全国高考物理法拉第电磁感应定律的推断题综合高考真题分类汇总及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、法拉第电磁感应定律
1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.
(1)求磁感应强度B的大小;
(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;
(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.
【答案】(1)1 T (2)0.3 m(3)0.3n J
【解析】
【详解】
(1)当h=2L时,bc进入磁场时线框的速度
===
v gh gL
222m/s
此时金属框刚好做匀速运动,则有:
mg=BIL
又
E BLv
==
I
R R
联立解得
1mgR
=
B
L v
代入数据得:
1T
B=
(2)当h>2L时,bc边第一次进入磁场时金属线框的速度
022v gh gL =>
即有
0mg BI L <
又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有
'222v v gL =+
解得:
6m /s v '=
根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有
2v v gh '==
即有
0.3m h =
(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:
'2211
(2)22
mv mg L mv Q +=+ 代入解得:
00.3J Q =
则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.
(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb 为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q 为多少?
(3)若在线框eb 边刚进入磁场时,立即给物体P 施加一竖直向下的力F ,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F 做功W F =3.6 J ,求eb 边上产生的焦耳Q eb 为多少?
【答案】(1)1.2 V (2)3.2 J (3)0.9 J 【解析】 【详解】
(1)线框eb 边以v =4.0 m/s 的速度进入磁场并匀速运动,产生的感应电动势为:
10.44V=1.6 V E BLv ==⨯⨯
因为e 、b 两点间作为等效电源,则e 、b 两点间的电势差为外电压:
U eb =
3
4
E =1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
F 安=BLI
根据闭合电路欧姆定律有:
I =
E R
联立解得解得F 安=4 N 所以克服安培力做功:
=2=420.4J=3.2J W F L ⨯⨯⨯安安
而Q =W 安,故该过程中产生的焦耳热Q =3.2 J
(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:
22122v v a L -=
而根据牛顿运动定律可知:
()M m g
a M m
-=
+
联立整理得:
1
2
(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:
W F -W'安+(M-m )g ·2L =
1
2
(M+m )( 21v -v 2) 联立解得:
W F -W'安=0
而W'安= Q',故Q'=3.6 J
又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:
Q eb =
1
4
Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V.
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.
3.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;
(2)金属杆速度为2.0m/s 时的加速度大小;
(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.
【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】
(1)由题图知,杆运动的最大速度为4/m v m s =,
有22sin sin m
B L v F mg F mg R
αα=+=+
安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安
得222222
212sin 182100.5
2/2/2
B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:2
11sin 2
Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】
本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.
4.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平
面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;
(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?
(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46
【解析】 【详解】
(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有
sin A mg F θ=
其中
,A E
F BIL I R r
==
+ 根据法拉第电磁感应定律,有E BLv = 联立解得:
m 1.6s
v =
(2) 根据能量关系有
2
1·sin 2
mgs mv Q θ=
+ 电阻R 上产生的热量
R R
Q Q R r
=
+ 解得:
0.0183J R Q =
(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:
sin mg ma θ=
根据位移时间关系公式,有
21
2
x vt at =+
设t 时刻磁感应强度为B ,总磁通量不变,有:
()BLs B L s x '=+
当t =1s 时,代入数据解得,此时磁感应强度:
5T 46
B '=
5.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为
0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下
滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取2
10/(m s 忽略ab 棒运动过程中对原磁场的影响).
()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;
()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.
【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】
()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
()2当金属棒匀速下落时,由共点力平衡条件得:mg BIL =
金属棒产生的感应电动势为:E BLv = 则电路中的电流为:E
I R r
=+ 由图象可得:11.27.0
/7m /s 2.1 1.5
x v m s t -=
==-n n 代入数据解得:0.1T B =
()3在0 1.5s ~,以金属棒ab 为研究对象,根据动能定理得:
21
2
mgh Q mv =+
解得:0.455J Q =
则电阻R 上产生的热量为:0.26J R R
Q Q R r
=
=+
6.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:
(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;
(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .
【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】
(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:
A 0mgsin F θ-=
安培力:A F BIL = BLv
I R r
=+ 联立解得:2222
()sin 0.0110(0.40.1)0.6
3m /s 0.50.2
mg R r v B L θ+⨯⨯+⨯=
==⨯ (2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:
2211
0.01100.950.0130.05J
22
Q mgh mv ==⨯⨯-⨯⨯=-
故电阻R 产生的热量为:0.4
0.050.04J 0.40.1
R R Q Q R r =
=⨯=++
(3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:
()221111
222
mg r mgd mv mv μ--=-①
在圆轨道的最高点,重力等于向心力,有:2
11
v mg m r =②
联立①②解得:221535100.1
0.5m 220.410
v gr d g μ--⨯⨯=
==⨯⨯
7.如图所示,在倾角为30︒的斜面上,固定一宽度为0.25m L =的足够长平行金属光滑导轨,在导轨上端接入电源和滑动变阻器.电源电动势为 3.0V E =,内阻为 1.0r =Ω.质量20g m =的金属棒ab 与两导轨垂直并接触良好.整个装置处于垂直于斜面向上的匀强磁场中,磁感应强度为0.80T B =.导轨与金属棒的电阻不计,取2
10m/s g =.
(1)如果保持金属棒在导轨上静止,滑动变阻器接入到电路中的阻值是多少;
(2)如果拿走电源,直接用导线接在两导轨上端,滑动变阻器阻值不变化,求金属棒所能达到的最大速度值;
(3)在第(2)问中金属棒达到最大速度前,某时刻的速度为10m/s ,求此时金属棒的加速度大小.
【答案】(1) 5R =Ω (2) 12.5m/s v = (3) 21m/s a =
【解析】(1)因为金属棒静止在金属轨道上,受力平衡,如图所示,
安培力0F BIL =
根据平衡条件知0sin30F mg =︒
联立得
sin30
0.5A
mg
I
BL
︒
==
设变阻器接入电路的阻值为R,根据闭合电路欧姆定律()
E I R r
=+,
联立计算得出5
E
R r
I
=-=Ω.
(2)金属棒达到最大速度时,将匀速下滑,此时安培力大小,回路中电流大小应与上面情况相同,即金属棒产生的电动势,0.55V 2.5V
E IR
==⨯=,
由E BLv
=得
25
12.5m/s
0.80.25
E
v
BL
===
⨯
.
(3)当棒的速度为10m/s,所受的安培力大小为
2222
'
0.80.2510
N0.08N
5
B L v
F BI L
R
⨯⨯
====
'
安
;
根据牛顿第二定律得:'
sin30
mg F ma
︒-=
安
计算得出:2
1m/s
a=.
【点睛】本题是金属棒平衡问题和动力学问题,关键分析受力情况,特别是分析和计算安培力的大小.
8.如图所示,两根足够长的直金属MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
(1)在加速下滑过程中,当ab杆的速度大小为v时,ab杆中的电流及其加速度的大小;(2)求在下滑过程中ab杆可达到的最大速度.
(3)从开始下滑到达到最大速度的过程中,棒沿导轨下滑了距离s,求整个装置生热多少.【答案】
(1)Blv
I
R
=,
22
sin
B l v
mg
R
a
m
θ-
=
(2)
22
sin
m
mgR
v
B l
θ
=(3)
3222
44
sin
2
m g R
Q mgh
B l
θ
=-
【解析】
(1)在加速下滑过程中,当ab杆的速度大小为v时,感应电动势E=BLv
此时 ab 杆中的电流Blv
I R
=
金属杆受到的安培力:
22B L v
F BIL R ==
由牛顿第二定律得:22sin B l v
mg R a m
θ-
=
(2) 金属杆匀速下滑时速度达到最大,由平衡条件得:22sin m
B L v mg R
θ=
则速度的最大值22
sin m mgR v B l
θ
=
(3)若达到最大速度时,导体棒下落高度为 h ,由能量守恒定律得:
2
1sin 2
m mgs mv Q θ⋅=
+ 则焦耳热322244
sin 2m g R Q mgh B l θ
=-
【点睛】当杆匀速运动时杆的速度最大,分析清楚杆的运动过程是解题的前提;分析清楚杆的运动过程后,应用E =BLv 、欧姆定律、安培力公式、牛顿第二定律、平衡条件与能量守恒定律即可解题;求解热量时从能量角度分析可以简化解题过程.
