八年级数学上册三角形填空选择中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册三角形填空选择中考真题汇编[解析版]
一、八年级数学三角形填空题(难)
1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.
【答案】
20202α
【解析】
【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知
21211112222
a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】 解:∵∠ABC 与∠ACD 的平分线交于点A 1,
∴11118022
A ACD AC
B AB
C ∠=︒-∠-∠-∠ 1118018022
ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122
a A =∠=, 同理可得221122a A A ∠=
∠=, …
∴2020A ∠=
20202α. 故答案为:
2020
2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.
2.如图,已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =74°,∠ABC =46°,且∠BAD +∠CAD =180°,那么∠BDC 的度数为_____.
【答案】30°
【解析】
【分析】
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出
△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.
【详解】
解:
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
ABD CBD BD BD
AED DFC
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△BDE≌△BDF(ASA),∴DE=DF,
又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,
在Rt△ADE与Rt△ADG中,
AD AD DE DG
=
⎧
⎨
=
⎩
,
∴△ADE≌△ADG(HL),∴DE=DG,
∴DG=DF.
在Rt△CDG与Rt△CDF中,
CD CD DG DF
=
⎧
⎨
=
⎩
,
∴Rt△CDG≌Rt△CDF(HL),
∴CD为∠ACF的平分线,
∠ACB=74°,
∴∠DCA=53°,
∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.
故答案为:30°
【点睛】
本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
3.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,
FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2
(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=1
2
(∠BAC﹣∠C);其中正确的是
_____.
【答案】①②③④
【解析】
【分析】
①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;
②根据角平分线的定义和三角形外角的性质证明结论正确;
③根据垂直的定义和同角的余角相等的性质证明结论正确;
④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】
解:①∵BD⊥FD,
∴∠FGD+∠F=90°,
∵FH⊥BE,
∴∠BGH+∠DBE=90°,
∵∠FGD=∠BGH,
∴∠DBE=∠F,
故①正确;
②∵BE平分∠ABC,∴∠ABE=∠CBE,
∠BEF=∠CBE+∠C,
∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,
∴2∠BEF=∠BAF+∠C,
∴∠BEF=1
2
(∠BAF+∠C),
故②正确;
③∵∠AEB=∠EBC+∠C,
∵∠ABE=∠EBC,
∴∠AEB=∠ABE+∠C,
∵BD⊥FC,FH⊥BE,
∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,
∴∠FGD=∠AEB
∴∠FGD=∠ABE+∠C.
故③正确;
④∠ABD=90°-∠BAC,
∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,
∵∠CBD=90°-∠C,
∴∠DBE=∠BAC-∠C-∠DBE,
由①得,∠DBE=∠F,
∴∠F=∠BAC-∠C-∠DBE,
∴∠F=1
2
(∠BAC-∠C);
故④正确,
故答案为①②③④.
【点睛】
本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键
4.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.
5.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10
【解析】
【分析】
【详解】
解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.
故答案为:10 .
考点:多边形的内角和定理.
6.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--
【答案】3a b c
【解析】
【分析】
根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.
【详解】
解:∵a、b、c为△ABC的三边,
∴a+b>c,a-b<c,a+c>b,
∴a+b-c>0,a-b-c<0,a-b+c>0,
∴|a+b-c|-|a-b-c|+|a-b+c|
=(a+b-c)+(a-b- c)+(a-b+c)
=a+b-c+a-b- c+a-b+c
=3a-b-c.
故答案为:3a-b-c.
【点睛】
本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.
7.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.
【答案】5
【解析】
【分析】
根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可
【详解】
解:设这个多边形的边数是n,
则(n﹣2)•180°﹣360°=180°,
解得n=5.
故答案为5.
【点睛】
本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.
8.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.
【答案】40︒.
【解析】
【分析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
【详解】
÷=,
连续左转后形成的正多边形边数为:4559
︒÷=︒.
则左转的角度是360940
故答案是:40︒.
【点睛】
本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为_____.
【答案】10°
【解析】
【分析】
根据直角三角形两锐角互余求出∠B,根据翻折变换的性质可得∠CA′D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵∠ACB=90°,∠A=50°,
∴∠B=90°﹣50°=40°,
∵折叠后点A落在边CB上A′处,
∴∠CA′D=∠A=50°,
由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°.
故答案为:10°.
【点睛】
本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.
10.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.
【答案】90°
【解析】
【分析】
【详解】
如图:
∵∠2+∠3=180°,∴∠3=180°﹣∠2.
∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.
∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.
故答案为90°.
二、八年级数学三角形选择题(难)
11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D
【解析】
【分析】
当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为
(2n+1)·180°
【详解】
】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;
图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;
图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;
根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.
【点睛】
此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.
12.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()
A .80米
B .160米
C .300米
D .640米
【答案】A
【解析】
【分析】 利用多边形的外角和得出小明回到出发地A 点时左转的次数,即可求出多边形的边数,即可解决问题.
【详解】
解:由题意可知,小明第一次回到出发地A 点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.
故选:A .
【点睛】
本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.
13.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345
a b c ,,;==
=②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c = ⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c =
== A .2个
B .3个
C .4个
D .5个
【答案】C
【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:
222
111+345≠()()(),故①不能构成直角三角形;
当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;
根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;
根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;
由三角形的三边关系,2+2=4可知⑤不能构成三角形;
令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;
根据三角形的内角和可知⑦不等构成直角三角形;
由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.
故选:C.
点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.
14.有下列说法:
①有一个角为60°的等腰三角形是等边三角形;
②三边长为、、3的三角形为直角三角形;
③等腰三角形的两边长为3、4,则等腰三角形的周长为10; ④一边上的中线等于这边长的一半的三角形是等腰直角三角形.
其中正确的个数是( )
A .4个
B .3个
C .2个
D .1个
【答案】C
【解析】
试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;
根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;
由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确; 由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确. 故选:C
15.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )
A .60︒
B .65︒
C .70︒
D .75︒
【答案】C
【解析】
【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.
【详解】
设直线n 与AB 的交点为E 。
∵AED ∠是BED ∆的一个外角,
∴1AED B ∠=∠+∠,
∵45B ∠=︒,125∠=︒,
∴452570AED ∠=︒+︒=︒,
∵m n ,
∴270AED ∠=∠=︒.
故选C .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
16.下列多边形中,不能够单独铺满地面的是( )
A .正三角形
B .正方形
C .正五边形
D .正六边形
【答案】C
【解析】
【分析】
由镶嵌的条件知,在一个顶点处各个内角和为360°.
【详解】
∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;
∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.
故选C .
【点睛】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
17.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )
A .正六边形
B .正七边形
C .正八边形
D .正九边形
【答案】C
【解析】
【分析】
依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.
【详解】
解:设多边形的边数为n ,根据题意列方程得,
(n ﹣2)•180°+360°=1440°,
n ﹣2=6,
n =8.
故这个多边形的边数为8.
故选:C.
【点睛】
考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.
18.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()
A.4B.5C.6D.9
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
19.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10
【答案】C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.
【详解】
设第三边为x,
根据三角形的三边关系,得:4-1<x<4+1,
即3<x<5,
∵x为整数,
∴x的值为4.
三角形的周长为1+4+4=9.
故选C.
【点睛】
此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.
20.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD
交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()
A.B.
C.D.
【答案】D
【解析】
【分析】
根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.
【详解】
∵△ABD和△ACD同底等高,
,
,
即
△ABC和△DBC同底等高,
∴
∴
故A,B,C正确,D错误.
故选:D.
【点睛】
考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.。