升降压斩波课程设计

合集下载

升压斩波电路课程设计

升压斩波电路课程设计

升压斩波电路课程设计一、前言1. 课程设计背景由于发展的日新月异,升压斩波电路在电子工程中扮演者越来越重要的角色。

课程设计涉及到升压斩波电路原理,结构,实际建模及仿真等。

2. 课程设计目标通过本次课程设计,学习如何使用多芯片升压斩波电路的原理,掌握斩波电路设计过程,实现多芯片升压斩波电路的建模及仿真。

二、实验原理1.电路升压机理升压斩波电路的实现就是使用振荡器对原始输入电压实现升压,利用单位增量反馈,在交流振荡器的输出再经过斩波电路,将高频振荡信号净化成较高平均值的一个电压。

2.多芯片升压斩波电路基本结构多芯片升压斩波电路的基本结构包括振荡器、斩波电路及调节路。

斩波电路为半桥简易斩波电路,斩开频率为3.3MHz,有注意的是在使用斩波电路时应注意更改斩开频率来匹配相应电路的要求;调节路由缓冲器、激励电路及Vr偏置组成,其中Vr就是用来调节升压斩波电路输出电压的量。

三、电路设计1.电路建模基于多芯片升压斩波电路基本结构,将整个电路进行建模,首先根据原理分析和实验数据,确定各元器件参数;其次,根据实际的原理图、原理分析及相应的稳健设计原则,设计振荡器、斩波电路及调节路等模块;最后,将这些模块组合成完整的电路模型。

2.仿真设计仿真是对电路建模后的进一步分析。

仿真电路的目标是:根据输入电压的大小来最大化输出电压的大小,确定整个电路能否正常运行。

为了实现这一目标,仿真设计需要利用软件工具,如PSPICE、Cadence、Psim等,进行仿真分析,确定整个电路模型及参数设置满足设计要求及特性要求。

四、实验结果1.电路振荡状态根据仿真分析结果,升压斩波电路能够正常振荡。

斩开频率可以根据实际的需求来进行调节,以及斩波线性度也可以利用调整持续偏置,达到调节输出电压的目的。

2.电路性能本次课程设计实验中,升压斩波电路的输入电压为3.2V,输出电压为4.3V。

此外,斩波电路的斩开频率和线性度均能满足要求。

五、结论本次课程设计成功完成了多芯片升压斩波电路的建模及仿真,并达到了预期的效果,证明了我们给出的设计思路的可行性。

降压斩波电路课程设计

降压斩波电路课程设计

降压斩波电路课程设计一、课程目标知识目标:1. 掌握降压斩波电路的基本原理与结构;2. 理解降压斩波电路中元器件的作用及其相互关系;3. 学会分析降压斩波电路的输出电压与输入电压的关系;4. 了解降压斩波电路在实际应用中的优势与局限性。

技能目标:1. 能够正确绘制降压斩波电路的原理图;2. 能够利用仿真软件对降压斩波电路进行仿真分析;3. 能够根据实际需求设计和调试简单的降压斩波电路;4. 能够通过实验和数据分析,解决降压斩波电路中存在的问题。

情感态度价值观目标:1. 培养学生对电力电子技术课程的兴趣,激发学习热情;2. 培养学生具备良好的团队合作精神和沟通能力,提高解决问题的能力;3. 增强学生的环保意识,了解电力电子技术在实际应用中对环境保护的重要性;4. 培养学生的创新意识,鼓励学生勇于尝试,积极探索电力电子技术的新应用。

本课程针对高年级电子专业的学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。

通过本课程的学习,学生将能够掌握降压斩波电路的相关知识,具备一定的电力电子技术应用能力,同时培养良好的情感态度价值观。

二、教学内容1. 降压斩波电路基本原理:讲解降压斩波电路的工作原理、电路结构及关键元器件的功能;- 课本章节:第三章第三节“降压斩波电路基本原理”- 内容:开关器件、脉冲宽度调制、输出滤波器等2. 降压斩波电路分析与设计:分析电路的输出电压、电流波形,探讨元器件参数对电路性能的影响;- 课本章节:第三章第四节“降压斩波电路分析与设计”- 内容:输出电压与输入电压关系、开关频率、电感、电容等参数的选择3. 降压斩波电路仿真与实验:利用仿真软件进行电路仿真,进行实验验证,提高学生的实际操作能力;- 课本章节:第三章第五节“降压斩波电路仿真与实验”- 内容:仿真软件操作、实验步骤、数据采集与处理4. 降压斩波电路应用案例分析:介绍降压斩波电路在实际应用中的案例,分析其优势与局限性;- 课本章节:第三章第六节“降压斩波电路应用案例”- 内容:开关电源、电动汽车、可再生能源等领域应用5. 教学进度安排:共4课时,分别进行以下内容的教学:- 第1课时:降压斩波电路基本原理- 第2课时:降压斩波电路分析与设计- 第3课时:降压斩波电路仿真与实验- 第4课时:降压斩波电路应用案例分析教学内容科学系统,结合课程目标,确保学生能够全面掌握降压斩波电路的相关知识,提高学生的理论水平和实践能力。

