和平区第三中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和平区第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若复数z=2﹣i ( i 为虚数单位),则=( )
A .4+2i
B .20+10i
C .4﹣2i
D .
2. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2

C .(-12,+∞)
D .(-1
2,0)
3. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
4. 如图,该程序运行后输出的结果为( )
A.7 B.15 C.31 D.63
5.(理)已知tanα=2,则=()
A.B.C.D.
6.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°
7.设实数,则a、b、c的大小关系为()
A.a<c<b B.c<b<a C.b<a<c D.a<b<c
8.已知命题p;对任意x∈R,2x2﹣2x+1≤0;命题q:存在x∈R,sinx+cosx=,则下列判断:①p且q 是真命题;②p或q是真命题;③q是假命题;④¬p是真命题,其中正确的是()
A.①④B.②③C.③④D.②④
9.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()
A.n≤8?B.n≤9?C.n≤10?D.n≤11?
10.定义行列式运算:.若将函数的图象向左平移m (m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是()
A.B.C.D.
11.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()
A.12 B.10 C.9 D.8
12.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为()
A.10 13 B.12.5 12 C.12.5 13 D.10 15
二、填空题
13.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.
14.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .
15.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
16.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
17.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .
18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .
三、解答题
19.已知函数f (x )=+lnx ﹣1(a 是常数,e ≈=2.71828).
(1)若x=2是函数f (x )的极值点,求曲线y=f (x )在点(1,f (1))处的切线方程;
(2)当a=1时,方程f (x )=m 在x ∈[,e 2
]上有两解,求实数m 的取值范围;
(3)求证:n ∈N*,ln (en )>1+.
20.设a>0,是R上的偶函数.
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(0,+∞)上是增函数.
21.根据下列条件求方程.
(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程
(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.
22.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.
(Ⅰ)证明AD⊥BE;
(Ⅱ)求多面体EF﹣ABCD体积的最大值.
23.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图
2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.
24.(本小题满分12分)椭圆C:x2
a2+y2
b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B
是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-1
2.
(1)求椭圆C的方程;
(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.
和平区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:∵z=2﹣i ,
∴==
=
=


=10•
=4+2i ,
故选:A .
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
2. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e
x
-e -x )(
-1
2x +1+12
) =(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2

即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
3. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5 满足条件5≤k ,S=75,n=6

若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
4.【答案】如图,该程序运行后输出的结果为()
D
【解析】解:因为A=1,s=1
判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;
判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;
判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;
判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;
判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;
此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.
故答案为5.
【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.
5.【答案】D
【解析】解:∵tanα=2,∴===.
故选D.
6.【答案】A
【解析】解:根据正弦定理有:=,
代入已知等式得:﹣+1=0,
即﹣1=,
整理得:2sinAcosB﹣cosBsinC=sinBcosC,
即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),
又∵A+B+C=180°,
∴sin(B+C)=sinA,
可得2sinAcosB=sinA,
∵sinA≠0,
∴2cosB=1,即cosB=,
则B=60°.
故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
7.【答案】A
【解析】解:∵,b=20.1>20=1,0<<0.90=1.
∴a<c<b.
故选:A.
8.【答案】D
【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,
命题q:存在x∈R,sinx+cosx=是真命题,
∴①不正确,②正确,③不正确,④正确.
故选D.
9.【答案】B
【解析】解:n=1,满足条件,执行循环体,S=1+1=2
n=2,满足条件,执行循环体,S=1+1+2=4
n=3,满足条件,执行循环体,S=1+1+2+3=7
n=10,不满足条件,退出循环体,循环满足的条件为n≤9,
故选B.
【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.
10.【答案】C
【解析】解:由定义的行列式运算,得
=
==
=.
将函数f (x )的图象向左平移m (m >0)个单位后,
所得图象对应的函数解析式为.
由该函数为奇函数,得,
所以
,则m=.
当k=0时,m 有最小值.
故选C .
【点评】本题考查了二阶行列式与矩阵,考查了函数y=Asin (ωx+Φ)的图象变换,三角函数图象平移的原则是“左加右减,上加下减”,属中档题.
11.【答案】D
【解析】解:∵函数y=f (x )为 偶函数,且满足f (x+2)=﹣f (x ), ∴f (x+4)=f (x+2+2)=﹣f (x+2)=f (x ), ∴偶函数y=f (x ) 为周期为4的函数, 由x ∈[0,2]时,
f (x )=1﹣x ,可作出函数f (x )在[﹣10,10]的图象,
同时作出函数f (x )=log 8|x|在[﹣10,10]的图象,交点个数即为所求. 数形结合可得交点个为8, 故选:D .
12.【答案】C
【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,
∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5
而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标
第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可
∴中位数是13
故选:C.
【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距
×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
二、填空题
13.【答案】2n﹣1.
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,

a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n=2n﹣1,
故答案为:2n﹣1,
14.【答案】.
【解析】解:如图所示,
分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.
∴BO⊥AC,
∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.
由直棱柱的性质可得:BO⊥侧面ACC1A1.
∴四边形BODE是矩形.
∴DE⊥侧面ACC1A1.
∴∠DAE是AD与平面AA1C1C所成的角,为α,
∴DE==OB .
AD=
=

