2020-2021高中必修五数学上期中一模试题(及答案)(5)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021高中必修五数学上期中一模试题(及答案)(5)
一、选择题
1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018
B .2018-
C .4036-
D .4036
2.已知函数22()
()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩
,若()(1)n a f n f n =++,则
123100a a a a ++++=L
A .0
B .100
C .100-
D .10200
3.若不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )
A .4,3⎡⎫+∞⎪⎢⎣⎭
B .(]0,1
C .41,3
⎡⎤⎢⎥⎣⎦
D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭
U
4.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸
B .二尺五寸
C .三尺五寸
D .四尺五寸
5.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2
B .-2
C .
12
D .12
-
6.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12
B .10
C
.D
.7.已知AB AC ⊥u u u v u u u v ,1AB t
=u u u
v ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且
4AB AC AP AB AC
=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13
B .15
C .19
D .21
8.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =
,c =,
30B =︒,则AB 边上的中线的长为( )
A.37
B.
3
4
C.3 2

37
2
D.
3
4

37
2
9.已知等比数列{}n a的各项均为正数,若3132312
log log log12
a a a
++⋯+=,则
67
a a =()
A.1B.3C.6D.9
10.已知正数x、y满足1
x y
+=,则
14
1
x y
+
+
的最小值为()
A.2B.
9
2
C.
14
3
D.5
11.已知
421
333
2,3,25
a b c
===,则
A.b a c
<<B.a b c
<<
C.b c a
<<D.c a b
<<
12.若正数,x y满足40
x y xy
+-=,则
3
x y
+
的最大值为
A.
1
3
B.
3
8
C.
3
7
D.1
二、填空题
13.已知实数x,y满足不等式组
20
30
26
x y
x y
x y
-≤


+-≥

⎪+≤

,则2
z x y
=-的最小值为__________.14.已知实数,x y满足
10
20
10
x y
x y
x y
++≥


-≥

⎪--≤

,则目标函数2
z x y
=+的最大值为____.
15.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.
16.设不等式组
30,
{230,
1
x y
x y
x
+-<
--≤

表示的平面区域为1
Ω,平面区域
2
Ω与
1
Ω关于直线
20
x y
+=对称,对于任意的
12
,
C D
∈Ω∈Ω,则CD的最小值为__________.
17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为
221
4
a b
+-,则ABC ∆面积的最大值为_____. 18.数列{}n b 中,121,5b b ==且*
21()n n n b b b n N ++=-∈,则2016b =___________.
19.不等式211x x --<的解集是 .
20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.
三、解答题
21.在平面四边形ABCD 中,已知34
ABC π
∠=
,AB AD ⊥,1AB =.
(1)若5AC =ABC ∆的面积;
(2)若5
sin 5
CAD ∠=
,4=AD ,求CD 的长. 22.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin sin 3a B b A π⎛⎫
=+ ⎪⎝

. (1)求A ; (2)若3
,b c 成等差数列,ABC ∆的面积为23a . 23.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且
2sin (2)sin (2)sin .a A b c B c b C =+++
(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.
24.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且2
2
2,4c a b ab =+-=. (1)求角C ;
(2)若2
2
sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.
25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.
(1)求{}n a 的通项公式; (2)设1
1n n n b a a +=
,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,2
4n S a a ≤-恒成
立,求a 的取值范围.
26.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤
13
; (Ⅱ)222
1a b c b c a
++≥.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.
详解:由等差数列前n 项和公式结合等差数列的性质可得:
120171009201710092201720172017201722
a a a
S a +=
⨯=⨯==, 则10091a =,据此可得:
()12018
201710091010201810091009440362
a a S a a +=
⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.
2.B
解析:B 【解析】
试题分析:由题意可得,当n 为奇数时,()2
2()(1)121;n a f n f n n n n =++=-+=--当
n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以
()
1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,
故选B.
考点:数列的递推公式与数列求和.
【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与
运算能力,属于中档题.本题解答的关键是根据给出的函数()22()
{()
n n f n n n =-当为奇数时当为偶数时及
()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分
组求和的方法得到数列{}n a 前100项的和.
3.D
解析:D 【解析】 【分析】
要确定不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…
„表示的平面区域是否一个三角形,我们可以先画出
0220y x y x y ⎧⎪
+⎨⎪-⎩