降压斩波电路课程设计

降压斩波电路课程设计

降压斩波电路课程设计一、课程目标知识目标:1. 让学生理解降压斩波电路的基本原理,掌握其电路构成及工作过程。

2. 使学生掌握降压斩波电路中关键元件的作用,并能解释其对电路性能的影响。

3. 帮助学生掌握降压斩波电路的数学模型,并能运用相关公式进行计算。

技能目标:1. 培养学生运用所学知识设计简单的降压斩波电路的能力。

2. 让学生学会使用相关仪器和设备进行降压斩波电路的搭建和调试。

3. 培养学生分析和解决降压斩波电路实际问题的能力。

情感态度价值观目标:1. 培养学生对电力电子技术学科的兴趣,激发学生的学习热情。

2. 培养学生的团队协作精神,使学生学会在团队中共同解决问题。

3. 强化学生的环保意识,使学生关注电力电子技术在节能减排方面的应用。

课程性质分析:本课程为电子技术专业课程,旨在帮助学生掌握降压斩波电路的基本原理和应用。

课程内容具有较强的理论性和实践性,要求学生在理解理论知识的基础上,能够动手实践,解决实际问题。

学生特点分析:学生为高中年级学生,具备一定的电子技术基础,但对降压斩波电路的了解有限。

学生对新鲜事物充满好奇心,喜欢动手实践,但可能缺乏系统的分析问题和解决问题的能力。

教学要求:1. 结合学生特点,采用理论教学与实践教学相结合的方法,使学生充分理解并掌握降压斩波电路的相关知识。

2. 注重培养学生的动手能力和实际操作技能,提高学生的实际问题解决能力。

3. 通过小组讨论、实验操作等形式,培养学生的团队协作能力和沟通能力。

二、教学内容1. 降压斩波电路基本原理:讲解降压斩波电路的定义、工作原理及其在电力电子技术中的应用。

教材章节:第二章第二节“降压斩波电路”2. 电路构成及关键元件:分析降压斩波电路的组成部分,介绍关键元件(如开关器件、二极管、电感、电容等)的功能和选型。

教材章节:第二章第三节“降压斩波电路的构成及关键元件”3. 数学模型与公式:推导降压斩波电路的数学模型,讲解相关公式及其应用。

mosfet升压斩波课程设计

mosfet升压斩波课程设计

mosfet升压斩波课程设计一、课程目标知识目标:1. 学生能理解MOSFET升压斩波电路的基本原理,掌握其工作过程和关键参数的计算。

2. 学生能掌握MOSFET器件的选型原则,理解其与升压斩波电路性能之间的关系。

3. 学生了解升压斩波电路在不同应用场景中的优缺点,并能结合实际需求进行合理设计。

技能目标:1. 学生能够运用所学知识,独立完成MOSFET升压斩波电路的搭建和调试。

2. 学生能够分析电路中存在的问题,并提出相应的优化方案。

3. 学生能够通过实际操作,验证理论知识的正确性,提高实践能力。

情感态度价值观目标:1. 学生通过学习,培养对电力电子技术学科的兴趣,激发学习热情。

2. 学生能够认识到MOSFET升压斩波电路在现实生活中的应用价值,提高社会责任感和使命感。

3. 学生在团队协作中,培养沟通与交流的能力,增强合作意识。

本课程旨在帮助学生掌握MOSFET升压斩波电路的相关知识,提高实践操作能力,培养学生对电力电子技术的兴趣和责任感。

针对高年级学生的特点和教学要求,课程目标具体、可衡量,为后续的教学设计和评估提供明确的方向。

二、教学内容本章节教学内容主要包括以下三个方面:1. MOSFET升压斩波电路原理- 介绍MOSFET器件的结构、工作原理和特性。

- 讲解升压斩波电路的基本原理,包括电路组成、工作过程和关键参数计算。

2. MOSFET升压斩波电路设计与应用- 分析MOSFET器件的选型原则,及其与升压斩波电路性能的关系。

- 介绍升压斩波电路在不同应用场景中的设计方法和注意事项。

- 结合教材章节,进行实例分析和讨论。

3. 实践操作与调试- 安排实验室实践课程,指导学生搭建MOSFET升压斩波电路。

- 教学内容涵盖电路调试、问题分析及优化方案提出。

教学进度安排如下:1. 第1周:MOSFET器件结构、工作原理及特性。

2. 第2周:升压斩波电路原理及关键参数计算。

3. 第3周:MOSFET升压斩波电路设计与应用。

降压斩波电路-课程设计

降压斩波电路-课程设计

烟台南山学院电力电子技术课程设计题目降压斩波电路设计姓名: __ _______ 所在学院:_ ___ _______所学专业:_ __ __班级_ __ ________学号___ ______指导教师: ___ _______完成时间:__ __ ___(一) 设计任务书题目五降压斩波电路(Buck Chopper)的设计通过对降压斩波电路的设计,掌握其工作原理,运用所学知识,进行降压斩波电路和系统的设计。