在Rt △ADE 中,sin α==.
故答案为:

【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
15.【答案】1
231n -- 【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 16.【答案】512




17.【答案】D.
【解析】解:根据题意,质点运动的轨迹为:
A→B→C→A→D→B→A→C→D→A
接着是→B→C→A→D→B→A→C→D→A…
周期为9.
∵质点经过2015次运动,
2015=223×9+8,
∴质点到达点D.
故答案为:D.
【点评】本题考查了函数的周期性,本题难度不大,属于基础题.
18.【答案】6.
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;
∴判断框中的条件为i<6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
三、解答题
19.【答案】
【解析】解:(1)

因为x=2是函数f (x )的极值点,
所以a=2,则f (x )=

则f (1)=1,f'(1)=﹣1,所以切线方程为x+y ﹣2=0;
(2)当a=1时,
,其中x ∈[,e 2
],
当x ∈[,1)时,f'(x )<0;x ∈(1,e 2
]时,f'(x )>0,
∴x=1是f (x )在[,e 2
]上唯一的极小值点,∴[f (x )]min =f (1)=0.
又,,
综上,所求实数m 的取值范围为{m|0<m ≤e ﹣2};
(3)
等价于

若a=1时,由(2)知f (x )=在[1,+∞)上为增函数,
当n >1时,令x=
,则x >1,故f (x )>f (1)=0,
即,∴.

即,


20.【答案】
【解析】解:(1)∵a >0,是R 上的偶函数.
∴f (﹣x )=f (x ),即
+
=,
∴+a•2x=+,
2x(a﹣)﹣(a﹣)=0,
∴(a﹣)(2x+)=0,∵2x+>0,a>0,
∴a﹣=0,解得a=1,或a=﹣1(舍去),
∴a=1;
(2)证明:由(1)可知,

∵x>0,
∴22x>1,
∴f'(x)>0,
∴f(x)在(0,+∞)上单调递增;
【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.
21.【答案】
【解析】解:(1)易知椭圆+=1的右焦点为(2,0),
由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,
可得p=4,
可得抛物线y2=8x的准线方程为x=﹣2.
(2)椭圆+=1的焦点为(﹣4,0)和(4,0),
可设双曲线的方程为﹣=1(a,b>0),
由题意可得c=4,即a2+b2=16,
又e==2,
解得a=2,b=2,
则双曲线的标准方程为﹣=1.
【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.
22.【答案】
【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,
∵直线AE是圆O所在平面的垂线,
∴AD⊥AE,
∵AB∩AE=A,
∴AD⊥平面ABE,
∴AD⊥BE;
(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.
∵直线AE,CF是圆O所在平面的两条垂线,
∴AE∥CF,∥AE⊥AC,AF⊥AC.
∵AE=CF=,∴AEFC为矩形,
∵AC=2,
∴S AEFC=2,
作BM⊥AC交AC于点M,则BM⊥平面AEFC,
∴V=2V B﹣AEFC=2×≤=.
∴多面体EF﹣ABCD体积的最大值为.
【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.
23.【答案】
【解析】
【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.
(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.
(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=
(0<x<6),即可得出.
【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,
∴在图2中,DE⊥A1D,DE⊥DC,
又∵A1D∩DC=D,∴DE⊥平面A1DC,
∵DE∥BC,∴BC⊥平面A1DC,
∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.
(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),
E(2,0,0).
则,,
设平面A1BC的法向量为
则,解得,即
则BE与平面所成角的正弦值为
(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),
即当x=3时,A1B长度达到最小值,最小值为.
24.【答案】 【解析】解:
(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2
b
2=1, ∴m =±b 2
a ,
∵|PF |=1 ,
即|m |=1,∴b 2=a ,①
又A ,B 的坐标分别为(-a ,0),(a ,0),
由k P A ·k PB =-1
2

b 2a
c +a ·b 2a c -a
=-12,即b 2=12a 2,②
由①②解得a =2,b =2,
∴椭圆C 的方程为x 24+y 2
2
=1.
(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =1
2
×22×2=
2.
当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±2
1+2k
2

∴y =±2k
1+2k 2

即M (21+2k
2

2k 1+2k
2
),N (
-21+2k
2

-2k 1+2k
2
),
∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭
⎪⎫4k 1+2k 22 =4
1+k 21+2k 2

点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1
,∴S △PMN =12|MN |d =1
2
·
4
1+k 21+2k 2·|2k -1|
k 2+1
=2·|2k -1|1+2k 2
=2
2k 2+1-22k
1+2k 2
=2
1-22k 1+2k 2
, 当k >0时,22k 1+2k 2≤22k
22k =1, 此时S ≥0显然成立, 当k =0时,S =2.
当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1,
当且仅当2k 2=1,即k =-
2
2
时,取等号. 此时S ≤22,综上所述0≤S ≤2 2.
即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-2
2
x .。

相关文档
最新文档