3.〔5分〕〔2021?四川〕函数在x=3处的极限是〔〕A.不存在B.等于6 C.等于3 D.等于0考点:极限及其运算.专题:计算题.分析:对每一段分别求出其极限值,通过结论即可得到答案.1解答:解:∵=x+3;∴f〔x〕=〔〕=6;而f〔x〕=[ln〔x﹣2〕]=0.即左右都有极限,但极限值不相等.故函数在x=3处的极限不存在.应选:A.点评:此题主要考察函数的极限及其运算.分段函数在分界点处极限存在的条件是:两段的极限都存在,且相等.4.〔5分〕〔2021?四川〕如图,正方形ABCD的边长为 1,延长BA至E,使AE=1,连接EC、ED那么sin∠CED=〔〕A.B.C.D.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的图像与性质.分析:法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.解答:解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.应选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.应选B.2点评:此题综合考查了正弦定理和余弦定理,属于根底题,题后要注意总结做题的规律.5.〔5分〕〔2021?四川〕函数 y=a x﹣〔a >0,a ≠1〕的图象可能是〔〕A .B .C .D .考点:函数的图象.专题:函数的性质及应用. 分析:讨论a 与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可. 解答:解:函数y=a x ﹣ 〔a >0,a ≠1〕的图象可以看成把函数 y=a x的图象向下平移 个单位得到的. 当a >1时,函数 y=a x ﹣ 在R 上是增函数,且图象过点〔﹣ 1,0〕,故排除 A ,B .B 当1>a >0时,函数 y=a x﹣ 在R 上是减函数,且图象过点〔﹣ 1,0〕,故排除 C ,应选D .点评:此题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,表达了分类讨论的数学思想,属于根底题.6.〔5分〕〔2021?四川〕以下命题正确的选项是〔 〕.假设两条直线和同一个平面所成的角相等,那么这两条直线平行.假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行C .假设一条直线平行于两个相交平面,那么这条直线与这两个平面的交线平行D .假设两个平面都垂直于第三个平面,那么这两个平面平行考点:命题的真假判断与应用;空间中直线与平面之间的位置关系. 专题:简易逻辑.分析:利用直线与平面所成的角的定义,可排除 A ;利用面面平行的位置关系与点到平面的 距离关系可排除 B ;利用线面平行的判定定理和性质定理可判断 C 正确;利用面面垂 直的性质可排除 D .解答:解:A 、假设两条直线和同一个平面所成的角相等,那么这两条直线平行、相交或异面,故A 错误;、假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行或相交,故 错误;3C 、设平面α∩β=a ,l ∥α,l ∥β,由线面平行的性质定理,在平面 α内存在直线 b ∥l , 在平面β内存在直线 c ∥l ,所以由平行公理知 b ∥c ,从而由线面平行的判定定理可证 明b ∥β,进而由线面平行的性质定理证明得 b ∥a ,从而l ∥a ,故C 正确;D ,假设两个平面都垂直于第三个平面,那么这两个平面平行或相交,排除 D . 应选C .点评:此题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属根底题.7.〔5分〕〔2021?四川〕设 、都是非零向量,以下四个条件中,使成立的充分条件是〔 〕A .B .C .D .且考点:充分条件. 专题:简易逻辑.分析:利用向量共线的充要条件,求等式的充要条件,进而可利用命题充要条件的定义得其充分条件 解答: 解: ? ? 与 共线且同向? 且λ>0,应选C .点评:此题主要考查了向量共线的充要条件,命题的充分和必要性,属根底题.8.〔5分〕〔2021?四川〕抛物线关于x 轴对称,它的顶点在坐标原点 O ,并且经过点M〔2,y 0〕.假设点M 到该抛物线焦点的距离为 3,那么|OM|=〔〕A .B .C .4D .考点:抛物线的简单性质.专题:计算题.分析:关键点M 〔2,y 0〕到该抛物线焦点的距离为3,利用抛物线的定义,可求抛物线方程,进而可得点 M 的坐标,由此可求|OM|.y 2=2px 〔p >0〕解答:解:由题意,抛物线关于x 轴对称,开口向右,设方程为∵点M 〔2,y 0〕到该抛物线焦点的距离为3,2+=3 p=2 抛物线方程为y 2=4x M 〔2,y 0〕 ∴∴ |OM|=4应选B.点评:此题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.9.〔5分〕〔2021?四川〕某公司生产甲、乙两种桶装产品.生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的方案中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产方案,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是〔〕A.1800元B.2400元C.2800元D.3100元考点:简单线性规划.专题:应用题.分析:根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可.解答:解:设分别生产甲乙两种产品为x桶,y桶,利润为z元那么根据题意可得,z=300x+400y作出不等式组表示的平面区域,如下图作直线L:3x+4y=0,然后把直线向可行域平移,由可得x=y=4,此时z最大z=2800点评:此题考查用线性规划知识求利润的最大值,这是简单线性规划的一个重要运用,解题的关键是准确求出目标函数及约束条件10.〔5分〕〔2021?四川〕如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,那么A、P两点间的球面距离为〔〕5A .B .C .D .考点:反三角函数的运用;球面距离及相关计算. 专题:计算题.分析:由题意求出 AP 的距离,然后求出 ∠AOP ,即可求解 A 、P 两点间的球面距离.解答:解:半径为R 的半球O 的底面圆 O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,所以CD ⊥平面AOB ,因为∠BOP=60°,所以△OPB 为正三角形,P 到BO 的距离为PE= ,E 为BQ 的中点,AE== ,AP= =,AP 2=OP 2+OA 2﹣2OP?OAcos ∠AOP ,,cos ∠AOP=,∠AOP=arccos ,A 、P 两点间的球面距离为 , 应选A .点评:此题考查反三角函数的运用, 球面距离及相关计算,考查计算能力以及空间想象能力.11.〔5分〕〔2021?四川〕方程 ay=b 2x 2+c 中的a ,b ,c ∈{﹣3,﹣2,0,1,2,3},且a ,b , c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有〔 〕 A .60条 B .62条 C .71条 D .80条考点:排列、组合及简单计数问题. 专题:综合题;压轴题. 分析:方程变形得 ,假设表示抛物线,那么 a ≠0,b ≠0,所以分 b=﹣3,﹣2,1,2,6五种情况,利用列举法可解. 解答:解:方程变形得 ,假设表示抛物线,那么 a ≠0,b ≠0,所以分 b=﹣3,﹣2,1,2,3五种情况:1〕当b=﹣3时,a=﹣2,c=0,1,2,3或a=1,c=﹣2,0,2,3或a=2,c=﹣2,0, 1,3或a=3,c=﹣2,0,1,2;2〕当b=3时,a=﹣2,c=0,1,2,﹣3或a=1,c=﹣2,0,2,﹣3或a=2,c=﹣2, 0,1,﹣3或a=﹣3,c=﹣2,0,1,2; 以上两种情况下有 9条重复,故共有 16+7=23条; 3〕同理当b=﹣2或b=2时,共有16+7=23条;4〕当b=1时,a=﹣3,c=﹣2,0,2,3或a=﹣2,c=﹣3,0,2,3或a=2,c=﹣3,﹣2,0,3或a=3,c=﹣3,﹣2,0,2;共有16条. 综上,共有 23+23+16=62种 应选B .点评:此题难度很大,假设采用排列组合公式计算,很容易无视重复的 9条抛物线.列举法是 解决排列、组合、概率等非常有效的方法.要能熟练运用12.〔5分〕〔2021?四川〕设函数 f 〔x 〕=2x ﹣cosx ,{a n }是公差为 的等差数列,f 〔a 1〕+f 〔a 2〕+ +f 〔a 5〕=5π,那么 =〔 〕A .0B .C .D .考数列与三角函数的综合. 点 :专计算题;综合题;压轴题.题:分由f 〔x 〕=2x ﹣cosx ,又{a n}是公差为的等差数列,可求得125〕析f 〔a〕+f 〔a 〕++f 〔a:=10a ﹣cosa 〔1+ +〕,由题意可求得a=,从而可求得答案.333解解:∵f 〔x 〕=2x ﹣cosx ,答 ∴f 〔a 〕+f 〔a 〕++f 〔a 〕=2〔a+a++a 〕﹣〔cosa+cosa++cosa 〕,1 251 2 5 12 5:∵{a n }是公差为的等差数列,∴a 1+a 2+ +a 5=5a 3,由和差化积公式可得, cosa 1+cosa 2+ +cosa 5=〔cosa 1+cosa 5〕+〔cosa 2+cosa 4〕+cosa 3=[cos 〔a 3﹣ ×2〕+cos 〔a 3+ ×2〕]+[cos 〔a 3﹣〕+cos 〔a 3+ 〕]+cosa 37=2cos cos+2coscos+cosa3=2cosa3?+2cosa3?cos〔﹣〕+cosa3=cosa3〔1++〕,f〔a1〕+f〔a2〕++f〔a5〕=5π,∴10a33〕=5π,+cosa〔1++cosa3=0,10a3=5π,故a3=,∴2=π﹣〔﹣〕?=π2﹣.应选D.点此题考查数列与三角函数的综合,求得cosa3=0,继而求得a3=是关键,也是难点,考评:查分析,推理与计算能力,属于难题.二、填空题〔本大题共4个小题,每题4分,共16分.把答案填在答题纸的相应位置上.〕13.〔4分〕〔2021?四川〕设全集U={a,b,c,d},集合A={a,b},B={b,c,d},那么〔?U A〕∪〔?B〕={a,c,d}.U考点:交、并、补集的混合运算.专题:集合.分析:由题意全集U={a,b,c,d},集合A={a,b},B={b,c,d},可先求出两集合A,B 的补集,再由并的运算求出〔?U A〕∪〔?U B〕解答:解:集U={a,b,c,d},集合A={a,b},B={b,c,d},所以?U A={c,d},?U B={a},所以〔?U A〕∪〔?U B〕={a,c,d}故答案为{a,c,d}点评:此题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规那么14.〔4分〕〔2021?四川〕如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,那么异面直线A1M与DN所成的角的大小是90°.8考点:异面直线及其所成的角.专题:计算题.分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.解答:解:以D为坐标原点,建立如下图的空间直角坐标系.设棱长为2,那么D〔0,0,0〕,N〔0,2,1〕,M〔0,1,0〕,A1〔2,0,2〕,=〔0,2,1〕,=〔﹣2,1,﹣2〕?=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.点评:此题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否那么容易由于计算失误而出错.15.〔4分〕〔2021?四川〕椭圆的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是3.考点:椭圆的简单性质.专题:计算题;压轴题.分析:先画出图象,结合图象得到△FAB的周长最大时对应的直线所在位置.即可求出结论.解答:解:设椭圆的右焦点为E.如图:由椭圆的定义得:△FAB的周长:AB+AF+BF=AB+〔2a﹣AE〕+〔2a﹣BE〕=4a+AB9AE﹣BE;AE+BE≥AB;AB﹣AE﹣BE≤0,当AB过点E时取等号;AB+AF+BF=4a+AB﹣AE﹣BE≤4a;即直线x=m过椭圆的右焦点E时△FAB的周长最大;此时△FAB的高为:EF=2.此时直线x=m=c=1;把x=1代入椭圆的方程得:y=±.AB=3.所以:△FAB的面积等于:S△FAB=×3×EF=×3×2=3.故答案为:3.