9.53.如图所示,竖直平面内有一半径为r 、内阻为R 1,粗细均匀的光滑半圆形金属环,在M 、N 处于相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R2,已知R1=12R ,R2=4R .在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小均为B .现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab 下落r/2时的速度大小为v 1,下落到MN 处的速度大小为v 2.
(1)求导体棒ab 从A 下落r/2时的加速度大小.
(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R2上的电功率P2.
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.
【答案】(1) (2)
【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得
式中由各式可得到
(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即
式中
解得
导体棒从MN到CD做加速度为g的匀加速直线运动,
有得
此时导体棒重力的功率为
根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即
所以,
(3)设导体棒ab进入磁场II后经过时间t的速度大小为,
此时安培力大小为
由于导体棒ab做匀加速直线运动,
有根据牛顿第二定律,有
即:
由以上各式解得
考点:电磁感应,牛顿第二定律,匀加速直线运动。
【名师点睛】本题考查了关于电磁感应的复杂问题,对于这类问题一定要做好电流、安培力、运动情况、功能关系这四个方面的问题分析;也就是说认真分析物理过程,搞清各个力之间的关系,根据牛顿定律列方程;分析各种能量之间的转化关系,根据能量守恒定律列出方程;力的观点和能量的观点是解答此类问题的两大方向.
视频
10.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:
(1)金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;
(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6, cos37°=0.8)
【答案】(1)4m/s2(2)10m/s(3)0.4T,方向垂直导轨平面向上
【解析】试题分析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:
①
由①式解得=10×(O.6-0.25×0.8)m/s2=4m/s2②
(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡
③
此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:
④
由③、④两式解得
⑤
(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B
⑥
⑦
由⑥、⑦两式解得⑧
磁场方向垂直导轨平面向上
考点: 导体切割磁感线时的感应电动势;牛顿第二定律
【名师点睛】本题主要考查了导体切割磁感线时的感应电动势、牛顿第二定律 。
属于中等难度的题目,解这类问题的突破口为正确分析安培力的变化,根据运动状态列方程求解。
开始下滑时,速度为零,无感应电流产生,因此不受安培力,根据牛顿第二定律可直接求解加速度的大小;金属棒下滑速度达到稳定时,金属棒所受合外力为零,根据平衡条件求出安培力。
视频
11.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程:
(1)线圈内磁通量的变化量;
(2)线圈中产生的感应电动势大小。
【答案】(1)0.05Wb (2)0.1V
【解析】
【详解】
(1)磁通量的变化为:
△Φ=Φ′-Φ=0.10-0.05=0.05Wb ;
(2)由法拉第电磁感应定律可得感应电动势为:
0.0510.1V 0.5
E n t ∆Φ==⨯=V
12.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。
AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。
在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。
现解除锁定,当弹簧恢复原长时,a 、b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:
(1)a 、b 棒刚进入磁场时的速度大小;
(2)金属棒b 刚进入磁场时的加速度大小
(3)整个运动过程中电路中产生的焦耳热。
【答案】(1)3m/s (2)8m/s 2(3)5.8J
【解析】
【分析】
对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量.
【详解】
(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122
P a b E mv mv =
+ 解得v a =v b =3m/s
(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:E a =E b =Bdv a =6V 又:232a E I A R == 对b ,由牛顿第二定律:BId+μmg=ma b
解得a b =8m/s 2
(3)由动量守恒可知,ab 棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P =2μmgx+Q
解得Q=5.8J
【点睛】
此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.
