最新初中数学投影与视图经典测试题及答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学投影与视图经典测试题及答案(1)
一、选择题
1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()
A.B.
C.D.
【答案】A
【解析】
解:将矩形木框立起与地面垂直放置时,形成B选项的影子;
将矩形木框与地面平行放置时,形成C选项影子;
将木框倾斜放置形成D选项影子;
根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.
故选A.
2.如图是一个正六棱柱的茶叶盒,其俯视图为()
A.B.C.D.
【答案】B
【解析】
【分析】
【详解】
解:正六棱柱的俯视图为正六边形.
故选B.
考点:简单几何体的三视图.
3.如图,由6个小正方体搭建而成的几何体的俯视图是()
A.B.C.D.
【答案】C
【解析】
【分析】
根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】
解:根据三视图的概念,俯视图是
故选C.
【点睛】
考点:三视图.
4.下面四个几何体中,俯视图是圆的几何体共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.
5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()
A.B.C.D.
【答案】C
【解析】
【分析】
找出从几何体的正面看所得到的视图即可.
【详解】
解:从几何体的正面看可得:
.
故选:C.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.
6.如图是某几何体的三视图及相关数据,则下面判断正确的是()
A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2
【答案】D
【解析】
【分析】
由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.
【详解】
由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2
故选:D.
【点睛】
本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.
7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )
A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3
C.从上面看到的形状图的面积为3 D.三种视图的面积都是4
【答案】B
A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;
B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;
C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;
D.左视图的面积是3,故D错误;
故选B.
点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.
8.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()
A.3 B.4 C.5 D.6
【答案】D
【解析】
【分析】
根据主视图和左视图画出可能的俯视图即可解答.
【详解】
由主视图和左视图得到俯视图中小正方形的个数可能为:
∴这个几何体的小正方形的个数可能是3个、4个或5个,
【点睛】
此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键. 9.一个几何体的三视图如图所示,则该几何体的表面积是()
A.24+2πB.16+4πC.16+8πD.16+12π
【答案】D
【解析】
【分析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】
该几何体的表面积为2×1
2
•π•22+4×4+
1
2
×2π•2×4=12π+16,
故选D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
10.如图所示的几何体,上下部分均为圆柱体,其左视图是()
A.B.C.D.
【答案】C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
11.下面四个几何体中,左视图是四边形的几何体共有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
简单几何体的三视图.
【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.
12.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()
A.60πcm2B.65πcm2C.90πcm2D.130πcm2
【答案】B
【解析】
【分析】
先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,
22
51213
+=(cm)
所以这个圆锥的侧面积=1
251365
2
ππ
⨯⨯=
g(cm2),
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
13.如图是某兴趣社制作的模型,则它的俯视图是()
A.B.C.D.
【答案】B
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.
故选B.
【点睛】
本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.
14.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
A.B.
C.D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.
【详解】
A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;
B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;
C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;
D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,
故选C.
【点睛】
本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.
15.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )
A.B.C.D.
【答案】D
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个圆形,圆形内部是一个虚线的正方形.
故选:D.
【点睛】
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
16.如图所示的几何体的俯视图为( )
A.B.
C.D.
【答案】C
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看外面是一个矩形,里面是一个圆形,
故选:C.
【点睛】
考查了简单组合体的三视图,从上边看得到的图形是俯视图.
17.如图是某几何体的三视图,则该几何体的全面积等于()
A.112 B.136 C.124 D.84【答案】B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理22
543
-=,
326
⨯=,
全面积为:
1
64257267247042136.
2
⨯⨯⨯+⨯⨯+⨯=++=
故该几何体的全面积等于136.
故选B.
18.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()
A.B.C.D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
19.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()
A.B.C.D.
【答案】C
【解析】
【分析】
根据简单几何体的三视图即可求解.
【详解】
解:左视图有3列,每列小正方形数目分别为2、1、1.
故选:C.
【点睛】
此题主要考查简单几何体的三视图,熟练画图是解题关键.
20.如图是某几何体的三视图,则这个几何体可能是()
A.B.C.D.
【答案】B
【解析】
【分析】
根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.
【详解】
解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.
故答案选:B.
【点睛】
此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.。