了解与熟悉降压斩波电路拓扑,控制方法。

理解和掌握降压斩波电路及系统的主电路、控制电路和保护电路的设计方法,掌握器件的选择计算方法。

使设计出的电路在条件(1)直流电压E=50v,R=20Ω,L、C值极大,Em=30v,(2)直流电压E=50V,R=20Ω,L=1Mh,C值极大,使电路在此两种条件下在改变占空比的情况下驱动相应的直流电动机运转。

(二) 课程设计的总体要求1.(1)熟悉降压斩波电路的基本原理,能够运用所学的理论知识分析设计任务。

(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。

(3)能正确设计电路,画出电路图,分析电路原理。

(4)按时参加课程设计指导,定期汇报课程设计进展情况。

(5)广泛收集相关技术资料。

(6)独立思考,刻苦钻研,严禁抄袭。

(7)按时完成课程设计任务,认真、正确的书写课程设计报告。

(8)培养实事求是、科学严谨的工作态度和认真的工作作风。

2.设计要求(1)理论设计:了解掌握降压斩波电路的工作原理,设计降压斩波电路的主电路的工作原理,设计降压斩波电路的主电路和控制电路,包括:① IGBT额定电流、电压的选择②驱动电路、保护电路的设计。

③各元器件参数的选择。

(2)完成设计任务书的内容。

目录一、引言 (4)二、分电路的原理及选择 (5)2.1 降压斩波电路工作原理 (5)2.1.1 降压斩波电路(Buck Chopper) (5)2.1.2 IGBT驱动电路选择 (5)2.2 整流电路 (6)2.3 斩波信号产生电路 (7)2.3.1由分立元件组成的驱动电路 (7)2.3.2集成驱动电路 (8)三、最优参数选择 (10)3.1 整流电路部分 (10)3.2斩波主电路部分 (10)四、生成总的电路图 (12)4.1 总原理图 (12)4.2 此电路的主要功能 (13)五、保护电路 (13)5.1 整流桥电路部分 (13)5.2 驱动电路部分 (13)六、心得体会 (13)七、参考文献 (14)单相、摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

igbt升压斩波电路课程设计

igbt升压斩波电路课程设计

igbt升压斩波电路课程设计一、课程目标知识目标:1. 学生能够理解IGBT的基本结构、工作原理及其在电力电子设备中的应用。

2. 学生能够描述升压斩波电路的原理,并掌握其关键参数的计算方法。

3. 学生能够解释IGBT升压斩波电路在不同应用场景中的优势及限制。

技能目标:1. 学生能够运用所学知识,设计简单的IGBT升压斩波电路,并进行仿真分析。

2. 学生能够通过实验操作,验证升压斩波电路的性能,并掌握实验数据的处理方法。

3. 学生能够运用相关软件(如Multisim、LTspice等)对IGBT升压斩波电路进行设计与优化。

情感态度价值观目标:1. 学生培养对电力电子技术领域的兴趣,提高学习主动性和积极性。

2. 学生通过团队合作,培养沟通、协作能力,增强集体荣誉感。

3. 学生在学习过程中,认识到电力电子技术在实际应用中的重要性,增强社会责任感。

课程性质:本课程为高年级电子技术专业课程,具有较强的理论性和实践性。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力。

教学要求:结合课程性质、学生特点,注重理论与实践相结合,提高学生的实际操作能力,培养学生解决实际问题的能力。

通过课程目标分解,使学生在掌握知识、技能的同时,培养良好的情感态度价值观。

二、教学内容1. 理论知识:- IGBT的基本结构、工作原理及特性参数- 升压斩波电路的原理及分类- IGBT升压斩波电路的设计方法及关键参数计算- IGBT升压斩波电路在不同应用场景的分析2. 实践操作:- 使用Multisim、LTspice等软件进行IGBT升压斩波电路设计与仿真- 实验室搭建IGBT升压斩波电路,进行性能测试与数据分析- 针对实际应用案例,进行电路优化与调试3. 教学大纲:- 第一周:介绍IGBT的基本结构、工作原理及特性参数,讲解升压斩波电路的原理及分类- 第二周:深入学习IGBT升压斩波电路的设计方法,进行关键参数计算- 第三周:分析不同应用场景下的IGBT升压斩波电路,并进行实践操作- 第四周:总结课程内容,进行电路设计与优化,开展实验成果交流教材关联:教学内容与《电力电子技术》教材中第四章“IGBT及其应用”和第五章“升压斩波电路”相关章节紧密关联,确保教学内容与课本相符。