点评:此题主要考察椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.解决此题的关键在于利用定义求出周长的表达式.16.〔4分〕〔2021?四川〕记[x]为不超过实数x的最大整数,例如,[2]=2,]=1,[﹣0.3]=﹣1.设a为正整数,数列{x n}满足x1=a,,现有以下命题:①当a=5时,数列{x n}的前3项依次为5,3,2;②对数列{x}都存在正整数k,当n≥k时总有x=x;n nk③当n≥1时,;④对某个正整数k,假设x k+1≥x k,那么.其中的真命题有①③④.〔写出所有真命题的编号〕考点:命题的真假判断与应用.专题:证明题;压轴题;新定义.分析:按照给出的定义对四个命题结合数列的知识逐一进行判断真假,①列举即可;②需10举反例;③可用数学归纳法加以证明;④可由归纳推理判断其正误.解答:解:①当a=5时,x1=5,,,∴①正确.②当a=8时,x1=8,∴此数列从第三项开始为3,2,3,2,3,2为摆动数列,故②错误;③当n=1时,x1=a,∵a﹣〔〕=>0,∴x1=a>成立,假设n=k时,,那么n=k+1时,,∵≥≥=〔当且仅当x k=时等号成立〕,∴>,∴对任意正整数 n,当n≥1时,;③正确;④≥x k,由数列①②规律可知一定成立11故正确答案为①③④点评:此题主要考查了数列递推公式的应用,归纳推理和演绎推理的方法,直接证明和间接证明方法,数学归纳法的应用,难度较大,需有较强的推理和思维能力三、解答题〔本大题共6个小题,共74分.解容许写出必要的文字说明,证明过程或演算步骤.〕17.〔12分〕〔2021?四川〕某居民小区有两个相互独立的平安防范系统〔简称系统〕A和B,系统A和B在任意时刻发生故障的概率分别为和p.〔Ⅰ〕假设在任意时刻至少有一个系统不发生故障的概率为,求p的值;〔Ⅱ〕设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:〔Ⅰ〕求出“至少有一个系统不发生故障〞的对立事件的概率,利用至少有一个系统不发生故障的概率为,可求p的值;〔Ⅱ〕ξ的所有可能取值为0,1,2,3,求出相应的概率,可得ξ的分布列与数学期望.解答:解:〔Ⅰ〕设“至少有一个系统不发生故障〞为事件C,那么∴;〔Ⅱ〕ξ的可能取值为0,1,2,3P〔ξ=0〕=;P〔ξ=1〕=;P〔ξ=2〕==;P〔ξ=3〕=;∴ξ的分布列为ξ0123P数学期望Eξ=0×+1×+2×+3×=点评:此题考查概率知识的求解,考查离散型随机变量的分布列与期望,属于中档题.18.〔12分〕〔2021?四川〕函数f〔x〕=6cos 2sinωx﹣3〔ω>0〕在一个周期内的图象如下图,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.〔Ⅰ〕求ω的值及函数f〔x〕的值域;12〔Ⅱ〕假设f 〔x 0〕=0 ∈〔﹣ 0〕的值.,且x 〕,求f 〔x+1考点:由y=Asin 〔ωx+φ〕的局部图象确定其解析式;三角函数的化简求值;正弦函数的定义域和值域.专题:计算题;综合题.分析:〔Ⅰ〕将f 〔x 〕化简为f 〔x 〕=2 sin 〔ωx+〕,利用正弦函数的周期公式与性质可求ω的值及函数f 〔x 〕的值域;〔Ⅱ〕由,知x 0+∈〔﹣, 〕,由,可求得即sin 〔 x 0+ 〕=,利用两角和的正弦公式即可求得f 〔x 0+1〕. 解答:解:〔Ⅰ〕由可得,f 〔x 〕=3cos ωx+ sin ωx=2sin 〔ωx+〕,又正三角形 ABC 的高为2 ,从而BC=4,∴函数f 〔x 〕的周期T=4×2=8,即 =8,ω= ,∴函数f 〔x 〕的值域为[﹣2 ,2].〔Ⅱ〕∵f 〔x 0〕= ,由〔Ⅰ〕有f 〔x 0〕=2 sin 〔 x 0+〕= ,即sin 〔x 0+〕=,由,知x 0+ ∈〔﹣,〕,∴cos 〔 x 0+ 〕==.∴f 〔x +1〕=2sin 〔x++〕=2sin[〔 x+〕+]=2[sin 〔x+〕cos+cos 〔 x 0+ 〕sin ]=2 〔 ×+× 〕.点评:此题考查由y=Asin 〔ωx+φ〕的局部图象确定其解析式,着重考查三角函数的化简求值与正弦函数的性质,考查分析转化与运算能力,属于中档题.1319.〔12分〕〔2021?四川〕如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.〔Ⅰ〕求直线PC与平面ABC所成角的大小;〔Ⅱ〕求二面角B﹣AP﹣C的大小.考点:用空间向量求平面间的夹角;直线与平面所成的角;用空间向量求直线与平面的夹角.分析:解法一〔Ⅰ〕设AB中点为D,AD中点为O,连接OC,OP,CD.可以证出∠OCP为直线PC与平面ABC所成的角.不妨设PA=2,那么OD=1,OP=,AB=4.在RT△OCP中求解.〔Ⅱ〕以O为原点,建立空间直角坐标系,利用平面APC的一个法向量与面ABP的一个法向量求解.解法二〔Ⅰ〕设AB中点为D,连接CD.以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.利用与平面ABC的一个法向量夹角求解.〔Ⅱ〕分别求出平面APC,平面ABP的一个法向量,利用两法向量夹角求解.解答:解法一〔Ⅰ〕设AB中点为D,AD中点为O,连接OC,OP,CD.因为AB=BC=CA,所以CD⊥AB,因为∠APB=90°,∠PAB=60°,所以△PAD为等边三角形,所以PO⊥AD,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD.PO⊥平面ABC,∠OCP为直线PC与平面ABC所成的角不妨设PA=2,那么OD=1,OP=,AB=4.所以CD=2,OC===在RT△OCP中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan.〔Ⅱ〕过D作DE⊥AP于E,连接CE.由,可得CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角B﹣AP﹣C的平面角.由〔Ⅰ〕知,DE=,在RT△CDE中,tan∠CED===2,故二面角B﹣AP﹣C的大小为arctan2.解法二:〔Ⅰ〕设AB中点为D,连接CD.因为O在AB上,且O为P在平面ABC内的射影,所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因为AB=BC=CA,所以CD⊥AB,设E为AC中点,那么EO∥CD,从而OE⊥PO,OE⊥AB.14如图,以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,由可得,AB=4,OA=OD=1,OP=,CD=2,所以O〔0,0,0〕,A〔﹣1,0,0〕,C〔1,2,0〕,P〔0,0,〕,所以=〔﹣1,﹣2,〕=〔0,0,〕为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,那么sinα===.故直线PC与平面ABC所成的角大小为arcsin〔Ⅱ〕由〔Ⅰ〕知,=〔1,0,〕,=〔2,2,0〕.设平面APC的一个法向量为=〔x,y,z〕,那么由得出即,取x=﹣,那么y=1,z=1,所以=〔﹣,1,1〕.设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=〔0,1,0〕,那么cosβ===.故二面角B﹣AP﹣C的大小为arccos.15点评:此题考查线面关系,直线与平面所成的角、二面角等根底知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题能力.20.〔12分〕〔2021?四川〕数列{a}的前n项和为S,且aa=S+S对一切正整数n都n n2n2n成立.〔Ⅰ〕求a1,a2的值;〔Ⅱ〕设a1>0,数列{lg}的前n项和为T n,当n为何值时,T n最大?并求出T n的最大值.考点:数列递推式;数列的函数特性;数列的求和.专题:计算题.分析:〔Ⅰ〕由题意,n=2时,由可得,a221222≠0,〔a﹣a〕=a,分类讨论:由a=0,及a分别可求a1,a2〔Ⅱ〕由a1>0,令,可知==,结合数列的单调性可求和的最大项解答:解:〔Ⅰ〕当n=1时,a2a1=S2+S1=2a1+a2①当n=2时,得②②﹣①得,a2〔a2﹣a1〕=a2③假设a2=0,那么由①知a1=0,假设a2≠0,那么a2﹣a1=1④①④联立可得或综上可得,a1=0,a2=0或或〔Ⅱ〕当a1>0,由〔Ⅰ〕可得当n≥2时,,∴∴〔n≥2〕∴=令16由〔Ⅰ〕可知= ={b n }是单调递减的等差数列,公差为﹣lg2b 1>b 2>>b 7=当n ≥8时,∴数列的前7项和最大, = =7﹣点评:此题主要考查了利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,还考查了一定的逻辑运算与推理的能力.21.〔12分〕〔2021?四川〕如图,动点M 到两定点A 〔﹣1,0〕、B 〔2,0〕构成△MAB ,且∠MBA=2∠MAB ,设动点M 的轨迹为C .〔Ⅰ〕求轨迹C 的方程;〔Ⅱ〕设直线y=﹣2x+m 与y 轴交于点 P ,与轨迹C 相交于点Q 、R ,且|PQ|<|PR|,求的取值范围.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题. 专题:综合题;压轴题.分析:〔Ⅰ〕设出点M 〔x ,y 〕,分类讨论,根据∠MBA=2∠MAB ,利用正切函数公式,建立方程化简即可得到点 M 的轨迹方程;〔Ⅱ〕直线y=﹣2x+m 与3x 2﹣y 2﹣3=0〔x >1〕联立,消元可得x 2﹣4mx+m 2+3=0①, 利用①有两根且均在〔1,+∞〕内可知,m >1,m ≠2设Q ,R 的坐标,求出x R ,x Q ,利用 ,即可确定的取值范围.解答:解:〔Ⅰ〕设M 的坐标为〔x ,y 〕,显然有x >0,且y ≠0当∠MBA=90°时,点M 的坐标为〔2,±3〕当∠MBA ≠90°时,x ≠2,由∠MBA=2∠MAB 有tan ∠MBA=,化简可得3x 2﹣y 2﹣3=0而点〔2,±3〕在曲线3x 2﹣y 2﹣3=0上17综上可知,轨迹 C 的方程为 3x 2﹣y 2﹣3=0〔x >1〕;〔Ⅱ〕直线y=﹣2x+m 与3x 2﹣y 2﹣3=0〔x >1〕联立,消元可得x 2﹣4mx+m 2+3=0①∴①有两根且均在〔1,+∞〕内设f 〔x 〕=x 2﹣4mx+m 2+3,∴ ,∴m >1,m ≠2设Q ,R 的坐标分别为〔 x Q ,y Q 〕,〔x R ,y R 〕, ∵|PQ|<|PR|,∴x R =2m+ ,x Q =2m ﹣ ,∴= =m >1,且m ≠2∴,且∴,且∴的取值范围是〔 1,7〕∪〔7,7+4〕点评:此题以角的关系为载体,考查直线、双曲线、轨迹方程的求解,考查思维能力,运算能力,考查思维的严谨性,解题的关键是确定参数的范围.22.〔14分〕〔2021?四川〕 a 为正实数,n 为自然数,抛物线 与x 轴正半 轴相交于点 A ,设f 〔n 〕为该抛物线在点 A 处的切线在 y 轴上的截距. 〔Ⅰ〕用a 和n 表示f 〔n 〕;〔Ⅱ〕求对所有 n 都有成立的a 的最小值;〔Ⅲ〕当0<a <1时,比拟与 的大小,并说明理由.考圆锥曲线的综合;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中点:的应用. 专 综合题;压轴题. 题:18分析:〔Ⅰ〕根据抛物线与x 轴正半轴相交于点A ,可得A 〔 〕,进一步可求抛物线在点A 处的切线方程,从而可得f 〔n 〕;〔Ⅱ〕由〔Ⅰ〕知f 〔n 〕=a n,那么成立的充要条件是a n ≥2n 3+1,即n3n4 nn3知,a ≥2n+1对所有n 成立,当a= ,n ≥3时,a > =〔1+3〕>2n+1,当n=0,1,2时,,由此可得a 的最小值;〔Ⅲ〕由〔Ⅰ〕知f 〔k 〕=a k,证明当0<x <1时,,即可证明:.解答:解:〔Ⅰ〕∵抛物线 与x 轴正半轴相交于点A ,∴A 〔 〕对求导得y ′=﹣2x∴抛物线在点A 处的切线方程为,∴∵f 〔n 〕为该抛物线在点A 处的切线在y 轴上的截距,∴f 〔n 〕=a n;n成立的充要条件是n3〔Ⅱ〕由〔Ⅰ〕知f 〔n 〕=a ,那么a ≥2n+1即知,a n ≥2n 3+1对所有n 成立,特别的,取n=2得到a ≥当a=,n ≥3时,a n >4n=〔1+3〕n≥1+=1+2n 3+>2n 3+1当n=0,1,2时,∴a= 时,对所有n 都有 成立∴a 的最小值为 ;〔Ⅲ〕由〔Ⅰ〕知〔fk 〕=a k,下面证明:首先证明:当 0<x <1时,19设函数g 〔x 〕= x 〔x 2﹣x 〕+1,0<x <1,那么g ′〔x 〕= x 〔x ﹣〕当0<x < 时,g ′〔x 〕<0;当时,g ′〔x 〕>0故函数g 〔x 〕在区间〔0,1〕上的最小值 g 〔x 〕min =g 〔 〕=0∴当0<x <1时,g 〔x 〕≥0,∴由0<a <1知0<a k<1,因此 ,从而=≥ =>=点此题考查圆锥曲线的综合,考查不等式的证明,考查导数的几何意义,综合性强,属评:于中档题.20。