13.如图甲所示,平行金属导轨MN 、PQ 放置于同一水平面内,导轨电阻不计,两导轨间距d=10cm ,导体棒ab 、cd 放在导轨上,并与导轨垂直,每根棒在导轨间的部分电阻均为R=1.0Ω.用长为l=20cm 的绝缘丝线将两棒系住,整个装置处在匀强磁场中.t=0时刻,磁场方向竖直向下,丝线刚好处于未被拉伸的自然状态,此后磁感应强度B 随时间t 的变化规律如图乙所示.不计感应电流磁场的影响,整个过程,丝线未被拉断.求:
(1)0~2.0s 时间内电路中感应电流的大小与方向;
(2)t=1.0s 时刻丝线的拉力大小.
甲乙
【答案】(1)A a→c→d→b→a (2)N
【解析】
【分析】
(1) 根据法拉第电磁感应定律求出感应电动势,从而求出感应电流;
(2)对导体棒进行受力分析,在水平方向上受拉力和安培力,根据F=BIL求出安培力的大小,从而求出拉力的大小。
【详解】
(1) 从图象可知,
则
故电路中感应电流的大小为0.001A,根据楞次定律可知,方向是acdba;
(2) 导体棒在水平方向上受拉力和安培力平衡
T=F A=BIL=0.1×0.001×0.1N=1×10-5N.
故t=1.0s的时刻丝线的拉力大小1×10-5N。
【点睛】
解决本题的关键掌握法拉第电磁感应定律以及安培力的大小公式F=BIL。
14.两根足够长的平行光滑金属导轨MN、PQ相距为d,导轨平面与水平面的夹角
θ=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直于导轨平面向上,长为d的金属棒ab垂直于MN、PQ放置于导轨上,且始终与导轨接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接一个阻值也为R的定值电阻,重力加速度为g.现闭合开关S,给金属棒施加一个方向垂直于棒且平行于导轨平面向上、大小为mg的恒力F,使金属棒由静止开始运动.求:
(1)金属棒能达到的最大速度v m;
(2)金属棒达到最大速度一半时的加速度;
(3)若金属棒上滑距离为L 时速度恰达到最大,则金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q 0.
【答案】(1) 22mgR B d ;(2)14g ;(3) 322
444m g R mgL B d
- 【解析】
【详解】
(1)设最大速度为m v ,此时加速度为0,平行斜面方向有:F mgsin BId θ=+ 据题知:2E I R
= m E Bdv = 已知F mg =,联解得:22m mgR v B d =
(2)当金属棒的速度2m v v =时,则:2
I I '= 由牛顿第二定律有:sin F BdI mg ma θ'--=
解得:14
a g = (3)设整个电路放出的热量为Q ,由能量守恒定律有:214sin 42m F L Q mg L mv θ⋅=+⋅+ 又:r R =,02
Q Q = 所以金属棒上产生的电热:322
0444m g R Q mgL B d
=-
15.如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计).磁感应强度为B 的匀强磁场方向垂直于纸面向外.金属棒ab 的质量为m ,与导轨接触良好,不计摩擦.从静止释放后ab 保持水平而下滑.
试求:(1)金属棒ab 在下落过程中,棒中产生的感应电流的方向和ab 棒受到的安培力的方向.
(2)金属棒ab 下滑的最大速度v m .
【答案】(1)电流方向是b→a .安培力方向向上.
(2)22
m mgR v B L =
【解析】
试题分析:(1)金属棒向下切割磁场,根据右手定则,知电流方向是b→a .根据左手定则得,安培力方向向上.
(2)释放瞬间ab 只受重力,开始向下加速运动.随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小.当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度. 由22m B L v F mg R
==, 可得22
m mgR v B L = 考点:电磁感应中的力学问题.。