„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】
不等式组0220y x y x y ⎧⎪
+⎨⎪-⎩

„…表示的平面区域如图中阴影部分所示.
由22
x y x y =⎧⎨
+=⎩得22,33A ⎛⎫
⎪⎝⎭,
由0
22
y x y =⎧⎨+=⎩得()10
B ,. 若原不等式组0220y x y x y x y a
⎧⎪+⎪
⎨-⎪⎪+⎩…
„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范
围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭
U 故选:D 【点睛】
平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.
4.B
解析:B 【解析】 【分析】
从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】
由题知各节气日影长依次成等差数列,设为{}n a ,
n S 是其前n 项和,则()19959985.52
a a S a +=
==尺,
所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

故选:B . 【点睛】
本题考查等差数列应用问题,考查等差数列的前n 项和与通项公式的基本量运算,属于中档题.
5.D
解析:D 【解析】 【分析】
把已知2
214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,
【详解】
因为124S S S ,,成等比数列,所以2214S S S =,即2
11111(21)(46).2
a a a a -=-=-,
故选D. 【点睛】
本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.
6.A
解析:A
【解析】
由已知24356a a q q +=+=,∴2
2q =,∴25735()2612a a q a a +=+=⨯=,故选A.
7.A
解析:A 【解析】
以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t
,(0,)C t ,
10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以1
14)PB t
=--u u u r (,,14)PC t =--u u u r (,,因
此PB PC ⋅u u u r u u u r
11416t t =--+117(4)t t =-+,因为11
4244t t t t
+≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于
13,当1
4t t =,即12
t =时取等号.
考点:1、平面向量数量积;2、基本不等式.
8.C
解析:C 【解析】 【分析】
由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线1
2
BD c =
,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】
解:3,33,30b c B ===o Q ,
∴由余弦定理2222cos b a c ac B =+-,可得23927233a a =+-⨯⨯,
整理可得:29180a a -+=,∴解得6a =或3.
Q 如图,CD 为AB 边上的中线,则13322
BD c ==,
∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:
222333336(
)26CD =+-⨯⨯⨯,或222333333()23CD =+-⨯⨯⨯
, ∴解得AB 边上的中线32CD =
或37
. 故选C .
【点睛】
本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.
9.D
解析:D 【解析】 【分析】
首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知
()6
121267.....a a a a a =,最后计算67a a 的值.
【详解】
由3132312log log log 12a a a +++=L ,
可得31212log 12a a a =L ,进而可得()6
121212673a a a a a ==L ,
679a a ∴= .
【点睛】
本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.
10.B
解析:B 【解析】 【分析】
由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与14
1x y
++相乘,利用基本不等式可求出
141x y
++的最小值.
【详解】
1x y +=Q ,所以,(1)2x y ++=,
则1414412()[(1)]()559111x y x y x y x y y x ++
=+++=++=+++…, 所以,
149
12
x y ++…, 当且仅当4111
x y y x x y +⎧=⎪+⎨⎪+=⎩,即当23
13x y ⎧
=⎪⎪⎨⎪=⎪⎩
时,等号成立,
因此,
141x y ++的最小值为92
, 故选B . 【点睛】
本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.
11.A
解析:A 【解析】 【分析】 【详解】
因为4
2
2
2
33332=4,3,5a b c ===,且幂函数2
3y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.
点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.
12.A
解析:A 【解析】 【分析】
分析题意,取3x y +倒数进而求3x y
+的最小值即可;结合基本不等式中“1”的代换应用即
可求解。