高考数学试卷(理科)及答案(Word版)

高考数学试卷(理科)及答案(Word版)

普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中, 只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1, 2] (C) [-2, 2] (D) [-2, 1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7 (B) -4(C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1 (B) 32 (C) 2(D) 3 (6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5 (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =u u u r u u u r , 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD =1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.(18) (本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r , 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =. (Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 11 -威武不屈舍死忘生肝胆相照克己奉公一丝不苟两袖清风见礼忘义永垂不朽顶天立地豁达大度兢兢业业卖国求荣恬不知耻贪生怕死厚颜无耻描写人物神态的成语神采奕奕眉飞色舞昂首挺胸惊慌失措漫不经心垂头丧气没精打采愁眉苦脸大惊失色炯炯有神含有夸张成分的成语怒发冲冠一目十行一日千里一字千金百发百中——一日三秋一步登天千钧一发不毛之地不计其数胆大包天寸步难行含——比喻成分的成语观者如云挥金如土铁证如山爱财如命稳如泰山门庭若市骨瘦如柴冷若冰霜如雷贯耳守口如瓶浩如烟海高手如林春天阳春三月春光明媚春回大地春暖花开春意盎然春意正浓风和日丽春花烂漫春天的景色鸟语花香百鸟鸣春百花齐放莺, 歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓夏天的景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天——天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪, 地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万, 物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳绚丽多彩五彩缤纷草绿草如茵一碧千里杂草丛生生机勃勃绿油油树苍翠挺拔郁郁葱葱枯木逢春秀丽多姿青翠欲滴林海雪原耸入云天瓜果蔬菜清香鲜嫩青翠欲滴果园飘香果实累累果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

2023年吉林省高考理科数学真题及参考答案

2023年吉林省高考理科数学真题及参考答案

2023年吉林省高考理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。

2023年高考全国甲卷理科数学+答案解析

2023年高考全国甲卷理科数学+答案解析

2023年高考理科数学(全国甲卷)一、选择题1.设集合{31,},{32,}A x x k k Z B x x k k Z ==+∈==+∈∣∣,U 为整数集,()A B =U ð()A.{|3,}x x k k =∈ZB.{31,}x x k k Z =-∈∣C.{32,}xx k k Z =-∈∣ D.∅2.若复数()()i 1i 2,R a a a +-=∈,则=a ()A.-1 B.0·C.1D.23.执行下面的程序框遇,输出的B =()A.21B.34C.55D.894.向量||||1,||a b c ==-=,且0a b c ++=,则cos ,a c b c 〈--〉= ()A.15-B.25-C.25D.455.已知正项等比数列{}n a 中,11,n a S =为{}n a 前n 项和,5354S S =-,则4S =()A.7B.9C.15D.306.有60人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线22221(0,0)x y a b a b-=>>的离心率为,其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.15B.5C.5D.59.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知()f x 为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数,则() y f x =与1122y x =-的交点个数为()A.1B.2C.3D.411.在四棱锥P ABCD -中,底面ABCD 为正方形,4,3,45AB PC PD PCA ===∠=︒,则PBC 的面积为()A.B.C. D.12.己知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则||PO =()A.25B.302C.35D.352二、填空题13.若2π(1)sin 2y x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.14.设x ,y 满足约束条件2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩,设32z x y =+,则z 的最大值为____________.15.在正方体1111ABCD A B C D -中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.16.在ABC 中,2AB =,60,BAC BC ∠=︒=,D 为BC 上一点,AD 为BAC ∠的平分线,则AD =_________.三、解答题17.已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.在三棱柱111ABC A B C -中,12AA =,1A C ⊥底面ABC ,90ACB ∠=︒,1A 到平面11BCC B 的距离为1.(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19.为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.318.420.120.421.523.224.624.825.025.426.126.326.426.526.827.027.427.527.628.3实验组:5.46.66.86.97.88.29.410.010.411.214.417.319.220.223.623.824.525.125.226.0(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:m<m≥对照组实验组(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:k 0.100.050.010()20P k k ≥ 2.7063.8416.63520.设抛物线2:2(0)C y px p =>,直线 2 10x y -+=与C 交于A ,B 两点,且||AB =.(1)求p ;(2)设C 的焦点为F ,M ,N 为C 上两点,0MF NF ⋅=,求MNF 面积的最小值.21.已知3sin π(),0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭(1)若8a =,讨论()f x 的单调性;(2)若()sin 2f x x <恒成立,求a 的取值范围.四、选做题22.已知(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),l 与x 轴,y 轴正半轴交于A ,B 两点,||||4PA PB ⋅=.(1)求α的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.23.已知()2||, 0 f x x a a a =-->.(1)解不等式()f x x<(2)若()y f x =与坐标轴围成的面积为2,求a .2023年高考理科数学(全国甲卷)答案解析一、选择题1.A 因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U A B x x k k ==∈Z ð.故选:A .2.C因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.3.B当1n =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112n =+=;当2n =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213n =+=;当3n =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314n =+=;当4n =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.4.D 因为0a b c ++= ,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=rr ,所以0a b ⋅=.如图,设,,OA a OB b OC c === ,由题知,1,OA OB OC OAB === 是等腰直角三角形,AB 边上的高22,22OD AD ==,所以23222CD CO OD =+=+=,1tan ,cos 3AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a cbc ACB ACD ACD 〈--〉=∠=∠=∠-24215=⨯-=.故选:D.5.C由题知()23421514q q q q q q ++++=++-,即34244q q q q +=+,即32440q q q +--=,即(2)(1)(2)0q q q -++=.由题知0q >,所以2q =.所以4124815S =+++=.故选:C.6.A 报名两个俱乐部的人数为50607040+-=,记“某人报足球俱乐部”为事件A ,记“某人报兵乓球俱乐部”为事件B ,则505404(),()707707P A P AB ====,所以4()7()0.85()7P AB P BA P A ===∣.故选:A .7.B当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选:B8.D 由e =,则222222215c a b b a a a +==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离55d ==,所以弦长45||5AB ===.故选:D 9.B记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天社区服务,也各有12种方法,所以恰有1人连续参加了两天社区服务的选择种数有51260⨯=种.故选:B.10.C因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.11.C 法一:连结,AC BD 交于O ,连结PO ,则O 为,AC BD 的中点,如图,因为底面ABCD 为正方形,4AB =,所以AC BD ==DO CO ==,又3PC PD ==,PO OP =,所以PDO PCO ≅ ,则PDO PCO ∠=∠,又3PC PD ==,AC BD ==PDB PCA ≅ ,则PA PB =,在PAC △中,3,45PC AC PCA ==∠=︒,则由余弦定理可得22222cos 32923172PA AC PC AC PC PCA =+-⋅∠=+-⨯⨯=,故PA =,则PB =,故在PBC 中,43,P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯,又0πPCB <∠<,所以22sin 3PCB ∠=,所以PBC的面积为1122sin 34223S PC BC PCB =⋅∠=⨯⨯⨯=法二:连结,AC BD 交于O ,连结PO ,则O 为,AC BD的中点,如图,因为底面ABCD 为正方形,4AB =,所以AC BD ==在PAC △中,3,45PC PCA =∠=︒,则由余弦定理可得2222cos 32923172PA AC PC AC PC PCA =+-⋅∠=+-⨯⨯=,故PA =,所以22217cos 217PA PC AC APC PA PC +-∠==-⋅,则17cos 3317PA PC PA PC APC ⎛⎫⋅=∠=⨯-=- ⎪ ⎪⎝⎭,不妨记,PB m BPD θ=∠=,因为()()1122PO PA PC PB PD =+=+ ,所以()()22PA PCPB PD +=+ ,即222222PA PC PA PC PB PD PB PD ++⋅=++⋅ ,则()217923923cos m m θ++⨯-=++⨯⨯,整理得26cos 110m m θ+-=①,又在PBD △中,2222cos BD PB PD PB PD BPD =+-⋅∠,即23296cos m m θ=+-,则26cos 230m m θ--=②,两式相加得22340m -=,故PB m ==故在PBC 中,43,P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯,又0πPCB <∠<,所以22sin 3PCB ∠=,所以PBC 的面积为11sin 34223S PC BC PCB =⋅∠=⨯⨯⨯=故选:C.12.B方法一:设12π2,02F PF θθ∠=<<,所以122212tan tan 2PF F F PF S b b θ∠== ,由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+,解得:1tan 2θ=,由椭圆方程可知,222229,6,3a b c a b ===-=,所以,12121116222PF F p p S F F y y =⨯⨯=⨯=⨯ ,解得:23p y =,即2399162p x ⎛⎫=⨯-= ⎪⎝⎭,因此302OP ==.故选:B .方法二:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:22121215,212PF PF PF PF =+=,而()1212PO PF PF =+ ,所以1212OP PO PF PF ==+ ,即1213022PO PF PF =+=.故选:B .方法三:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:221221PF PF +=,由中线定理可知,()()222212122242OP F F PF PF +=+=,易知12F F=,解得:302OP =.故选:B .二、填空题13.【答案】2【解析】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++,所以()()()()221cos s 1co f x x x x x f x -=-++++-==,又定义域为R ,故()f x 为偶函数,所以2a =.故答案为:2.14.【答案】15【解析】作出可行域,如图,由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1515.【答案】12【解析】设正方体棱长为2,EF 中点为O ,取AB ,1BB 中点,G M ,侧面11BB C C 的中心为N ,连接,,,,FG EG OM ON MN ,如图,由题意可知,O 为球心,在正方体中,2222222EF FG EG =++=,即2R =,则球心O 到1BB的距离为OM ==,所以球O 与棱1BB 相切,球面与棱1BB 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.故答案为:1216.【答案】2【解析】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:13212AD b +===+.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =由正弦定理可得,62sin 60sin sin b B C==,解得:62sin 4B =,2sin 2C =,因为1>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.三、解答题17.【答案】(1)1n a n =-(2)()1222nn T n ⎛⎫=-+ ⎪⎝⎭【解析】(1)因为2n n S na =,当1n =时,112a a =,即10a =;当3n =时,()33213a a +=,即32a =,当2n ≥时,()1121n n S n a --=-,所以()()11221n n n n n S S a na n a ---==--,化简得:()()121n n n a n a --=-,当3n ≥时,131122n n a a an n -====-- ,即1n a n =-,当1,2,3n =时都满足上式,所以()*1N n a n n =-∈.(2)因为122n n n a n +=,所以12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得,123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+-⎝=-⎭⨯-⨯ ,11122nn ⎛⎫⎛⎫=-+⎪⎪⎝⎭⎝⎭,即()1222nn T n ⎛⎫=-+ ⎪⎝⎭,*N n ∈.18.【答案】(1)证明见解析(2)13【解析】(1)如图,1AC ⊥ 底面ABC ,BC ⊂面ABC ,1A C BC ∴⊥,又BC AC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,BC ∴⊥平面ACC 1A 1,又BC ⊂平面11BCC B ,∴平面11ACC A ⊥平面11BCC B ,过1A 作11A O CC ⊥交1CC 于O ,又平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,1A O ∴⊥平面11BCC B 1A 到平面11BCC B 的距离为1,11∴=A O ,在11Rt A CC △中,111112,AC AC CC AA ⊥==,设CO x =,则12C O x =-,11111,,AOC AOC ACC △△△为直角三角形,且12CC =,22211CO A O A C +=,2221111A O OC C A +=,2221111A C A C C C +=,2211(2)4x x ∴+++-=,解得1x =,111AC A C A C ∴===1AC AC ∴=(2)111,,AC A C BC A C BC AC =⊥⊥ ,1Rt Rt ACB ACB ∴△≌△1BA BA ∴=,过B 作1BD AA ⊥,交1AA 于D ,则D 为1AA 中点,由直线1AA 与1BB 距离为2,所以2BD =11A D = ,2BD =,1A B AB ∴==,在Rt ABC △,BC ∴==,延长AC ,使AC CM =,连接1C M ,由1111,CM A C CM A C =∥知四边形11A CMC 为平行四边形,11C M A C ∴∥,1C M ∴⊥平面ABC ,又AM ⊂平面ABC ,1C M AM∴⊥则在1Rt AC M △中,112,AM AC C M AC ==,1AC ∴=,在11Rt AB C △中,1AC =,11B C BC ==1AB ∴==又A 到平面11BCC B 距离也为1,所以1AB 与平面11BCC B1313=.19.【答案】(1)分布列见解析,()1E X =(2)(i )23.4m =;列联表见解析,(ii )能【解析】(1)依题意,X 的可能取值为0,1,2,则022020240C C 19(0)C 78P X ===,120224010C C 20(1)C 39P X ===,202020240C C 19(2)C 78P X ===,X12P197820391978所以X 的分布列为:故192019()0121783978E X =⨯+⨯+⨯=.(2)(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由于原数据已经排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可,可得第11位数据为14.4,后续依次为17.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m ≥合计对照组61420实验组14620合计202040(ii )由(i )可得,240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为药物对小鼠生长有抑制作用.20.【答案】(1)2p =(2)12-【解析】(1)设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==,即2260p p --=,因为0p >,解得:2p =.(2)因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n ⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n -+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y ==-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-21.【答案】(1)答案见解析.(2)(,3]-∞【解析】(1)326cos cos 3sin cos sin ()cos x x x x xf x a x'+=-22244cos 3sin 32cos cos cos x x x a a x x+-=-=-令2cos x t =,则(0,1)t ∈则2223223()()t at t f x g t a t t '-+-==-=当222823(21)(43)8,()()t t t t a f x g t t t '+--+====当10,2t ⎛⎫∈ ⎪⎝⎭,即ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭.当1,12t ⎛⎫∈ ⎪⎝⎭,即π0,,()04x f x '⎛⎫∈> ⎪⎝⎭.所以()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,在ππ,42⎛⎫⎪⎝⎭上单调递减(2)设()()sin 2g x f x x=-()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t''+-=-=--=-=+-+-设223()24t a t t tϕ=+-+-322333264262(1)(22+3)()40t t t t t t t t t tϕ'--+-+=--+==->所以()(1)3t a ϕϕ<=-.1︒若(,3]a ∈-∞,()()30g x t a ϕ'=<-≤即()g x 在0,2π⎛⎫⎪⎝⎭上单调递减,所以()(0)0g x g <=.所以当(,3],()sin 2a f x x ∈-∞<,符合题意.2︒若(3,)a ∈+∞当22231110,333t t t t ⎛⎫→-=--+→-∞ ⎪⎝⎭,所以()t ϕ→-∞.(1)30a ϕ=->.所以0(0,1)t ∃∈,使得()00t ϕ=,即00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=.当()0,1,()0t t t ϕ∈>,即当()00,,()0,()x x g x g x '∈>单调递增.所以当()00,,()(0)0x x g x g ∈>=,不合题意.综上,a 的取值范围为(,3]-∞.四、选做题22.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】(1)因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.(2)由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.23.【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)263【解析】(1)若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3a x a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫ ⎪⎝⎭.(2)2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。

