等比数列单元测试题+答案百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( )
A .9
B .10
C .11
D .12
2.已知等比数列{}n a 中,1354a a a ⋅⋅=
,公比q =,则456a a a ⋅⋅=( ) A .32
B .16
C .16-
D .32-
3.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n
D .1+(n -1)×2n
5.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
6.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45
B .54
C .99
D .81
7.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=
( ) A .3
B .505
C .1010
D .2020
8.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .681a a >
B .01q <<
C .n S 的最大值为7S
D .n T 的最大值为7T
9.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8
B .8-
C .16
D .16-
10.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
11.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
12.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8
13.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-
B .1
C .2或2-
D .2
14.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009
B .1010
C .1011
D .2020
15.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .
1
9
B .
17
C .
13
D .7
16.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1
B .2
C .4
D .8
17.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
18.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50
B .60
C .70
D .80
19.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏
B .9盏
C .27盏
D .81盏
20.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕=大吕=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A .n -
B .n -
C .
D . 二、多选题21.题目文件丢失!
22.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )
A .{}n a 为单调递增数列
B .
6
3
9S S = C .3S ,6S ,9S 成等
比数列
D .12n n S a a =-
23.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,13511121
4
a a a ++=,则( ) A .{}n a 必是递减数列 B .5314
S =
C .公比4q =或
14
D .14a =或
14
24.已知集合{
}*
21,A x x n n N
==-∈,{}*
2,n
B x x n N ==∈将A
B 的所有元素从
小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25
B .26
C .27
D .28
25.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )
A .1{}n
a B .2
2log ()n a
C .1{}n n a a ++
D .12{}n n n a a a ++++
26.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路
B .此人第一天走的路程比后五天走的路程多六里
C .此人第二天走的路程占全程的
14
D .此人走的前三天路程之和是后三天路程之和的8倍
27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
28.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516
S =
C .当12
p =
时,()*
,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 29.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( )
A .68a =
B .954S =
C .135********a a a a a +++
+=
D .
222
122019
20202019
a a a a a +++= 30.已知数列{a n },{
b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a
1<1
B .1<b 1
C .S 2n <T 2n
D .S 2n ≥T 2n
31.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称
{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )
A .公比大于1的等比数列一定是间隔递增数列
B .已知4
n a n n
=+
,则{}n a 是间隔递增数列 C .已知()21n
n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2
D .已知2
2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<
32.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为
n S ,则( )
A .2q
B .2n
n a = C .102047S = D .12n n n a a a +++<
33.关于等差数列和等比数列,下列四个选项中不正确的有( )
A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等差数列
C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;
34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列
B .若32a =,732a =,则58a =±
C .若123a a a <<,则数列{}n a 是递增数列
D .若数列{}n a 的前n 和1
3n n S r -=+,则1r =-
35.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001
01
a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -<
C .100T 的值是n T 中最大的
D .使1n T >成立的最大自然数n 等于198
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项
公式可得1
21n n a -=+,即求.
【详解】
因为121n n a a +=-,所以()1121n n a a +-=-,即
11
21
n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.
则112n n a --=,即1
21n n a -=+.
因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 2.A 【分析】
由等比数列的通项公式可计算得出()6
456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.
【详解】
由6
326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.
故选:A. 3.C 【分析】
根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得
12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨
⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭
,
所以121n n a =-,故10
1011
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 4.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 5.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,
故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 6.C 【分析】
利用等比数列的通项与基本性质,列方程求解即可 【详解】
设数列{}n a 的公比为q ,因为3
41a a q =,所以3q =,所以24
352299a a q q +=+=.
故选C 7.C 【分析】
利用等比数列的性质以及对数的运算即可求解. 【详解】
由120202201932018101010113a a a a a a a a =====,
所以313232020log log log a a a ++
+
()10103101010113log log 31010a a ===.
故选:C 8.B 【分析】
根据11a >,66771
1,01
a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】
若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671
01
a a -<-矛盾, 所以01q <<,故B 正确;
因为
671
01
a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1
11n n a q a S q q
=
---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】
关键点点睛:本题的关键是通过穷举法确定01q <<. 9.C 【分析】
根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】
因为254,32a a ==,所以3
5
2
8a q a =
=,所以2q ,
所以2
424416a a q ==⨯=,
故选:C. 10.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
【详解】
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 11.A 【分析】
利用已知条件化简,转化求解即可. 【详解】
已知{}n a 为等比数列,132
2a a a ∴=,且22a =,
满足131233
2
1231322111124
a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:
(1)先利用等比数列的性质,得132
2a a a ∴=,
(2)通分化简3
12311124
S a a a ++==. 12.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C .
13.C 【分析】
根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】
设等比数列{}n a 的公比为q ,
因为12a =,且53a a =,所以2
1q =,解得1q =±, 所以9
1012a a q ==±.