【详解】
因为40x y xy +-=,化简可得4x y xy +=,左右两边同时除以xy 得
14
1y x
+= 求
3x y +的最大值,即求
333
x y x y
+=+ 的最小值 所以1413333x y x y y x ⎛⎫
⎛⎫⎛⎫+⨯=+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
4143333
x y y x =
+++ 4142
3333
x y y x ≥⨯++ 3≥,当且仅当
433x y y x
=时取等号 所以
3x y +的最大值为1
3
所以选A 【点睛】
本题考查了基本不等式的简单应用,关键要注意“1”的灵活应用,属于基础题。

二、填空题
13.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6
解析:-6 【解析】
由题得不等式组对应的平面区域为如图所示的△ABC,当直线122
z
y x =-经过点A(0,3)时,直线的纵截距2
z
-
最大,z 最小.所以min 023 6.z =-⨯=-故填-6.
14.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+
解析:5 【解析】 【分析】
作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】
作出实数x ,y 满足102010x y x y x y ++≥⎧⎪
-≥⎨⎪--≤⎩
对应的平面区域,如图:
由z =2x +y 得y =﹣2x +z ,
平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】
本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.
15.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的
解析:300 【解析】
试题分析:由条件,
,所以
,
,
,所以
,
,这样在
中,,在
中,
,解得
,
中,
,故填:300.
考点:解斜三角形
【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.
16.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区 解析:
25
【解析】
作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中
(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,
由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:22
215
5
21d -=
=
+ ,所以区域1Ω 内的点与区域2Ω 内的点之间的最近距离为
25
,即25CD = .
点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.
17.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛 解析:
214
【解析】
结合已知条件,结合余弦定理求得π
4
C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】
由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221
cos 2a b C ab +-=②,由
①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 22
a b C ab +-==
,化简
221a b =+-22121a b ab =+-≥-,化简得22
ab +≤所以三角形
面积1121
sin 22224
S ab C =≤⨯=.
故答案为1
4
. 【点睛】
本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.
18.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题
解析:-4 【解析】 【分析】
根据已知可得6n n b b +=,即可求解. 【详解】
121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.
故答案为:-4 【点睛】
本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.
19.【解析】【分析】【详解】由条件可得 解析:{}|02x x <<
【解析】 【分析】 【详解】
20.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB的值即得B角【详解】由2bcosB=acosC+ccosA及正弦定理得2sinBcosB=sinAcosC+sin
解析:
3
π
【解析】
【分析】
根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B的值,即得B 角.
【详解】
由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.
∴2sin B cos B=sin(A+C).
又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.
又sin B≠0,∴cos B=.∴B=.
∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=.
又0<B<π,∴B=.
【点睛】
解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
三、解答题
21.(1)1
2
;(213
【解析】
【分析】
(1)在ΔABC中,由余弦定理,求得2
BC=进而利用三角形的面积公式,即可求解;
(2)利用三角函数的诱导公式化和恒等变换的公式,求解sin BCA 10
∠=
,再在ΔABC 中,利用正弦定理和余弦定理,即可求解. 【详解】
(1)在ΔABC 中,222AC AB BC 2AB BC COS ABC ∠=+-⋅⋅
即251BC BC =++ 2BC 40⇒+-=,解得BC =.
所以ΔABC 111S AB BC sin ABC 1222
∠=
⋅⋅=⨯=.
(2)因为0BAD 90,sin CAD ∠∠==
,所以cos BAC ∠=,
sin BAC 5
∠=
, π
sin BCA sin BAC 4所以∠∠⎛⎫
=- ⎪⎝⎭ )cos BAC sin BAC ∠∠=-
2==⎝⎭
.
在ΔABC 中,
AC AB sin ABC sin BCA ∠∠=, AB sin ABC
AC sin BCA
∠∠⋅∴=
=
222
CD AC AD 2AC AD cos CAD ∠=+-⋅⋅所以 51624135
=+-⨯
=
所以CD = 【点睛】
本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.
22.(1)3
π
; (2) 【解析】 【分析】
(1)由正弦定理化简已知可得sinA=sin (A +3
π
),结合范围A ∈(0,π),即可计算求解A 的值;
(2)利用等差数列的性质可得b ,利用三角形面积公式可求bc 的值,进而根据余弦定理即可解得a 的值. 【详解】
(1)∵asinB=bsin (A+
3
π
). ∴由正弦定理可得:sinAsinB=sinBsin (A +3
π
). ∵sinB≠0, ∴sinA=sin (A+
3
π
). ∵A ∈(0,π),可得:A +A+3
π
=π, ∴A=
3
π.
(2)∵b ,c 成等差数列,
∴,
∵△ABC 的面积为S △ABC =1
2