2020年高考真题——数学(全国卷II) 含答案

2020年高考真题——数学(全国卷II) 含答案

2020年全国统一高考数学试卷(理科)(全国新课标II)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则U(A∪B)=A.{-2,3}B。

{-2,2,3} C.{-2,-1,0,3} D.{-2,-10,2,3}2.若α为第四象限角,则A。

cos2α〉0 B.cos2α〈0 C.sin2α〉0 D.sin2α〈03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0。

05。

志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0。

95,则至少需要志愿者A。

10名 B.18名C。

24名 D.32名4。

北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B。

3474块 C.3402块 D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为A.55 B.255 C.355 D.4556.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k=A。

2 B。

3 C.4 D.57。

右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A。

2018全国高考理科数学试题及答案解析_全国卷.docx

2018全国高考理科数学试题及答案解析_全国卷.docx

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页, 23 小题,满分150 分。

考试用时120 分钟。

注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型( B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={ x| x<1}, B={ x|3x 1 },则A.A B { x | x 0}B.A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.πC.1D.π48243.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1 , z2满足 z1z2R,则z1z2;p4:若复数z R ,则z R .其中的真命题为A.p1, p3B.p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n } 的前 n 项和.若 a4a5 24, S648 ,则 { a n} 的公差为A.1B. 2C. 4D. 8围是A.[2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(112 )(1x) 6展开式中 x2的系数为xA. 15B. 20C. 30D. 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A. 10B. 12C. 14D. 168.右面程序框图是为了求出满足3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000和 n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线1:=cosx , 2:=sin (2x+2π) ,则下面结论正确的是C y C y3A.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线 C2B.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,12得到曲线 C2C.把C上各点的横坐标缩短到原来的1倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得126到曲线 C21 π.得到曲 C210.已知F 抛物:2=4 的焦点,F作两条互相垂直的直l1,2,直l1与C交于、两点,C y x l A B直 l 2 与C交于D、E两点,|AB|+|DE|的最小A. 16B. 14C. 12D. 1011.xyz正数,且2x3y5z,A. 2x<3y<5z B. 5z<2x<3y C. 3y<5z<2x D. 3y<2x<5z12.几位大学生响国家的号召,开了一款用件。

2018全国高考理科数学试题与答案解析_全国卷

2018全国高考理科数学试题与答案解析_全国卷

.绝密★启用前2017 年一般高等学校招生全国一致考试理科数学本试卷 5 页, 23 小题,满分150 分。

考试用时120 分钟。

注意事项: 1.答卷前,考生务势必自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷种类( B)填涂在答题卡相应地点上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦洁净后,再选涂其余答案。

答案不可以答在试卷上。

3.非选择题一定用黑色笔迹的钢笔或署名笔作答,答案一定写在答题卡各题目指定地区内相应地点上;如需改动,先划掉本来的答案,而后再写上新答案;禁止使用铅笔和涂改液。

不按以上要求作答无效。

4.考生一定保证答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

一、选择题:此题共12 小题,每题 5 分,共 60 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.已知会合A={ x| x<1}, B={ x|3x 1 },则A.A I B{ x | x 0}B.A U B R C.A U B{ x | x 1}D.A I B2.如图,正方形ABCD内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分对于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.πC.1D.π48243.设有下边四个命题p1:若复数 z 知足1R ,则 z R ;p2:若复数 z 知足z2R ,则z R ;zp3:若复数 z1 , z2知足 z1z2 R ,则z1z2;p4:若复数 z R ,则 z R .此中的真命题为A.p1, p3B.p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n } 的前 n 项和.若 a4a524,S648 ,则 { a n} 的公差为A.1B. 2C. 4D. 8f (x)() 1 2) 1 x.围是A.[2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(112 )(1x) 6睁开式中 x2的系数为xA. 15B. 20C. 30D. 357.某多面体的三视图以下图,此中正视图和左视图都由正方形和等腰直角三角形构成,正方形的边长为 2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A. 10B. 12C. 14D. 168.右边程序框图是为了求出知足3n n的最小偶数n,那么在和两个空白框中,能够分别填-2>1000入A.A>1 000 和n=n+1B.A>1 000和 n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线1:=cosx , 2:=sin (2x+2π) ,则下边结论正确的选项是C y C y3A.把C上各点的横坐标伸长到本来的 2 倍,纵坐标不变,再把获得的曲线向右平移π个单位长度,得16到曲线 C2B.把C1上各点的横坐标伸长到本来的 2 倍,纵坐标不变,再把获得的曲线向左平移π个单位长度,12获得曲线 C2C.把1上各点的横坐标缩短到本来的1倍,纵坐标不变,再把获得的曲线向右平移π个单位长度,得C26到曲线 C2.D.把C上各点的横坐标缩短到本来的1倍,纵坐标不变,再把获得的曲线向左平移π个单位长度,1212获得曲线 C210.已知F为抛物线C:y2=4x的焦点,过F作两条相互垂直的直线l 1, l 2,直线 l 1与 C交于 A、 B 两点,直线l 2与C交于、E两点,则 ||+|| 的最小值为D AB DEA. 16B. 14C. 12D. 10 11.设xyz为正数,且2x3y5z,则A.2 <3 <5B. 5<2 <3C.3 <5 <2x D. 3<2 <5x y z z x y y z y x z12.几位大学生响应国家的创业呼吁,开发了一款应用软件。

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答题卡+答案+全解全析(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答题卡+答案+全解全析(2020.6.15)

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
姓 名:_________________________________________ 准考证号:
注意事项
1.答题前,考生先将自己的姓名,准考证号填写清 楚,并认真检查监考员所粘贴的条形码。
2.选择题必须用 2B 铅笔填涂;非选择题必须用 0.5mm 黑色签字笔答题,不得用铅笔或圆珠笔答 题;字体工整、笔迹清晰。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。 1.已知集合 P = {x || x |> 2} , Q = {x | x2 − 2x − 3 ≤ 0},则 P ∩ Q =
A. (2, +∞)
B. (1, +∞)
C. (2,3]
D.[−1, 2)
其中 x1 ≠ x2 ,则实数 a 的取值范围是
A.
[
5 e
,
e)
B.
(
1 e
,
e)
C.
[1
+
1 e
,
e)
D.
[1
+
1 e
,
5 e
]
12 . 如 图 , 已 知 平 面 四 边 形 P'CAB 中 , AC ⊥ BC , 且 AC = 6 , BC = 2 7 ,
P'C = P'B = 2 14 ,沿直线 BC 将 △P'BC 折起到 △PBC 的位置,构成一个四面
品统称为正品,其余范围内的产品作为废品处理.现从该企业生产的正品中随机抽取 1000 件,测得 产品质量差的样本数据统计如下:

2018高考Ⅱ(2)卷理数真题答题卡答案(16开、免排版、可编辑)甘肃青海内蒙古黑龙江吉林辽宁宁夏新疆陕西重庆

2018高考Ⅱ(2)卷理数真题答题卡答案(16开、免排版、可编辑)甘肃青海内蒙古黑龙江吉林辽宁宁夏新疆陕西重庆

绝密★启用前2018年普通高等学校招生全国统一考试(全国Ⅱ卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A.--I B.-+iC.--I D.-+i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为A.9 B.8 C.5 D.43.函数f (x) =的图像大致为4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=A.4 B.3 C.2 D.05.双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为A.y=±x B.y=±x C.y=±x D.y=±x16.在△ABC中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算S=1-+-+…+-,设计了如图的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.B.C.D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为A.B.C.D.10.若f (x)=cos x-sin x在[-a,a]是减函数,则a的最大值是A.B.C.D.π11.已知f (x)是定义域为(-∞,+∞)的奇函数,满足f (1-x)=f (1+x).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=A.-50 B.0 C.2 D.5012.已知F1,F2是椭圆C:+=1(a>0,b>0)的左,右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A.B.C.D.2二、填空题:本题共4小题,每小题5分,共20分。

高考理科数学试题及答案1868

高考理科数学试题及答案1868

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

高考数学试卷理科022180

高考数学试卷理科022180

高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.(5分)设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i2.(5分)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}3.(5分)执行如图所示的程序框图,输出s的值为()A.﹣B. C.﹣D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.46.(5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个7.(5分)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.68.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件9.(5分)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()A.16 B.18 C.25 D.10.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分。

高考数学试卷理科024218

高考数学试卷理科024218

高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a25.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1] B.[0,1] C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行右边的程序框图,输出的T的值为.14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D.【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选:A.【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1] B.[0,1] C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2tln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选:C.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.【点评】本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)执行右边的程序框图,输出的T的值为.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:赋值:n=1,T=1,判断1<3,执行T=1+=1+=1+,n=2;判断2<3,执行T=+==,n=3;判断3<3不成立,算法结束,输出T=.故答案为:.【点评】本题考查程序框图,考查定积分的求法,是基础题.14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=ax+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=ax+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则kAH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,确定A的坐标是关键.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c 时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.【点评】考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.【分析】(Ⅰ)利用2Sn=3n+3,可求得a1=3;当n>1时,2Sn﹣1=3n﹣1+3,两式相减2an=2Sn﹣2Sn﹣1,可求得an=3n﹣1,从而可得{an}的通项公式;(Ⅱ)依题意,anbn=log3an,可得b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和Tn.【解答】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2Sn﹣1=3n﹣1+3,此时,2an=2Sn﹣2Sn﹣1=3n﹣3n﹣1=2×3n﹣1,即an=3n﹣1,所以an=.(Ⅱ)因为anbn=log3an,所以b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3Tn=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2Tn=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以Tn=﹣,经检验,n=1时也适合,综上可得Tn=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X 0 ﹣1 1PEX=0×+(﹣1)×+1×=.【点评】本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF1+PF2=2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0可得m2≤1+4k2,②由①②可得0<t≤1,则S=2在(0,1]递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.【点评】本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查三角形的面积公式和二次函数的最值,属于中档题.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【分析】(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].【点评】本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.高考数学模拟题复习试卷习题资料数学试卷(理科)(附详细答案)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若二项式(2x+)7的展开式中的系数是84,则实数a=()A.2B.C.1D.2.(5分)i为虚数单位,()2=()A.﹣1B.1C.﹣iD.i3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件4.(5分)根据如下样本数据,得到回归方程=bx+a,则()x 3 4 5 6 7 8y 4.0 2.5 ﹣0.5 0.5 ﹣2.0 ﹣3.0A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<05.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②6.(5分)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,其中为区间[﹣1,1]上的正交函数的组数是()A.0B.1C.2D.37.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A. B. C. D.8.(5分)《算数书》竹简于上世纪八十年代在江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A. B. C. D.9.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A. B. C.3 D.210.(5分)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若∀x∈R,f(x﹣1)≤f(x),则实数a的取值范围为()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共3小题,每小题5分,共15分.11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ=.12.(5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=.13.(5分)设a是一个各位数字都不是0且没有重复数字三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=.三、解答题14.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直线与x轴的交点为(c,0),则称c为关于函数f (x)的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,Mf(a,b)为a,b的几何平均数;(2)当f(x)=(x>0)时,Mf(a,b)为a,b的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15.如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q 作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=.16.已知曲线C1的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.17.(11分)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(12分)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n 的最小值;若不存在,说明理由.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<80 80≤X≤120X>1201 2 3发电机最多可运行台数若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.(14分)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.高考模拟题复习试卷习题资料数学试卷(理科)(附详细答案)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若二项式(2x+)7的展开式中的系数是84,则实数a=()A.2B.C.1D.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为﹣3,求出a即可.【解答】解:二项式(2x+)7的展开式即(+2x)7的展开式中x﹣3项的系数为84,所以Tr+1==,令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.2.(5分)i为虚数单位,()2=()A.﹣1B.1C.﹣iD.i【分析】可先计算出的值,再计算平方的值.【解答】解:由于,所以,()2=(﹣i)2=﹣1故选:A.【点评】本题考查复数代数形式的计算,属于容易题3.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件【分析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果.【解答】解:由题意A⊆C,则∁UC⊆∁UA,当B⊆∁UC,可得“A∩B=∅”;若“A∩B=∅”能推出存在集合C使得A⊆C,B⊆∁UC,∴U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的充分必要的条件. 故选:C.【点评】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题.4.(5分)根据如下样本数据,得到回归方程=bx+a,则()x 3 4 5 6 7 8y 4.0 2.5 ﹣0.5 0.5 ﹣2.0 ﹣3.0A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0【分析】通过样本数据表,容易判断回归方程中,b、a的符号.【解答】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.【点评】本题考查回归方程的应用,基本知识的考查.5.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.。

高考数学试卷理科02880

高考数学试卷理科02880

高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.25.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣67.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47728.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.99.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g (x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)设Sn为等比数列{an}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则an=.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修41:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO 与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修44:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修45:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)已知a>0,函数f(x)=eaxsinx(x∈[0,+∞]).记xn为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(xn)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,xn<|f(xn)|恒成立.高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.【点评】本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.2.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B (1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣6【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,Tr+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.4772【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.9【分析】由题意,AC为直径,所以||=|2+|.B为(﹣1,0)时,|2+|≤7,即可得出结论.【解答】解:由题意,AC为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.另解:设B(cosα,sinα),|2+|=|2(﹣2,0)+(cosα﹣2,sinα)|=|(cosα﹣6,sinα)|==,当cosα=﹣1时,B为(﹣1,0),取得最大值7.故选:B.【点评】本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g (x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.另解:f(x)=sin2x,g(x)=sin(2x﹣2φ),设2x1=2kπ+,k∈Z,2x2﹣2φ=﹣+2mπ,m∈Z,x1﹣x2=﹣φ+(k﹣m)π,由|x1﹣x2|min=,可得﹣φ=,解得φ=,故选:D.【点评】本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C.D.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A.【点评】本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=0.【分析】求出被积函数的原函数,代入上限和下限求值.【解答】解:(x﹣1)dx=(﹣x)|=0;故答案为:0.【点评】本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.【分析】根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.【解答】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.【点评】本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.【分析】设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.【解答】解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)设Sn为等比数列{an}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则an=3n﹣1.【分析】利用已知条件列出方程求出公比,然后求解等比数列的通项公式.【解答】解:设等比数列的公比为q,Sn为等比数列{an}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴an=3n﹣1.故答案为:3n﹣1.【点评】本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1}.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修41:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO 与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.【分析】(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.【解答】证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.【点评】本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修44:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修45:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.【分析】(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.【解答】证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.【点评】本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【分析】(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA﹣)2+,由二次函数区间的最值可得.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]【点评】本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.【分析】(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q(6,y2,0),设平面PQD 的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.【解答】解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.【点评】考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.【分析】(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(1)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k 的方程,解得即可;(2)根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.【解答】解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),(1)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(2)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.【点评】本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.(13分)已知a>0,函数f(x)=eaxsinx(x∈[0,+∞]).记xn为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(xn)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,xn<|f(xn)|恒成立.【分析】(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N*,xn<|f(xn)|恒成立.即为nπ﹣φ<ea(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.【解答】证明:(Ⅰ)f′(x)=eax(asinx+cosx)=•eaxsin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π﹣φ,mπ﹣φ)和(mπ﹣φ,(m+1)π﹣φ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以xn=nπ﹣φ,n∈N*,此时f(xn)=ea(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1ea(nπ﹣φ)sinφ,易知f(xn)≠0,而==﹣eaπ是常数,故数列{f(xn)}是首项为f(x1)=ea(π﹣φ)sinφ,公比为﹣eaπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,xn<|f(xn)|恒成立.即为nπ﹣φ<ea(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,axn=≠1,即有g(axn)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,xn<|f(xn)|恒成立.【点评】本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}2.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i3.(5分)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx5.(5分)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.(5分)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣y2=17.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.68.(5分)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.210.(5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0二、填空题11.(3分)lg+2lg2﹣()﹣1=.12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.13.(3分)已知数列{an}中,a1=1,an=an﹣1+(n≥2),则数列{an}的前9项和等于.14.(3分)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.已知函数f(x)=(sinx+cosx)2+2cos2x.(Ⅰ)求f(x)最小正周期;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.19.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【分析】进行补集、交集的运算即可.【解答】解:∁RB={1,5,6};∴A∩(∁RB)={1,2}∩{1,5,6}={1}.故选:B.【点评】考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.2.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【分析】直接利用复数的多项式乘法展开求解即可.【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.【点评】本题考查复数的代数形式的混合运算,基本知识的考查.3.(5分)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】判断必要条件与充分条件,推出结果即可.【解答】解:设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.【点评】本题考查充要条件的判断与应用,基本知识的考查.4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx【分析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;故选:D.【点评】本题考查了函数奇偶性的判断以及函数零点的判断;判断函数的奇偶性首先要判断函数的定义域,在定义域关于原点对称的前提下判断f(﹣x)与f(x)的关系.5.(5分)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.。