降压斩波电路课程设计

降压斩波电路课程设计

降压斩波电路课程设计一、设计任务与要求设计一个降压斩波电路,将直流电源的电压降低到所需电压值,并实现稳定的输出。

具体要求如下:1.输入直流电源电压范围为0-100V。

2.输出电压可调,范围为0-50V。

3.输出电流最大值为5A。

4.实现恒压输出,即输出电压稳定不变。

5.电路效率高,损耗小。

6.考虑电路的安全性,添加必要的保护措施。

二、电路设计降压斩波电路主要由电源、开关管、电感、二极管和负载组成。

其工作原理是利用开关管在斩波周期内反复通断,控制电感电流的平均值,从而达到降低输出电压的目的。

1.电源:采用0-100V的直流电源,满足输入电压范围要求。

2.开关管:选择合适的开关管,如MOSFET或IGBT等,根据输入电压和电流要求进行选择。

3.电感:选择适当的电感值,以保证电路的稳定性和效率。

4.二极管:选择合适的整流二极管,如肖特基二极管或快恢复二极管等,以保证电路的稳定性和效率。

5.负载:根据设计要求,选择适当的负载电阻或负载电容等。

三、电路原理图设计根据以上分析,可以设计出降压斩波电路的原理图。

在原理图中,需要标明各元件的参数和连接方式,并注意电路的安全性和可靠性。

例如,为保护开关管和二极管,可以在电路中添加限流电阻或温度保护元件等。

四、仿真与测试在完成原理图设计后,需要进行仿真和测试,以验证设计的正确性和可靠性。

可以使用仿真软件如Multisim进行仿真分析,并根据测试结果对电路参数进行调整。

实际测试时,可以使用电子负载仪等设备进行测试,并记录测试数据和波形。

五、总结与反思在完成降压斩波电路课程设计后,需要对整个设计过程进行总结和反思。

总结设计的优点和不足之处,提出改进方案和优化措施,为今后的课程设计和工程实践提供有益的参考和借鉴。

升压斩波电路的课程设计

升压斩波电路的课程设计

升压斩波电路的课程设计一、课程目标知识目标:1. 理解升压斩波电路的基本原理,掌握其工作过程及关键参数的计算。

2. 掌握升压斩波电路在不同应用场景中的优点和局限。

3. 了解升压斩波电路与其他类型斩波电路的区别及适用范围。

技能目标:1. 能够正确绘制升压斩波电路的原理图,并进行电路分析。

2. 学会使用相关仪器、设备对升压斩波电路进行实验操作,验证理论知识的正确性。

3. 能够根据实际需求设计简单的升压斩波电路,并进行参数计算。

情感态度价值观目标:1. 培养学生对电力电子技术学习的兴趣,激发其探索精神。

2. 培养学生的团队协作意识,使其在实验和讨论中能够积极与他人合作。

3. 增强学生的环保意识,了解电力电子技术在节能减排方面的重要作用。

课程性质分析:本课程为电力电子技术领域的基础课程,旨在使学生掌握升压斩波电路的基本原理和实际应用。

学生特点分析:学生具备一定的电子电路基础知识,但对电力电子技术方面的知识相对陌生,需要通过具体实例和实验来加深理解。

教学要求:1. 结合实际应用,注重理论知识与实验操作的相结合。

2. 通过案例分析、小组讨论等方式,提高学生的参与度和积极性。

3. 注重培养学生的动手能力和创新能力,提高其解决实际问题的能力。

二、教学内容1. 升压斩波电路原理:- 斩波电路概述- 升压斩波电路的工作原理及电路结构- 关键元件的作用及选型2. 升压斩波电路的数学建模与参数计算:- 电路方程的建立- 参数计算方法- 转换效率分析3. 升压斩波电路的应用案例分析:- 不同场景下的应用案例介绍- 优缺点分析- 对比其他类型斩波电路的应用4. 实验教学:- 升压斩波电路原理图绘制与仿真- 实验设备的使用与操作方法- 实验步骤及数据处理5. 教学进度安排:- 理论教学:共计8课时,分2周完成- 实验教学:共计4课时,分1周完成教材章节关联:本教学内容与教材第3章“电力电子变换技术”的第2节“升压斩波电路”相关联,涵盖了该节内容的核心知识点。

降压直流斩波电路课程设计

降压直流斩波电路课程设计

降压直流斩波电路课程设计
降压直流斩波电路是一种基本的电子电路,它可以将高电压的直流电源降压为合适的电压,以满足电子设备的需求。

以下是一个简单的降压直流斩波电路的课程设计:
1.电路原理:降压直流斩波电路主要由变压器、桥式整流电路、
电容和负载组成。

变压器将高电压的直流电源降压,桥式整流电路将交流输出转换为直流输出,电容平滑输出电压,负载则是电路的输出部分。

2.设计要求:设计一个输出电压为12V,输出电流为1A的降压直
流斩波电路。

3.设计步骤:
(1)计算变压器的变比。

因为输出电压为12V,变压器的变比为Vin/Vout=36/12=3。

(2)选择变压器。

根据变比选择合适的变压器。

(3)设计桥式整流电路。

选择合适的整流二极管和滤波电容。

(4)计算电容容值。

根据输出电流和输出电压计算电容的容值。

(5)确定负载。

根据输出电流和输出电压确定负载的电阻值。

(6)进行电路仿真。

使用电路仿真软件进行电路仿真,验证电路的性能是否符合设计要求。

4.实验步骤:
(1)搭建电路。

根据设计要求,搭建电路。

(2)连接电源。

将电源连接到电路上,调整电源输出电压。

(3)测量输出电压和输出电流。

使用万用表测量输出电压和输出电流,检查是否符合设计要求。

(4)观察电路波形。

使用示波器观察电路各部分的电压和电流波形,检查是否正常。

5.实验结果:
经过实验测量和仿真验证,输出电压为12V,输出电流为1A,符合设计要求。

电力电子升降压变换器课程设计[推荐]