故选:C. 14.C 【分析】
根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到2
10111a =,再利用
11,01a q ><<求解即可.
【详解】
根据题意:2022122022...a a a a =, 所以122021...1a a a =,
因为{a n }等比数列,设公比为q ,则0q >,
所以2
12021220201011...1a a a a a ====,
因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,
所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】
关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关
键是根据定义和等比数列性质得出2
10111a =以及11,01a q ><<进行判断.
15.B 【分析】
根据等比中项的性质可求得4a 的值,再由2
174a a a =可求得7a 的值. 【详解】
在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,
由等比中项的性质可得2
4354a a a a ==,解得41a =, 17a =,2
1741a a a ==,因此,71
7
a =
. 故选:B. 16.C 【分析】
根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】
因为数列{}n a 是等比数列,由17138a a a =,得3
78a =,
所以72a =,因此2
31174a a a ==.
故选:C. 17.B 【分析】
根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】
解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2
31a =. 所以31a =,2
11a q ∴=,因为1
3
q =
,所以19a =. 因此()3131131a q S q
-==-.
故选:B 18.B 【分析】
由等比数列前n 项和的性质即可求得12S . 【详解】 解:
数列{}n a 是等比数列,
3S ∴,63S S -,96S S -,129S S -也成等比数列,
即4,8,96S S -,129S S -也成等比数列, 易知公比2q
,
9616S S ∴-=,12932S S -=,
121299663332168460S S S S S S S S =-+-+-+=+++=.
故选:B. 19.C 【分析】
根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,1
3
为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】
根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,1
3
为公比的等比数列,
则有51(1)
3363
1
13
x S ⨯-
=
=-, 解可得:243x =,
所以中间一层共有灯2
1243()273
⨯=盏. 故选:C 【点睛】
思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 20.C 【分析】
根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】
因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为
11n n a a q -=
,所以q =
所以11
1
111k k n n k a a a a a ---⎛⎫ ⎪
⎛== ⎭
⎝
⎝
1111
n k k n n n
a a
----==⋅ 故选:C.
二、多选题 21.无
22.BD 【分析】
根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,
逐项判断选项可得答案. 【详解】
由638a a =,可得3338q a a =,则2q
,
当首项10a <时,可得{}n a 为单调递减数列,故A 错误;
由6
63
312912S S -=
=-,故B 正确;
假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,
显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11
122121
n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;
故选:BD . 【点睛】
关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求
和公式. 23.BD 【分析】
设设等比数列{}n a 的公比为q ,则0q >,由已知得11121
14
a a ++=,解方程计算即可得答案. 【详解】
解:设等比数列{}n a 的公比为q ,则0q >,
因为2
153
1a a a ==,2311a a q == , 所以511151351515111111121
11114
a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1
142.
a q ⎧
=⎪⎨
⎪=⎩, 当14a =,12q =时,5514131
21412
S ⎛
⎫- ⎪
⎝⎭==-,数列{}n a 是递减数列; 当11
4
a =
,2q 时,531
4
S =
,数列{}n a 是递增数列; 综上,5314
S =. 故选:BD. 【点睛】
本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121
14
a a ++=,进而解方程计算. 24.CD 【分析】
由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9 ,利用列举法,结合等差数列
以及等比数列的求和公式,验证即可求解. 【详解】
由题意,数列{}n a 的前n 项依次为2
3
1,2,3,2,5,7,2,9
,
利用列举法,可得当25n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,2,4,8,16,32,
可得52520(139)2(12)
40062462212
S ⨯+-=+=+=-,2641a =,所以2612492a =,
不满足112n n S a +>; 当26n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,2,4,8,16,32,
可得52621(141)2(12)
44162503212
S ⨯+-=+=+=-,2743a =,所以2612526a =,
不满足112n n S a +>; 当27n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,43,2,4,8,16,32,
可得52722(143)2(12)
48462546212
S ⨯+-=+=+=-,2845a =,所以2712540a =,
满足112n n S a +>; 当28n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,43,45,2,4,8,16,32,
可得52823(145)2(12)
52962591212
S ⨯+-=+=+=-,2947a =,所以2812564a =,
满足112n n S a +>,
所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】
本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 25.AD 【分析】
主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定.
1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,
由等比数列的定义知1{}n
a 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】
本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 26.BD 【分析】
根据题意,得到此人每天所走路程构成以1
2
为公比的等比数列,记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】
由题意,此人每天所走路程构成以1
2
为公比的等比数列, 记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S , 则16611163
237813212
a S a ⎛
⎫- ⎪
⎝⎭===-,解得1192a =, 所以此人第三天走的路程为23148a a q =⋅=,故A 错;
此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;
此人第二天走的路程为21378
9694.54
a a q =⋅=≠
=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为
6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正
确; 故选:BD. 【点睛】
本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 27.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项.
