建水县高中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建水县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N ==
2. 为了得到函数的图象,只需把函数y=sin3x 的图象( )
A .向右平移个单位长度
B .向左平移个单位长度
C .向右平移
个单位长度
D .向左平移
个单位长度
3. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )
4. 已知是虚数单位,若复数22ai
Z i
+=
+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3
5. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+
=( )
A .
B .
C .
D .
6. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )
A .
π B .2
π
C .4
π
D .
π
7. 如图可能是下列哪个函数的图象( )
A .y=2x ﹣x 2﹣1
B .y=
C .y=(x 2﹣2x )e x
D .y=
8. 复数
的虚部为( )
A .﹣2
B .﹣2i
C .2
D .2i
9. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
10.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)-
11.487被7除的余数为a (0≤a <7),则展开式中x ﹣3
的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
12.已知抛物线2
4y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]
14.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.
16.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.
(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;
(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.
18.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.
19.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x
(1
(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,
(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,
对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为
(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)
20.
21.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
22.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.
建水县高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 2. 【答案】A
【解析】解:把函数y=sin3x 的图象向右平移个单位长度,可得y=sin3(x ﹣)=sin (3x ﹣
)的图象,
故选:A .
【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.
3. 【答案】D 【解析】
考
点:平面的基本公理与推论. 4. 【答案】A 【解析】 试题分析:
()()()()2224(22)2225ai i ai a a i
i i i +-+++-==
++-,对应点在第四象限,故40220
a a +>⎧⎨-<⎩,A 选项正确. 考点:复数运算. 5. 【答案】D
【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.
∴==,
∴++…+=++…+
=
=﹣.
故选:D.
【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
6.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为:=4π
故选:C.
7.【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,
∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=e x>0恒成立,
∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;
∴C中的函数满足条件;
D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y=<0,∴D中函数不满足条件.
故选:C.
【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.
8. 【答案】C
【解析】解:复数=
=
=1+2i 的虚部为2.
故选;C .
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
9. 【答案】B 【解析】由题意,可取,所以
10.【答案】A
【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
11.【答案】B
解析:解:487=(49﹣1)7=﹣
+…+
﹣1,
∵487被7除的余数为a (0≤a <7), ∴a=6,
∴展开式的通项为T r+1
=,
令6﹣3r=﹣3,可得r=3,
∴展开式中x﹣3
的系数为=﹣4320,
故选:B.. 12.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||2
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
11
||||222
22
AF y
⋅=⨯⨯=,故选B.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】[]1,1
-
【解析】
考点:函数的定义域.
14.【答案】
【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sinθ==,
∴cosθ=,tanθ==,
∴tan2θ===,
故答案为:。
15.【答案】
【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC
∆为直角三角形,且
5,,6
AB VA h AC
===,所以三棱锥的体积为
11
56520
32
V h h
=⨯⨯⨯==,解得4
h=.
考点:几何体的三视图与体积.
16.【答案】24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC =∠AFE ,
∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC .
(2)由(1)与∠B =60°知△ABC 为正三角形,
又EB =EF =2,
∴AF =FC =2,
设DE =x ,DF =y ,则AD =2-y ,
在△AED 中,由余弦定理得
DE 2=AE 2+AD 2-2AD ·AE cos A .
即x 2=(2-y )2+22-2(2-y )·2×12
, ∴x 2-y 2=4-2y ,①
由切割线定理得DE 2=DF ·DC ,
即x 2=y (y +2),
∴x 2-y 2=2y ,②
由①②联解得y =1,x =3,∴ED = 3.
18.【答案】(1)
3π;(2) 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把
考点:向量的数量积,向量的夹角与模. 【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b
a b a b ⋅<>=求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,] 内及余弦值求出两向量的夹角.
19.【答案】
【解析】解:(1)
根据散点图可知,x 与y 是负相关.
(2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线
方程,y =cω+d ,
=
-811374
≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87. ∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,
又ωi =x 2i ,
∴y 关于x 的回归方程为y =-2.17x 2+61.87.
(3)当y =0时,x =61.872.17=6187217
≈5.3.估计最多用5.3千克水. 20.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,
求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P(X=0)=×()3=;
P(X=1)=×()2×=;
P(X=2)=×()×()2=;
P(X=3)=×()3=,
∴X的分布列为:
0 1 2 3
即E (X )=0×=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力
21.【答案】
【解析】(1)∵0a =,12b =-
, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π=. 当06x π<<时,()0f x '<,当62
x ππ<<时,()0f x '>, 所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦
. (5分)
若
112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫ ⎪⎝⎭上单调减. 又(0)0f =,2
()124
f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦
上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦
上只有一个零点.
22.【答案】3k ≤-或2k ≥.
【解析】
试题分析:根据两点的斜率公式,求得2PA k =,3PB k =-,结合图形,即可求解直线的斜率的取值范围. 试题解析:由已知,11212PA k --==-,12310
PB k --==-- 所以,由图可知,过点()1,1P -的直线与线段AB 有公共点, 所以直线的斜率的取值范围是:3k ≤-或2k ≥.
考点:直线的斜率公式.。