高考理科数学全国2卷-含答案

高考理科数学全国2卷-含答案

2016年普通高等学校招生全国统一考试之勘阻及广创作理科数学1-2卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份,共24题, 共150分, 共4页.考试结束后, 将本试卷和答题卡一并交回.注意事项:1.答题前, 考生务势必自己的姓名、准考证号填写清楚, 将条形码准确粘贴在条形码区域内.2. 选择题必需使用2B铅笔填涂;非选择题必需使用0.5毫米黑色字迹的签字笔书写, 字体工整、字迹清楚.3. 请依照题号顺序在各题目的答题区域内作答, 超越答题区域书写的谜底无效;在草稿纸、试题卷上答题无效.4. 作图可先使用铅笔画出, 确定后必需用墨色字迹的签字笔描黑.5. 坚持卡面清洁, 不要折叠、不要弄破、弄皱, 禁绝使用涂改液、修正带、刮纸刀.第Ⅰ卷一.选择题:本年夜题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D ) (2)已知集合,, 则(A )(B )(C )(D )(3)已知向量, 且, 则m =(A )-8(B )-6 (C )6 (D )8 (4)圆的圆心到直线 的距离为1, 则a= (A )34-(B )43-(C )3(D )2(5)如图, 小明从街道的E 处动身, 先到F 处与小红会合, 再一起到位于G 处的老年公寓介入志愿者活动, 则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的概况积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移12π个单元长度, 则平移后图象的对称轴为(A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z )(C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法, 右图是实现该算法的法式框图,执行该法式框图, 若输入的x =2, n =2, 依次输入的a 为2, 2, 5, 则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(–α)=, 则sin 2α=(A )257(B )51(C )51-(D )257-(10)从区间随机抽取2n 个数,, …, , ,, …,, 构成n 个数对,, …,, 其中两数的平方和小于1的数对共有m 个, 则用随机模拟的方法获得的圆周率的近似值为(A )(B )(C )(D )(11)已知F 1, F 2是双曲线E 的左, 右焦点, 点M 在E 上,M F 1与轴垂直, sin,则E 的离心率为(A )(B ) (C )(D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···, (m m y x ,), 则=+∑=mi i iy x1)((A)0 (B)m(C)2m(D)4m第II卷本卷包括必考题和选考题两部份.第(13)题~第(21)题为必考题, 每个试题考生都必需作答.第(22)题~第(24)题为选考题, 考生根据要求作答.二、填空题:本年夜题共3小题, 每小题5分.(13)△ABC的内角A、B、C的对边分别为a、b、c, 若cos A=,cos C=, a=1, 则b=.(14)α、β是两个平面, m、n是两条直线, 有下列四个命题:(1)如果m⊥n, m⊥α, n∥β, 那么α⊥β.(2)如果m⊥α, n∥α, 那么m⊥n.(3)如果α∥β, mα, 那么m∥β.(4)如果m∥n, α∥β, 那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片, 分别写有1和2, 1和3, 2和3.甲, 乙, 丙三人各取走一张卡片, 甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”, 乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”, 丙说:“我的卡片上的数字之和不是5”, 则甲的卡片上的数字是.(16)若直线y=kx+b是曲线y=ln x+2的切线, 也是曲线y=ln (x+1)的切线, 则b=.三、解答题:解承诺写出文字说明, 证明过程或演算步伐.(17)(本题满分12分)S n 为等差数列的前n项和, 且1a=1 , 7S=28 记, 其中暗示不超越x的最年夜整数, 如[0.9] = 0, [lg99]=1.b;(I)求1b, 11b, 101(II )求数列的前1 000项和.(18)(本题满分12分)某险种的基本保费为a(单元:元), 继续购买该险种的投保人称为续保人, 续保人的今年度的保费与其上年度的脱险次数的关联如下:012345上年度脱险次数保费a a a a a2a设该险种一续保人一年内脱险次数与相应概率如下:012345一年内脱险次数概率0. 05(I)求一续保人今年度的保费高于基本保费的概率;(II)若一续保人今年度的保费高于基本保费, 求其保费比基本保费高出60%的概率;(III)求续保人今年度的平均保费与基本保费的比值.(19)(本小题满分12分)如图, 菱形ABCD的对角线AC与BD交于点O, AB=5, AC=6,点E,F分别在AD,CD上, AE=CF=, EF交BD于点H.将△DEF沿EF折到△的位置, .(I)证明:平面ABCD;(II)求二面角的正弦值.(20)(本小题满分12分)已知椭圆E:的焦点在轴上, A是E的左极点, 斜率为k(k>0)的直线交E于A,M两点, 点N在E上, MA⊥NA.(I)当t=4, 时, 求△AMN的面积;(II)那时, 求k的取值范围.(21)(本小题满分12分)(I)讨论函数的单调性, 并证明当>0时,(II)证明:那时, 函数有最小值.设g(x)的最小值为, 求函数的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:集合证明选讲如图, 在正方形ABCD, E,G分别在边DA,DC上(不与端点重合), 且DE=DG, 过D点作DF⊥CE, 垂足为F.(I) 证明:B,C,G,F 四点共圆;(II)若AB =1, E 为DA 的中点, 求四边形BCGF 的面积.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy 中, 圆C 的方程为(x +6)2+y 2=25.(I )以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求C 的极坐标方程;(II )直线l 的参数方程是(t 为参数),l 与C 交于A 、B 两点,∣AB ∣=10, 求l 的斜率.(24)(本小题满分10分), 选修4—5:不等式选讲已知函数f (x )= ∣x -21∣+∣x +21∣, M为不等式f (x ) <2的解集.(I )求M ;(II )证明:当a ,b ∈M 时, ∣a +b ∣<∣1+ab ∣.2016年普通高等学校招生全国统一考试理科数学谜底 第Ⅰ卷一.选择题: (1)【谜底】A (2)【谜底】C (3)【谜底】D (4)【谜底】A(5)【谜底】B(6)【谜底】C(7)【谜底】B(8)【谜底】C(9)【谜底】D(10)【谜底】C(11)【谜底】A(12)【谜底】C第Ⅱ卷二、填空题(13)【谜底】(14) 【谜底】②③④(15)【谜底】1和3(16)【谜底】17.(本题满分12分)【谜底】(Ⅰ), , ;(Ⅱ)1893.【解析】试题分析:(Ⅰ)先求公差、通项, 再根据已知条件求;(Ⅱ)用分段函数暗示, 再由等差数列的前项和公式求数列的前1 000项和.试题解析:(Ⅰ)设的公差为, 据已知有, 解得所以的通项公式为(Ⅱ)因为所以数列的前项和为考点:等差数列的的性质, 前项和公式, 对数的运算.【结束】18.(本题满分12分)【谜底】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人今年度的保费为, 求的分布列为, 在根据期望公式求解..【解析】试题分析:试题解析:(Ⅰ)设暗示事件:“一续保人今年度的保费高于基本保费”, 则事件发生当且仅当一年内脱险次数年夜于1, 故(Ⅱ)设暗示事件:“一续保人今年度的保费比基本保费高出”, 则事件发生当且仅当一年内脱险次数年夜于3, 故又, 故因此所求概率为(Ⅲ)记续保人今年度的保费为, 则的分布列为因此续保人今年度的平均保费与基本保费的比值为考点:条件概率, 随机变量的分布列、期望.【结束】19.(本小题满分12分)【谜底】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)证, 再证, 最后证;(Ⅱ)用向量法求解.试题解析:(I)由已知得, , 又由得, 故.因此, 从而.由,得.由得.所以, .于是, ,故.又, 而,所以.(II)如图, 以为坐标原点, 的方向为轴的正方向, 建立空间直角坐标系, 则, , , , , , , .设是平面的法向量, 则, 即, 所以可以取.设是平面的法向量, 则, 即, 所以可以取.于是, .因此二面角的正弦值是.考点:线面垂直的判定、二面角.【结束】20.(本小题满分12分)【谜底】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程, 再求点的纵坐标, 最后求的面积;(Ⅱ)设, , 将直线的方程与椭圆方程组成方程组, 消去, 用暗示, 从而暗示, 同理用暗示, 再由求.试题解析:(I)设, 则由题意知, 那时, 的方程为, .由已知及椭圆的对称性知, 直线的倾斜角为.因此直线的方程为.将代入得.解得或, 所以.因此的面积.(II)由题意, , .将直线的方程代入得.由得, 故.由题设, 直线的方程为, 故同理可得,由得, 即.那时上式不成立,因此.等价于,即.由此得, 或, 解得.因此的取值范围是.考点:椭圆的性质, 直线与椭圆的位置关系.【结束】(21)(本小题满分12分)【谜底】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)先求界说域, 用导数法求函数的单调性, 那时, 证明结论;(Ⅱ)用导数法求函数的最值, 在构造新函数, 又用导数法求解.试题解析:(Ⅰ)的界说域为.且仅那时, , 所以在单调递增,因此那时,所以(II)由(I)知, 单调递增, 对任意因此, 存在唯一使得即,那时, 单调递加;那时, 单调递增.因此在处取得最小值, 最小值为于是, 由单调递增所以, 由得因为单调递增, 对任意存在唯一的使得所以的值域是综上, 那时, 有, 的值域是考点:函数的单调性、极值与最值.【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲【谜底】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)证再证四点共圆;(Ⅱ)证明四边形的面积是面积的2倍.试题解析:(I)因为,所以则有所以由此可得由此所以四点共圆.(II)由四点共圆, 知, 连结,由为斜边的中点, 知,故因此四边形的面积是面积的2倍, 即考点:三角形相似、全等, 四点共圆【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【谜底】(Ⅰ);(Ⅱ).【解析】试题分析:(I)利用, 可得C的极坐标方程;(II)先将直线的参数方程化为普通方程, 再利用弦长公式可得的斜率.试题解析:(I)由可得的极坐标方程(II)在(I)中建立的极坐标系中, 直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是由得,所以的斜率为或.考点:圆的极坐标方程与普通方程互化, 直线的参数方程, 点到直线的距离公式.【结束】(24)(本小题满分10分)选修4—5:不等式选讲【谜底】(Ⅰ);(Ⅱ)详见解析.【解析】试题分析:(I)先去失落绝对值, 再分, 和三种情况解不等式, 即可得;(II)采纳平方作差法, 再进行因式分解, 进而可证当, 时, .试题解析:(I)那时, 由得解得;那时, ;那时, 由得解得.所以的解集.(II)由(I)知, 那时, , 从而,因此考点:绝对值不等式, 不等式的证明.【结束】。

高考理科数学真题试卷-(附答案)

高考理科数学真题试卷-(附答案)

普通高等学校招生全国统一考试(附答案)理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折现图。

威武不屈舍死忘生肝胆相照克己奉公一丝不苟两袖清风见礼忘义永垂不朽顶天立地豁达大度兢兢业业卖国求荣恬不知耻贪生怕死厚颜无耻描写人物神态的成语神采奕奕眉飞色舞昂首挺胸惊慌失措漫不经心垂头丧气没精打采愁眉苦脸大惊失色炯炯有神含有夸张成分的成语怒发冲冠一目十行一日千里一字千金百发百中——一日三秋一步登天千钧一发不毛之地不计其数胆大包天寸步难行含——比喻成分的成语观者如云挥金如土铁证如山爱财如命稳如泰山门庭若市骨瘦如柴冷若冰霜如雷贯耳守口如瓶浩如烟海高手如林春天阳春三月春光明媚春回大地春暖花开春意盎然春意正浓风和日丽春花烂漫春天的景色鸟语花香百鸟鸣春百花齐放莺, 歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓夏天的景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天——天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪, 地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万, 物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳绚丽多彩五彩缤纷草绿草如茵一碧千里杂草丛生生机勃勃绿油油树苍翠挺拔郁郁葱葱枯木逢春秀丽多姿青翠欲滴林海雪原耸入云天瓜果蔬菜清香鲜嫩青翠欲滴果园飘香果实累累果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大春天的景色鸟语花香百鸟鸣春百花齐放莺歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓3、书名号里还要用书名号时, 外面用双书名号里面用单书名号。

新高考理科数学试卷及答案

新高考理科数学试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,在其定义域内单调递增的是()A. y = x^2 - 1B. y = -x^2 + 1C. y = 2x - 1D. y = x^3 - 3x2. 已知函数f(x) = x^2 - 4x + 3,若f(x)的图像关于点(2, -1)对称,则f(x)的对称轴方程是()A. x = 1B. x = 2C. x = 3D. x = 43. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角A的余弦值是()A. 1/2B. 1/3C. 2/3D. 3/44. 下列不等式中,恒成立的是()A. x^2 + y^2 ≥ 2xyB. x^2 - y^2 ≥ 0C. x^2 + y^2 ≤ 2xyD. x^2 - y^2 ≤ 05. 已知数列{an}的前n项和为Sn,若an = 3^n - 2^n,则数列{an}的通项公式是()A. an = 3^nB. an = 2^nC. an = 3^n - 2^nD. an = 3^n + 2^n6. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项之和是()A. 72B. 84C. 96D. 1087. 已知函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a、b、c之间的关系是()A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a > 0,b ≠ 0,c > 0D. a < 0,b ≠ 0,c < 08. 下列复数中,是纯虚数的是()A. 2 + 3iB. 1 - 2iC. 3 + 4iD. -1 + 2i9. 在直角坐标系中,点P(a, b)关于直线y = x的对称点为P',则P'的坐标是()A. (b, a)B. (-a, -b)C. (a, -b)D. (-b, a)10. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径是()A. 1B. 2C. 3D. 411. 已知等比数列{an}的首项为3,公比为-2,则第5项与第8项的乘积是()A. 48B. -48C. 96D. -9612. 下列命题中,正确的是()A. 函数y = x^3在定义域内单调递增B. 数列{an} = n^2 + 1是等差数列C. 二次函数y = ax^2 + bx + c的图像开口向上,则a > 0D. 等差数列{an}的前n项和为Sn,若an > 0,则Sn > 0二、填空题(本大题共6小题,每小题5分,共30分)13. 若函数f(x) = x^2 - 2x + 1在x=1时取得最小值,则该函数的对称轴方程为______。