电力电子升降压变换器课程设计[推荐]

电力电子升降压变换器课程设计[推荐]第一篇:电力电子升降压变换器课程设计[推荐]中北大学电子技术课程设计说明书绪论《电力电子技术》课程是一门专业技术基础课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。

其目的是训练学生综合运用学过的变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。

《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。

通过设计能够使学生巩固、加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。

斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。

直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。

本文分析了升降压斩波电路的工作原理,又用Matlab对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

升降压斩波电路的设计中北大学电子技术课程设计说明书2.1升降压斩波电路工作原理(1)V通时,电源E经V向L供电使其贮能,此时电流为i1。

同时,C维持输出电压恒定并向负载R供电。

(2)V断时,L的能量向负载释放,电流为i2。

负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。

a)原理图b)波形图图(3)升压/降压斩波电路的原理图及波形图数量关系:稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即:中北大学电子技术课程设计说明书⎰当V处于通态时,uLT0uLdt=0=E;当V处于断态时,uL=-uo;于是:Eton=U0toff所以输出电压为: U0=tontαE=onE=E toffT-ton1-α由此可见,改变导通占空比α,就能够控制斩波电路输出电压U。

(完整版)升降压斩波课程设计.doc

(完整版)升降压斩波课程设计.doc

《电力电子技术》课程设计说明书直流升降压斩波电路的设计与仿真院、部:电气与信息工程学院学生姓名:指导教师:职称讲师专业:电气工程及其自动化班级:学号:完成时间:2016 年 6 月电力电子技术课程设计任务书学院:电气与信息工程系专业:电气工程及其自动化指导教师姓名学生姓名课题名称直流升压降压斩波电路的设计与仿真一、技术指标及要求:1)直流输入电压 100V;设计内容及任务设计安排主要参考资料2)电阻负载; (R 取学号尾数 X10Ω);3)控制电路频率 10KHZ ;4)输出电压纹波系数: 0.2%;5)仿真出占空比α分别为 0.1,0.2,0.5,0.8 的电感电压、电感电流、开关管电流、二极管电流和输出电压的波形。

起止日期设计内容2016 年 5 月 25 日确定设计方案2016 年 5 月 26 日计算相关数据2016 年 5 月 27 日至 2016 年 6 月 6 日Simulink仿真2016 年 6 月 7 日至 2016 年 6 月 23 日撰写课程设计说明书[1] 王兆安、刘进军.电力电子技术(第 5 版).机械工业出版社, 2009[2] 康华光、陈大钦.电子技术基础模拟部分.高等教育出版社,2002[3]秋关源、罗先觉.电路(第 5 版).高等教育出版社, 2006[4]周克宁 . 电力电子技术 . 北京:机械工业出版社, 2004.[5]黄家善 . 电力电子技术 . 北京:机械工业出版社, 2006[6]王维平 . 现代电力电子技术及应用 . 南京:东南大学出版社, 1999[7]张明勋主编 , 电力电子设备设计和应用手册 [M]. 北京 : 机械工业出版社.1992[8]丁道宏主编 , 电力电子技术 [M]. 北京 : 航空工业出版社 .1992[9]林渭勋主编 , 电力电子技术基础 [M]. 北京 : 机械工业出版社 .1990摘要电力电子技术飞速发展,电力电子技术已经成为自动化领域里一个重要部分,其核心就是利用弱电电路的设计思路,强大电路的器件来实现电路的各种需求。

直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计介绍如下:
直流升压斩波电路是一种能够将直流电源输出电压升高的电路,其基本结构包括斩波电路和升压电路。

在本次课程设计中,我们将设计一种直流升压斩波电路,并通过实验验证其性能。

设计需求:
1.输入电压:12V直流电源;
2.输出电压:至少24V;
3.斩波电路:使用快速二极管;
4.升压电路:使用升压变压器;
5.输出电压稳定性:±2%;
6.负载变化时输出电压稳定性:±5%。

设计步骤:
1.根据设计需求,选择适合的二极管和变压器。

在实验中我们选择快速二极管1N4148
以及3:1的升压变压器;
2.根据升压电路的特点,需要选择合适的升压交流电压。

一般情况下,将输入交流电
压直接升高三倍的场合比较适宜。

根据实验需要,我们选择将输入电压升高2倍,即使用3:1的升压变压器;
3.设计斩波电路。

斩波电路是直流升压斩波电路的关键。

为了避免斩波电路对输出电
压的影响,我们选择快速二极管1N4148作为斩波管,将其正向的承受电压设为12V 即可;
4.设计升压电路。

升压电路是直流升压斩波电路的另一个重要组成部分。

根据设计需
求,我们选择将输入电压升高2倍,因此需要选用3:1的升压变压器;
5.组装电路并测试。

将斩波电路和升压电路组装在一起,接入12V直流电源。

使用示
波器检测电路输出电压波形,并进行输出稳定性测试,最终得出该直流升压斩波电路的性能。

通过以上设计步骤,我们可以设计出一款简单的直流升压斩波电路,并通过实验验证其性能。

降压升压斩波电路的课程设计

降压升压斩波电路的课程设计

MOSFET降压、升压斩波设计一、问题的提出与简述直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。

利用不同的基本斩波电路进行组合,可构成复合斩波电路。

本文着重解决用MOSFET作开关的降压、升压斩波电路。

二、设计目的1、设计一个MOSFET降压斩波电路(纯电阻负载)设计要求:=100V;1)输入直流电压:Ud2)输出功率: 300W;3)开关频率: 5KHz;4)占空比: 10%~90%;5)输出电压脉动率:小于10%。

