折半查找程序实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 理解折半查找(也称为二分查找)的原理和步骤。

2. 掌握在计算机程序中实现折半查找的方法。

3. 通过实验加深对折半查找算法的理解,并提高编程能力。

二、实验环境
1. 操作系统:Windows 10
2. 编程语言:Python
3.8
3. 开发工具:PyCharm
三、实验原理
折半查找是一种在有序数组中查找特定元素的算法。

其基本思想是将查找区间分为两半,然后判断目标值位于哪一半区间内,再对那一半区间进行同样的操作,直到找到目标值或查找区间为空。

折半查找的步骤如下:
1. 初始化两个指针,low指向数组的第一个元素,high指向数组的最后一个元素。

2. 计算中间位置mid = (low + high) / 2。

3. 判断中间位置的元素是否为目标值:
a. 如果mid位置的元素等于目标值,则查找成功。

b. 如果mid位置的元素大于目标值,则将high指针减1,继续查找左半区间。

c. 如果mid位置的元素小于目标值,则将low指针加1,继续查找右半区间。

4. 重复步骤2和3,直到找到目标值或low大于high,表示查找失败。

四、实验内容
1. 编写一个折半查找的Python程序。

2. 使用该程序对不同的有序数组进行查找操作,并记录查找时间。

3. 分析折半查找算法的性能。

1. 创建一个有序数组。

2. 定义折半查找函数。

3. 调用折半查找函数,并记录查找结果和查找时间。

4. 修改数组,重复步骤3。

5. 分析实验结果。

六、实验代码
```python
def binary_search(arr, target):
low = 0
high = len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] > target:
high = mid - 1
else:
low = mid + 1
return -1
# 创建有序数组
arr = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
# 查找目标值
target = 7
# 调用折半查找函数
result = binary_search(arr, target)
# 输出查找结果
if result != -1:
print(f"元素{target}在数组中的位置为:{result}")
else:
print(f"元素{target}在数组中不存在")
```
七、实验结果与分析
1. 对于不同的有序数组,折半查找函数均能正确地找到目标值或返回-1表示查找
失败。

2. 随着数组大小的增加,折半查找的时间基本保持稳定,约为O(log n)。

3. 实验结果表明,折半查找算法具有较高的效率,适用于大数据量的查找操作。

八、实验总结
通过本次实验,我们了解了折半查找的原理和步骤,掌握了在Python程序中实现
折半查找的方法。

实验结果表明,折半查找算法具有较高的效率,适用于大数据量的查找操作。

在今后的学习和工作中,我们可以根据实际情况选择合适的查找算法,提高程序的性能。

相关文档
最新文档