招生国统一考试数学理试题,含答案试题

招生国统一考试数学理试题,含答案试题

2021年普通高等招生全国统一考试数学理试题〔卷,含答案〕考前须知:1在答题之前,所有考生必须将本人的姓名、准考证号填写上在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的规定的正确位置,需要用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。

2选择题的答题:每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

咎在试题卷、草稿纸上无效。

3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。

答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。

在在考试完毕之后以后,请将本试题卷和答题卡一并上交。

第一卷〔一共60分〕一、选择题:本大题一一共l0小题.每一小题5分,一共50分在每一小题给出的四个选项里面,只有一项是哪一项满足题目要求的. 1.i 是虚数单位,复数131ii--= A.2i - B. 2i + C.12i -- D. 12i -+ 【答案】A,,x y R ∈那么“2x ≥且2y ≥〞是“224x y +≥〞的A. 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A3.阅读右边的程序框图,运行相应的程序,那么输出i 的值是 A.3 B.4 C 【答案】B4.{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,那么10S 的值是6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===, 那么sin C 的值是〔 〕A .33 B .36C .63 D .66【答案】D7.324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭那么〔 〕A .a b c >>B .b a c >>C .a c b >>D .c a b >> 【答案】Ca 与b ,定义新运算“⊗〞:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =--∈假设函数()y f x c =-的图像与x 轴恰有两个公一共点,那么实数c 的取值范围是〔 〕A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.【答案】BCE 与圆相切,那么线段CE 的长为 .7 311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭13.集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,那么集合A B ⋂=________【答案】{}|25x x -≤≤14.直角梯形ABCD 中,AD ∥BC,90ADC ∠=,AD=2,BC=1,P 是腰DC 上的动点,那么|3|PA PB +的最小值为 .【答案】5三、解答题:本大题一一共6小题,一共80分. 15.〔本小题满分是13分〕 函数()tan(2),4f x x π=+,〔Ⅰ〕求()f x 的定义域与最小正周期;〔Ⅱ〕设0,4πα⎛⎫∈ ⎪⎝⎭,假设()2cos 2,2f αα=求α的大小.【答案】〔Ⅰ〕2π;〔Ⅱ〕12π17.〔本小题满分是13分〕如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =〔Ⅰ〕求异面直线与所成角的余弦值; 〔Ⅱ〕求二面角111A AC B --的正弦值;〔Ⅲ〕设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.【答案】〔Ⅰ〕23;〔Ⅱ〕357;〔Ⅲ〕10418.〔本小题满分是13分〕在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.△12F PF 为等腰三角形. 〔Ⅰ〕求椭圆的离心率e ;〔Ⅱ〕设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程. 【答案】〔Ⅰ〕12;〔Ⅱ〕218163150(0)x xy x --=>20.〔本小题满分是14分〕 数列{}n a 与{}n b 满足:1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.〔Ⅰ〕求345,,a a a 的值;〔Ⅱ〕设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;〔Ⅲ〕设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nkk kS n N a=<∈∑. 【答案】〔Ⅰ〕3,5,4--励志赠言经典语录精选句;挥动**,放飞梦想。

高考数学试卷理科002180

高考数学试卷理科002180

高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2] B.(1,3)C.[1,3)D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y36.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2 D.47.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)9.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.210.(5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.13.(5分)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.14.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为.15.(5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f (x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h (x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f (x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.三、解答题(共6小题,满分75分)16.(12分)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f (x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.17.(12分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18.(12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(12分)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=(﹣1)n﹣1,求数列{bn}的前n项和Tn.20.(13分)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.(14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2] B.(1,3)C.[1,3)D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C.【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.3.(5分)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)【分析】根据函数出来的条件,建立不等式即可求出函数的定义域.【解答】解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C.【点评】本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3【分析】实数x,y满足ax<ay(0<a<1),可得x>y,对于A.B.C分别举反例即可否定,对于D:由于y=x3在R上单调递增,即可判断出正误.【解答】解:∵实数x,y满足ax<ay(0<a<1),∴x>y,A.取x=2,y=﹣1,不成立;B.\取x=0,y=﹣1,不成立C.取x=π,y=﹣π,不成立;D.由于y=x3在R上单调递增,因此正确故选:D.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2 D.4【分析】先根据题意画出区域,然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫(4x﹣x3)dx,而∫(4x﹣x3)dx=(2x2﹣x4)|=8﹣4=4,∴曲边梯形的面积是4,故选:D.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.7.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.8.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:KOA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.10.(5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图程序框图,若输入的x的值为1,则输出的n的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.【分析】由条件利用两个向量的数量积的定义,求得AB•AC=,再根据△ABC的面积为AB•AC•sinA,计算求得结果.【解答】解:△ABC中,∵•=AB•AC•cosA=tanA,∴当A=时,有AB•AC•=,解得AB•AC=,△ABC的面积为AB•AC•sinA=××=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.13.(5分)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.【分析】画出图形,通过底面面积的比求解棱锥的体积的比.【解答】解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.【点评】本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.14.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为3,求出ab关系式,然后利用基本不等式求解表达式的最小值.【解答】解:(ax2+)6的展开式中x3项的系数为20,所以Tr+1==,令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.【点评】本题考查二项式定理的应用,基本不等式的应用,基本知识的考查.15.(5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f (x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h (x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f (x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).【分析】根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,即可得到结论.【解答】解:根据“对称函数”的定义可知,,即h(x)=6x+2b﹣,若h(x)>g(x)恒成立,则等价为6x+2b﹣>,即3x+b>恒成立,设y1=3x+b,y2=,作出两个函数对应的图象如图,当直线和上半圆相切时,圆心到直线的距离d=,即|b|=2,∴b=2或﹣2,(舍去),即要使h(x)>g(x)恒成立,则b>2,即实数b的取值范围是(2,+∞),故答案为:(2,+∞)【点评】本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f (x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.【分析】(Ⅰ)由题意可得函数f(x)=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),解方程组求得m、n的值.(Ⅱ)由(Ⅰ)可得f(x)=2sin(2x+),根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=2sin(2x+2φ+)的图象,再由函数g(x)的一个最高点在y轴上,求得φ=,可得g(x)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得x的范围,可得g(x)的增区间.【解答】解:(Ⅰ)由题意可得函数f(x)=•=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),可得.解得 m=,n=1.(Ⅱ)由(Ⅰ)可得f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+).将y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,显然函数g(x)最高点的纵坐标为2.y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,故函数g(x)的一个最高点在y轴上,∴2φ+=2kπ+,k∈Z,结合0<φ<π,可得φ=,故g(x)=2sin(2x+)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得kπ﹣≤x≤kπ,故y=g(x)的单调递增区间是[kπ﹣,kπ],k∈Z.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题.17.(12分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【分析】(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【解答】解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)解法一:∵AB∥A1B1,A1B1∥C1D1,∴面D1C1M与ABC1D1共面,作CN⊥AB,连接D1N,则∠D1NC即为所求二面角,在ABCD中,DC=1,AB=2,∠DAB=60°,∴CN=,在Rt△D1CN中,CD1=,CN=,∴D1N=∴cos∠D1NC===解法二:作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.【点评】本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.18.(12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.【分析】(Ⅰ)分别求出回球前落点在A上和B上时,回球落点在乙上的概率,进而根据分类分布原理,可得小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的取值有0,1,2,3,4,6六种情况,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.【解答】解:(Ⅰ)小明回球前落点在A上,回球落点在乙上的概率为+=,回球前落点在B上,回球落点在乙上的概率为+=,故小明两次回球的落点中恰有一次的落点在乙上的概率P=×(1﹣)+(1﹣)×=+=.(Ⅱ)ξ的可能取值为0,1,2,3,4,6其中P(ξ=0)=(1﹣)×(1﹣)=;P(ξ=1)=×(1﹣)+(1﹣)×=;P(ξ=2)=×=;P(ξ=3)=×(1﹣)+(1﹣)×=;P(ξ=4)=×+×=;P(ξ=6)=×=;故ξ的分布列为:ξ 0 1 2 3 4 6 P故ξ的数学期望为E(ξ)=0×+1×+2×+3×+4×+6×=.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=(﹣1)n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得bn=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{an}的公差为2,前n项和为Sn,∴Sn==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1==.∴Tn=﹣++…+.当n为偶数时,Tn=﹣++…+﹣=1﹣=.当n为奇数时,Tn=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.20.(13分)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.【分析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=﹣k(﹣)=(x>0),当k≤0时,kx≤0,∴ex﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=ex﹣kx,x∈(0,+∞).∵g′(x)=ex﹣k=ex﹣elnk,当0<k≤1时,当x∈(0,2)时,g′(x)=ex﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)【点评】本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.21.(14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【分析】(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p值;(2)(ⅰ)设出点A的坐标,求出直线AB的方程,利用直线l1∥l,且l1和C有且只有一个公共点E,求出点E的坐标,写出直线AE的方程,将方程化为点斜式,可求出定点;(ⅱ)利用弦长公式求出弦AB的长度,再求点E到直线AB的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.【解答】解:(1)当点A的横坐标为3时,过点A作AG⊥x轴于G,A(3,),F(,0),,∴.∵△ADF为正三角形,∴.又∵,∴,∴p=2.∴C的方程为y2=4x.当D在焦点F的左侧时,.又|FD|=2|FG|=2(﹣3)=p﹣6,∵△ADF为正三角形,∴3+=p﹣6,解得p=18,∴C的方程为y2=36x.此时点D在x轴负半轴,不成立,舍.∴C的方程为y2=4x.(2)(ⅰ)设A(x1,y1),|FD|=|AF|=x1+1,∴D(x1+2,0),∴kAD=﹣.由直线l1∥l可设直线l1方程为,联立方程,消去x得①由l1和C有且只有一个公共点得△=64+32y1m=0,∴y1m=﹣2,这时方程①的解为,代入得x=m2,∴E(m2,2m).点A的坐标可化为,直线AE方程为y﹣2m=(x﹣m2),即,∴,∴,∴,∴直线AE过定点(1,0);(ⅱ)直线AB的方程为,即.联立方程,消去x得,∴,∴=,由(ⅰ)点E的坐标为,点E到直线AB的距离为:=,∴△ABE的面积=,当且仅当y1=±2时等号成立,∴△ABE的面积最小值为16.【点评】本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.高考数学模拟题复习试卷【考情解读】1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义. 【重点知识梳理】 1.向量的有关概念名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a|平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定 义 法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a +b =b +a. (2)结合律: (a +b)+c =a +(b +c)减法 求a 与b 的相反向量 -b 的和的a -b =a +(-b)运算叫做 a 与b 的差数乘求实数λ与向量a 的积的运算(1)|λa|=|λ||a|; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa)=λμa ; (λ+μ)a =λa +μa ; λ(a +b)=λa +λb3.共线向量定理向量a (a≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 【高频考点突破】考点一 平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【规律方法】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【变式探究】给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4考点二 平面向量的线性运算【例2】 (1)在△A BC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【变式探究】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0考点三 共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【规律方法】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【变式探究】 (1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.考点五 方程思想在平面向量的线性运算中的应用数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.【例4】如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b.试用a 和b 表示向量OM →.【真题感悟】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下: 1.设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;2.填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法 新养殖法3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.8416.63510.82819.(12分)如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所 成锐角为o 45 ,求二面角MABD 的余弦值 20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2ef x --<<.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,按所做的第一题计分。