2、设计一个MOSFET升压斩波电路(纯电阻负载)设计要求:1)输入直流电压:U=100V;d2)输出功率: 300W;3)开关频率: 5KHz;4)占空比: 10%~90%;5)输出电压脉动率:小于10%。

三、原理Ⅰ、降压斩波电路原理图如下:(因多数电源输出都是直流电压,因此,输出电路都带有整流滤波电路。

)具体工作原理如下:在控制开关开通期间on t ,电源向储能电感L 充电,电流从电源正极流出,流经储能电感L ,经负载R 流回电源负极。

()()i L o U u t u t =+ 得出()L i o u t U U =-··(1) 在控制开关关断期间off t ,储能电感L 将释放电能,流过储能电感L 的电流L i 从电感L 的正极流出,通过负载R ,再经过续流二极管VD 的正极,然后从续流二极管VD 的负极流出,最后回到储能电感L 的负极。

回路电压方程为:0()()L o u t u t =+ 得出:()L o u t U =- (2)(1)当开关导通时间on t 内,续流二极管因反偏二截止,电容开始充电,直流电压源i U 通过电感L 向负载R 传递能量。

IGBT升降压斩波电路设计完整版

IGBT升降压斩波电路设计完整版

I G B T升降压斩波电路设计Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。

而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。

本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC 变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。

关键词:直流斩波;升降压; IGBT;全控型目录1 设计任务要求设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%(5) 输出电压脉率:小于10%设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。

升降压斩波课程设计

升降压斩波课程设计

升降压斩波课程设计****大学自动化学院电力电子技术课程设计报告设计题目:升降压斩波电路设计单位(二级学院):自动化学院学生姓名:专业:电气工程及其自动化班级:学号:指导教师:设计时间:2014年 5 月目录摘要 (4)1 升降压斩波电路及基本原理 (5)2仿真分析与调试 (7)2.1 建立仿真模型 (7)2.2 仿真参数的设置 (8)2.3仿真结果分析 (8)3用芯片实现升降压 (10)3.1 LM2596降压 (10)3.2 MC34063芯片升压 (11)3.3 PCB版制作流程 (12)4心得体会 (14)5参考文献 (15)摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。

利用全控型器件可以组成变流器。

直流-直流变换器就是其中一种,它广泛应用于通信交换机、计算机以及手机等电子设备的开关电源。

直流—直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或可调电压的直流电。

本文着重介绍升降压斩波电路的原理和基于matlab的simulink的升降压斩波电路的仿真以及用一种芯片的方法实现升降压斩波。

关键词:直流—直流变流电路;升降压斩波;simulink;仿真1 升降压斩波电路及基本原理图1所示为升降压斩波电路(Buck-Boost Chopper)原理图。

电路中电感L 值很大,电容C值也很大。

因为要使得电感电流和电容电压基本为恒指。

图1 该电路的基本工作原理:当可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量,此时电流为I 1,方向如图1所示。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

电力电子技术课程设计之降压斩波电路

电力电子技术课程设计之降压斩波电路

目录摘要一、概述 (2)二、设计方案 (3)三、主电路设计 (5)四、Simulink仿真系统设计 (8)五、总结 (17)六、参考文献 (18)一、概述从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。

发热增多,体积缩小,难过高温关。

因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。

工程师们开始研究各种避开开关损耗的软开关技术。

虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。

一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。

有源箝位技术历经三代,且都申报了专利。

第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。

VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。

特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。

因此,其转换效率始终没有突破90%大关。

为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。

它采用P沟MOSFET在变压器二次侧用于forward电路拓朴的有源箝位。

这使产品成本减低很多。

但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内效率的提升不如第一代有源箝位技术,而且PMOS 工作频率也不理想。

为了让磁能在磁芯复位时不白白消耗掉,一位美籍华人工程师于2001年申请了第三代有源箝位技术专利,并获准。

其特点是在第二代有源箝位的基础上将磁芯复位时释放出的能量转送至负载。

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

绪论现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。

电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。

八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

而直流斩波器(DC Chopper)是一种把恒定直流电压变换成为另一固定电压或可调电压的直流电压,从而满足负载所需的直流电压的变流装置。

也称为直接直流-直流变换器(DC/DC Converter)。

它通过周期性地快速通、断,把恒定直流电压斩成一系列的脉冲电压,而改变这一脉冲列的脉冲宽度或频率就可实现输出电压平均值的调节。

直流斩波器除可调节直流电压的大小外,还可以用来调节电阻的大小和磁场的大小。

直流传动、开关电源是斩波电路应用的两个重要领域,是电力电子领域的热点。

全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET的优点,具有良好的特性。

目前已取代了原来GTR和一部分电力MOSFET 的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。

前者是斩波电路应用的传统领域后者则是斩波电路应用的新领域。

直流斩波器的种类较多,包括6种基本斩波器:降压斩波器(Buck Chopper)、升压斩波器(Boost Chopper)、升降压斩波器(Boost-Buck Chopper)、Cuk斩波器、Sepic斩波器和Zeta斩波器,前两种是最基本的类型。