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
28.AC 【分析】
由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】
由122(2)n n S S p n --=≥,得22
p a =
. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,
又
2112a a =,数列{}n a 为首项为p ,公比为1
2
的等比数列,故A 正确; 由A 可得1p =时,44
1
11521812
S -
==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为212
1122
m n m n p p ++⋅=⋅,可得12p =,故C 正确;
38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫
+=+=⋅ ⎪⎝⎭
,
则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】
本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 29.ACD 【分析】
由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】
对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;
对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:
13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-+
+-=,故C
正确.
对于D ,斐波那契数列总有21n n n a a a ++=+,则2
121a a a =,
()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,
()220182018201920172018201920172018a a a a a a a a =-=-,2
20192019202020192018a a a a a =-,可得222
12201920202019201920202019
a a a a a a a a
+++==,故D 正确;
故选:ACD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题. 30.ABC 【分析】
利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】
∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n , ∴1223
2
4a a a a +=⎧⎨
+=⎩;
∴121
23
212244a a a a a a a +⎧⎨
+=-⎩>>
∴0<a 1<1;故A 正确.
∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n ∴1223
2
4b b b b =⎧⎨
=⎩;
∴2132
b b b b ⎧⎨⎩>>;
∴1<b
1B 正确. ∵T 2n =b 1+b 2+…+b 2n
=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )
(
)()()()
12
1
2
12122
12
2
n
n
n
b b b b ⋅--=
+=+-
))
2121n n ≥-=-;
∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误. 故选:ABC 【点睛】
本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题. 31.BCD 【分析】
根据间隔递增数列的定义求解. 【详解】 A. ()
1111
111n k n n n k k n a a a a q
q q a q +---+=-=--,因为1q >,所以当10a <时,
n k n a a +<,故错误;
B. ()()244441++n k
n n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛
⎫-=++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭
,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;
C. ()()
()()()
()
21212111n k
n n
k
n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦
,当n 为奇数
时,()2110k
k --+>,存在1k 成立,当n 为偶数时,()2110k
k +-->,存在2
k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确; D. 若{}n a 是间隔递增数列且最小间隔数是3,
则()()()
2
2
2
2020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *
∈N 成立,
则()2
20k t k +->,对于3k ≥成立,且()2
20k t k +-≤,对于k 2≤成立
即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立 所以23t -<,且22t -≥ 解得45t ≤<,故正确. 故选:BCD
本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题. 32.ABD 【分析】
由条件可得3
2
242q q q =+,解出q ,然后依次计算验证每个选项即可.
【详解】
由题意3
2
242q q q =+,得2
20q q --=,解得2q
(负值舍去),选项A 正确;
1222n n n a -=⨯=,选项B 正确;
()12212221
n n n S +⨯-=
=--,所以102046S =,选项C 错误;
13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.
故选:ABD 【点睛】
本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 33.ABD 【分析】
根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】
根据题意,依次分析选项:
对于A ,若数列{}n a 的前n 项和2
n S an bn c =++,
若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;
对于B ,若数列{}n a 的前n 项和1
22n n S +=-,
可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;
对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为
12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,
即为2
2322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,
故C 正确;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,
比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故
D 不正确. 故选:ABD .
本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.AC 【分析】
在A 中,数列{}
2
n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,
数列{}n a 是递增数列;在D 中,13
r =-. 【详解】
由数列{}n a 是等比数列,知: 在A 中,
22221n n a a q -=,
22221122221n
n n n a a q q a a q
+-∴==是常数, ∴数列{}
2n a 是等比数列,故A 正确;
在B 中,若32a =,732a =
,则58a =,故B 错误;
在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则
01q <<,数列{}n a 是递增数列,故C 正确;
在D 中,若数列{}n a 的前n 和1
3n n S r -=+,
则111a S r ==+,
()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=,
1a ,2a ,3a 成等比数列, 2213a a a ∴=,
()461r ∴=+,
解得1
3
r =-
,故D 错误. 故选:AC . 【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ABD 【分析】
由已知9910010a a ->,得0q >,再由
991001
01
a a -<-得到1q <说明A 正确;再由等比数列
的性质结合1001a <说明B 正确;由10099100·
T T a =,而10001a <<,求得10099T T <,说明
C 错误;分别求得1981T >,1991T <说明
D 正确.
【详解】
对于A ,9910010a a ->,2197
1·1a q ∴>,()2
981··1a q q ∴>.
11a >,0q ∴>.
又
991001
01
a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;
对于B ,2
99101100100·01
a a a a ⎧=⎨<<⎩,991010?
1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·
T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·
····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.
∴不正确的是C .
故选:ABD . 【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。