22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修45:不等式选讲](10分)已知330,0,2a b a b >>+=,证明: (1)33()()4a b a b ++≥; (2)2a b +≤.参考答案1.D2.C【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半. 5.A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.6.D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.B【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,到直线距离为2223b a b =+ 得224c a =,24e =,2e =.10.C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知1152MN AB ==,1122NP BC ==,作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,7=AC则7MQ =,则MQP △中,22112MP MQ PQ =+= 则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅又异面线所成角为π02⎛⎤ ⎥⎝⎦,,则余弦值为10.11.A 【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦, 则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.12.B【解析】几何法:如图,2PB PC PD +=(D 为BC 中点), 则()2PA PB PC PD PA ⋅+=⋅,要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又323PA PD AD +==⨯=, 则223324PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭≤, PD CBA则min 332242PD PA ⋅=-⨯=-. 解析法:建立如图坐标系,以BC 中点为坐标原点, ∴()03A ,,()10B -,,()10C ,. 设()P x y ,, ()3PA x y=--,,()1PB x y =---,,()1PC x y =--,,∴()222222PA PB PC x y y ⋅+=-+则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.13.1.96【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,令cos x t =且[]01t ∈, 则当3t =时,()f x 取最大值1. 15.2+1n n 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+=求得11a =,1d =,则n a n =,()12n n n S +=16.6【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-,如图,M 为F 、N 中点,l FN M C BAOyx故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=17.【解析】(1)依题得:21cos sin 8sin84(1cos )22B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15cos 17B =, (2)由⑴可知8sin 17B =. ∵2ABC S =△, ∴1sin 22ac B ⋅=, ∴182217ac ⋅=, ∴172ac =, ∵15cos 17B =, ∴22215217a cb ac +-=,∴22215a c b +-=, ∴22()215a c ac b +--=,∴2361715b --=,∴2b =.18.【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B“新养殖法的箱产量不低于50kg ”为事件C而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯(2)由计算可得2K 的观测值为 ∵15.705 6.635> ∴()2 6.6350.001P K ≈≥∴有99%以上的把握产量的养殖方法有关.(3)150.2÷=,()0.20.0040.0200.0440.032-++=80.0320.06817÷=,85 2.3517⨯≈ 50 2.3552.35+=,∴中位数为52.35.19.【解析】(1)令PA 中点为F ,连结EF ,BF ,CE .∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴12EF AD ∥.又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==,∴12BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,(00P ,.M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,∴MBM '△为等腰直角三角形.∵POC △为直角三角形,OC =,∴60PCO ∠=︒.设MM a '=,3CM a '=,31OM a '=-.∴3100M a ⎛⎫'- ⎪ ⎪⎝⎭,,. 222231610133BM a a a a ⎛⎫'=++=+=⇒= ⎪ ⎪⎝⎭.∴3211OM a '=-=-. ∴21002M ⎛⎫'- ⎪ ⎪⎝⎭,,,26102M ⎛⎫- ⎪ ⎪⎝⎭,, 2611AM ⎛⎫=- ⎪ ⎪⎝⎭,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,. 1160y z +=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,(001)n =,,.∴10cos ,m n m n m n⋅<>==⋅. ∴二面角M AB D --的余弦值为10. 20.【解析】 ⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022NM NP ⎛== ⎪⎝⎭,∴2M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122x += ⎪⎝⎭,即222x y +=. (3)Q Q y -,,()P P P x y ,,(0)Q y ≠,⑵设点由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直.∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-, 13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+,∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.21.【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.令()ln g x ax a x =--,则()10g =,()11ax g x a x x-'=-=, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1x a=. 当10x a <<时,()0g x '<,()g x 单调减;当1x a>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫<= ⎪⎝⎭;若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭;若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =.⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.令()22ln h x x x =--,则()1212x h x x x-'=-=,0x >. 令()0h x '=得12x =, 当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增.所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,,所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点.设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.所以,()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <. 因此,()201e 4f x -<<. 22.【解析】⑴设()()00M P ρθρθ,,, 则0||OM OP ρρ==,.解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠⑵连接AC ,易知AOC △为正三角形.||OA 为定值.∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大23.【解析】⑴由柯西不等式得:()()()2255334a b a b a b ++=+=≥1a b ==时取等号. ⑵∵332a b +=∴()()222a b a ab b +-+= ∴()()232a b b ab α⎡⎤++-=⎣⎦∴()()332a b ab a b +-+=∴()()323a b aba b +-=+由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤ ∴()()32232a b a b a b +-+⎛⎫ ⎪+⎝⎭≤ ∴()()33324a b a b ++-≤∴()3124a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.高考复习试卷习题资料之高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3} C.{3,4} D.{3,5}3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1) B.(2,﹣1) C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件,则z=2x+y的最大值等于()A.7 B.8 C.10 D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1 D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50 B.40 C.25 D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.(5分)若实数k满足0<k<5,则曲线﹣=1与﹣=1的()A.实半轴长相等B.虚半轴长相等C.离心率相等 D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1 B.2 C.3 D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5ex+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.19.(14分)设各项均为正数的数列{an}的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x0)=f().高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3} C.{3,4} D.{3,5}【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1) B.(2,﹣1) C.(2,0)D.(4,3)【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件,则z=2x+y的最大值等于()A.7 B.8 C.10 D.11【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1 D.x2+2x【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f(x)=2x﹣,由于f(﹣x)=2﹣x﹣=﹣2x=﹣f(x),故此函数为奇函数.对于函数f(x)=x3sinx,由于f(﹣x)=﹣x3(﹣sinx)=x3sinx=f(x),故此函数为偶函数.对于函数f(x)=2cosx+1,由于f(﹣x)=2cos(﹣x)+1=2cosx+1=f(x),故此函数为偶函数.对于函数f(x)=x2+2x,由于f(﹣x)=(﹣x)2+2﹣x=x2+2﹣x≠﹣f(x),且f(﹣x)≠f (x),故此函数为非奇非偶函数.故选:A.【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50 B.40 C.25 D.20【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C.【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC中,∠A,∠B,∠C均小于180°,角A、B、C所对应的边分别为a,b,c,∴a,b,sinA,sinB都是正数,∴“a≤b”⇔“sinA≤sinB”.∴“a≤b”是“sinA≤sinB”的充分必要条件.故选:A.【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k满足0<k<5,则曲线﹣=1与﹣=1的()A.实半轴长相等B.虚半轴长相等C.离心率相等 D.焦距相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<5,则0<5﹣k<5,11<16﹣k<16,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=16,b2=5﹣k,c2=21﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=16﹣k,b2=5,c2=21﹣k,即两个双曲线的焦距相等,故选:D.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB所在的直线为l2,CD所在的直线为l3,AE所在的直线为l1,若GD所在的直线为l4,此时l1∥l4,若BD所在的直线为l4,此时l1⊥l4,故l1与l4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1 B.2 C.3 D.4【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z1+z2)*z3=(z1+z2)=(z1+z2=(z1*z3)+(z2*z3),正确;②z1*(z2+z3)=z1()=z1(+)=z1+z1=(z1*z2)+(z1*z3),正确;③(z1*z2)*z3=z1,z1*(z2*z3)=z1*(z2)=z1()=z1z3,等式不成立,故错误;④z1*z2=z1,z2*z1=z2,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B.【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5ex+3在点(0,﹣2)处的切线方程为 5x+y+2=0..【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5ex,∴y′|x=0=﹣5.因此所求的切线方程为:y+2=﹣5x,即5x+y+2=0.故答案为:5x+y+2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.【分析】求得从字母a,b,c,d,e中任取两个不同字母、取到字母a的情况,利用古典概型概率公式求解即可.【解答】解:从字母a,b,c,d,e中任取两个不同字母,共有=10种情况,取到字母a,共有=4种情况,∴所求概率为=.故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5= 5 .【分析】可先由等比数列的性质求出a3=2,再根据性质化简log2a1+log2a2+log2a3+log2a4+log2a5=5log2a3,代入即可求出答案.【解答】解:log2a1+log2a2+log2a3+log2a4+log2a5=log2a1a2a3a4a5=log2a35=5log2a3.又等比数列{an}中,a1a5=4,即a3=2.故5log2a3=5log22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为(1,2).【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 3 .【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)=3[()﹣()]=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:=30.这20名工人年龄的方差为S2=[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.【分析】(1)要证CF⊥平面MDF,只需证CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即证MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面积S△CDE,对应三棱锥的高MD,计算它的体积VM﹣CDE.【解答】解:(1)证明:∵PD⊥平面ABCD,PD⊂平面PCD,∴平面PCD⊥平面ABCD;又平面PCD∩平面ABCD=CD,MD⊂平面ABCD,MD⊥CD,∴MD⊥平面PCD,CF⊂平面PCD,∴CF⊥MD;又CF⊥MF,MD、MF⊂平面MDF,MD∩MF=M,∴CF⊥平面MDF;(2)∵CF⊥平面MDF,∴CF⊥DF,又∵Rt△PCD中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF∥DC,∴=,即=,∴DE=,∴PE=,∴S△CDE=CD•DE=;MD===,∴VM﹣CDE=S△CDE•MD=××=.【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{an}的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.【分析】(1)本题可以用n=1代入题中条件,利用S1=a1求出a1的值;(2)利用an与Sn的关系,将条件转化为an的方程,从而求出an;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:,即.∴(S1+3)(S1﹣2)=0.∵S1>0,∴S1=2,即a1=2.(2)由得:.∵an>0(n∈N*),∴Sn>0.∴.∴当n≥2时,,又∵a1=2=2×1,∴.(3)由(2)可知=,∀n∈N*,=<=(),当n=1时,显然有=<;当n≥2时,<+=﹣•<所以,对一切正整数n,有.【点评】本题考查了数列的通项与前n项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x0)=f().【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f(x0)=f()转化为f(x0)﹣f()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f(x)得f′(x)=x2+2x+a,令f′(x)=0,即x2+2x+a=0,判别式△=4﹣4a,①当△≤0即a≥1时,f′(x)≥0,则f(x)在(﹣∞,+∞)上为增函数.②当△>0即a<1时,方程f′(x)=0的两根为,即,当x∈(﹣∞,﹣1﹣)时,f′(x)>0,则f(x)为增函数;当时,f′(x)<0,则f(x)为减函数;当,+∞)时,f′(x)>0,则f(x)为增函数.综合①、②知,a≥1时,f(x)的单调递增区间为(﹣∞,+∞),a<1时,f(x)的单调递增区间为(﹣∞,和,+∞),f(x)的单调递减区间为.(2)∵=====.∴若存在∪,使得,即,则关于x的方程4x2+14x+7+12a=0在∪内必有实数解.∵a<0,∴△=142﹣16(7+12a)=4(21﹣48a)>0,方程4x2+14x+7+12a=0的两根为,即,∵x0>0,∴,依题意有,且,即,且,∴49<21﹣48a<121,且21﹣48a≠81,得,且.∴当∪时,存在唯一的∪,使得成立;当∪∪{}时,不存在∪,使得成立.【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.。

相关文档
最新文档