09050543X12李炳辉纯电阻升降压斩波器课程设计

09050543X12李炳辉纯电阻升降压斩波器课程设计

中北大学信息商务学院课程设计说明书学生姓名:李炳辉学号: 12 院系:信息与通信工程系专业:自动化题目:他励直流电动机的调速系统指导教师:方炜职称: 讲师2012年1月7日目录摘要他励直流电动机的调速系统一、设计的目的和意义二、总体设计方案1. 并励(他励)直流电动机的起动2. 并励(他励)直流电动机的调速三.设计过程1.实验设备2. 设备屏上挂件排列顺序3. 设计原理图4.调速步骤五、设计心得六.参考文献摘要随着工业的不断发展,电动机的需求会越来越大,电动机的应用越来越广泛,电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。

而电动机主要应用于工业生产的自动化操作中是电动机的主要应用之一,因此本课程设计课题将主要以在工业中电动机调速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。

关键词:直流电动机调速设计他励直流电动机的调速系统一、设计的目的和意义通过本次的课程设计更进一步的掌握和了解异步电动机的调速方法。

这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。

二、总体设计方案1. 并励(他励)直流电动机的起动直流电动机接通电源以后,电动机的转速从零达到稳态转速的过程称为起动过程。

对于电动机来讲,我们总希望它的起动转矩大,起动电流小,起动设备简单、经济、可靠。

直流电动机开始起动时,转速n=0,此时直流电动机的反电动势(E=KEφn)还没有建立起来,由于电枢电阻Ra较小,Ia=u/R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4纯电阻50%占空比波形图
由前面计算公式,我们知道当输入电压为30V时,占空比0.5时,输出电压理论值为30V,由上图知,仿真输出电压大约为27.8V。仿真输出电流大约2.8A,输出功率77.84W,大于20W,符合设计要求。不妨改变输入电压再试试。以下把输入电压改为10V,由于需要升高电压,所以取占空比80%。仿真波形如下:
MC34063组成的升压电路原理如图,当芯片内开关管(Q1)导通时,电源经取样电阻Res、电感L2、 MC34063的1脚和2脚接地,此时电感L2开始存储能量,而由C_out对负载提供能量。当T1断开时,电源和电感同时给负载和电容C_out提供能量。电感在释 放能量期间,由于其两端的电动势极性与电源极性相同,相当于两个电源串联,因而负载上得到的电压高于电源电压。开关管导通与关断的频率称为芯片的工作频率。只要此频率相对负载的时间常数足够高,负载上便可获得连续的直流电压。
4、腐蚀线路板.用腐蚀剂服饰结合热水加快服饰速度。
5、线路板钻孔。线路板上是要插入电子元件的,所以就要对线路板钻孔了。依据电子元件管脚的粗细选择不同的钻针
6、线路板预处理。钻孔完后,用细砂纸把覆在线路板上的墨粉打磨掉,用清水把线路板清洗干净。水干后,用松香水涂在有线路的一面,为加快松香凝固,用热风机加热线路板,只需2-3分钟松香就能凝固。
LM2596开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。固定输出版本有3.3V、5V、12V,可调版本可以输出小于37V的各种电压。
该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。由于该器件只需4个外接元件,可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。 该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,可调输出电压范围1.2V~37V±4%,输出线性好且负载可调节,输出电流可高达3A,采用150KHz的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高。
图5纯电阻80%占空比波形图
由图知输出电流大约3.37A,输出电压大约33.7V,输出功率113.57W,大于20W,符合设计要求。
由上述波形图可以看出,电压电流的波形都近似为一条直线。输出电压,电流与理论值都存在小小的误差。但考虑到其他元件自身的阻抗作用,这种误差是能够容许的。
3
3.1 LM2596降压
图7 MC34063升压模块
3.3 PCB版制作流程
1、打印电路板。将绘制好的电路板用转印纸打印出来
2、裁剪覆铜板,用细砂纸把覆铜板表面的氧化层打磨掉,以保证在转印电路板时,热转印纸上的碳粉能牢固的印在覆铜板上,打磨好的标准是板面光亮,没有明显污渍。
3、转印电路板。将打印好的电路板裁剪成合适大小,把印有电路板的一面贴在覆铜板上,最好用胶带粘住,对齐好后把覆铜板放入热转印机,放入时一定要保证转印纸没有错位。一般来说经过3-5次转印,电路板就能很牢固的转印在覆铜板上
5、脉冲发生器参数设置为:
Amplitue=1VL=3H C=infF
Period=2e-4s(频率5000HZ)
Pulse Width(即占空比):按需要设定
6、主电路负载参数设置为:R=10ΩL=0H C=25e-04F
7、电感参数设置:400e-3H
2.3仿真结果分析
纯电阻负载时,首先选择输入电压30V,占空比为0.33。仿真波形如下图所示:
(2-1)
所以输出电压为:
(2-2)
为V处于通态的时间, 为V处于断态的时间。T为开关周期; 为导通占空比,简称占空比或导通比。
若改变导通比 ,则输出电压既可以比电源电压高,也可以比电源电压低。
当 时为降压,
当 时为升压,
因此该电路称为升降压斩波电路。
根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:
1、保持开关周期T不变,调节开关导通时间 不变,称为PWM。
2、保持开关导通时间 不变,改变开关周期T,称为频率调制或调频型。
3、 和T都可调,使占空比改变,称为混合型。
2仿真分析与调试
2.1 建立仿真模型
在电力电子设计过程中利用MATLAB来进行仿真建模分析有很大的好处,它不但非常方便而且能够在很大程度范围内减少因设计问题而造成的浪费。
7、焊接电子元件。焊接完相应的电子元件,通电检测和测试。
4心得体会
通过这次课程设计,让我对电力电子技术有了更深的认识,让我进一步了解了电力电子器件。在这次课程设计中我主要担任电路仿真的工作,虽然在此期间遇到了很多困难,重复了很多遍都没有仿成功,但是经过查找资料,向老师同学请教,之后得到你要的结果时,那种喜悦感,那种兴奋感如果没有这一过程是无法体会的。仿真让我进一步学习了matlab软件,学会了很多关于仿真的知识。当然,此过程少不了老师的付出和同学合作。这次的设计也让我认识到了理论与实际结合的重要性。
通过外围电路能够使得LM2596芯片输出电压可调,输出电压的计算可由下式给出: (3-1)图6LMFra bibliotek596降压模块
3.2 MC34063芯片升压
MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。能在3.0-40V的输入电压下工作,输出开关输出电压可调,工作振荡频率从100HZ到100KHZ。
5参考文献
[1]王兆安,刘进军,电力电子技术[M].第五版.北京:机械工业出版,2009:119-123.
[2]杨素行,模拟电子技术基础简明教程[M].第三版.北京:高等教育出版,2006.
[3]贾立柱,刘晓龙,基于matlab的升降压斩波电路的仿真[J].北京:华北电力大学.
[4]陈荣,基于升降压斩波电路的三相DC/AC逆变器研究[J].山东:中国石油大学,2013.
2.2 仿真参数的设置
1、直流电压源选择DC Voltagesource,其工作电压安需要设定(3~30V)。
2、示波器:接入2路信号分别为:iloade、Vloade。
3、IGBT的参数选择中的current tail time设置为:2e-6,其余为默认值。
4、晶闸管选择Diode,参数选择为默认值。
图3纯电阻33%占空比波形图
由前面计算公式,我们知道当输入电压为30V时,占空比0.33时,输出电压理论值为14.14V。由上图知,仿真输出电压大约为13.35V。仿真输出电流大约1.34A,输出功率为17.89W,没有大于20W,我们可以通过改变占空比,使输出电压和电流升高,以满足设计要求。以下保持输入电压不变,把占空比变为50%,再仿真一次。仿真结果如下图所示:
关键词:直流—直流变流电路;升降压斩波;simulink;仿真
1
图1所示为升降压斩波电路(Buck-Boost Chopper)原理图。电路中电感L值很大,电容C值也很大。因为要使得电感电流和电容电压基本为恒指。
图1
该电路的基本工作原理:当可控开关V处于通态时,电源E经V向电感L供电使其储存能量,此时电流为I1,方向如图1所示。同时,电容C维持输出电压基本恒定并向负载R供电。此后,使V关断,电感L中储存的能量向负载释放,电流为I2,方向如图1所示。可见,负载电压极性为上负下正,与电源电压极性相反。稳态时,一个周期T内电感L两端电压 对时间的积分为零,即:
****大学
自动化学院
电力电子技术课程设计报告
设计题目:
升降压斩波电路设计
单位(二级学院):自动化学院
学生姓名:
专业:电气工程及其自动化
班级:
学号:
指导教师:
设计时间:2014年5月
摘要
20世纪80年代以来 ,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。利用全控型器件可以组成变流器。直流-直流变换器就是其中一种,它广泛应用于通信交换机、计算机以及手机等电子设备的开关电源。直流—直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或可调电压的直流电。本文着重介绍升降压斩波电路的原理和基于matlab的simulink的升降压斩波电路的仿真以及用一种芯片的方法实现升降压斩波。
这里的仿真主要是运用MATLAB软件中的simulink工具。先从simulink的元件库中找到需要用的元件,然后搭建相应的主电路,设置好参数后即可进行仿真。
仿真电路图如下所示:
图2 仿真电路图
仿真电路中,用虚拟的示波器监控了斩波电路输出电压和输出电流的波形。根据题目要求输出电压范围值为2.2~24V,输出功率大于等于20W,输入直流电压为3~30V。又由于升降压斩波电路对电感和电容的要求较高,因此它们的取值应尽可能大。
相关文档
最新文档