123
bc sin π
⨯⨯bc=8, ∴由余弦定理可得:a 2=b 2+c 2﹣2bccosA=(b+c )2﹣2bc ﹣2bccos 3
π
=(b+c )2﹣3bc=)2﹣24,
∴解得: 【点睛】
本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题. 23.(Ⅰ)120°;(Ⅱ)1. 【解析】 【分析】
(Ⅰ)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小; (Ⅱ)由题意结合(Ⅰ)的结论和三角函数的性质可得sin sin B C +的最大值. 【详解】
(Ⅰ)()()2sin 2sin 2sin a A b c B c b C =+++Q ,
()()2222a b c b c b c ∴=+++,即222a b c bc =++.
2221cos 22
b c a A bc +-=-∴=,120A ∴=︒.
(Ⅱ)sin sin sin sin(60)B C B B +=+︒-()1
sin sin 602
B B B =
+=︒+, 060B ︒<<︒Q ,∴当6090B ︒+=︒即30B =︒时,sin sin B C +取得最大值1.
【点睛】
在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.
24.(1)3
C π
=(2)
3
【解析】
试题分析:(1)由余弦定理得cos C 值,再根据三角形内角范围求角C ;(2)由正弦定理将条件化为边的关系:2224cos b c a ac A +-=,再根据余弦定理得2a b =,代人解得
3
a =
,3b =,2c =,由勾股定理得2B π=,最后根据直角三角形面积公式得
ABC V 的面积.
试题解析:解:(1)由余弦定理,得222cos 2a b c C ab +-== 22221
222
a b ab ab ab +-==,
又()0,C π∈,所以3
C π
=

(2)由()2
2
sin sin sin 2sin2sin B A C A C -=-, 得222sin sin sin 2sin2sin B C A A C +-=, 得222sin sin sin 4sin cos sin B C A A A C +-=,
再由正弦定理得2
2
2
4cos b c a ac A +-=,所以222
cos 4b c a A ac
+-=.①
又由余弦定理,得222
cos 2b c a A bc
+-=,②
由①②,得222222
42b c a b c a bc bc
+-+-=
,得42ac bc =,得2a b =,
联立2242a b ab b a ⎧+-=⎨=⎩
,得a =,b =
所以222b a c =+.所以2
B π
=.
所以ABC V 的面积11222S ac =
==
25.(1) 21n a n =+ (2) 1a 2a ≤-≥或 【解析】
试题分析:(1)根据题目中所给的条件,用基本量来表示数列中的项,求出基本量,即可得到通项;(2)由第一问可得,11122121n b n n ⎛⎫
=
- ⎪-+⎝⎭
,进而裂项求和,得到
221n
a a n ≤-+恒成立,求左式的最大值即可. 解析:
(1)31239T a a a =++=Q ,13a d ∴+=
又125,,a a a Q 成等比数列2
215a a a ∴=
11a ∴=`,221n d a n =∴=-
(2)()()111111212122121n n n b a a n n n n +⎛⎫
=
==- ⎪-+-+⎝⎭
1111111-++23352121n S n n ⎛⎫∴=
-+⋅⋅⋅- ⎪-+⎝⎭ 111-221n =+() 21
n n =+ 对任意的*n N ∈,2
4n S a a ≤-恒成立
只需n S 的最大值小于或等于24a a
-,而12n S <
22a a ∴-≥
1a ∴≤-或2a ≥
26.(Ⅰ)证明见解析;(II )证明见解析. 【解析】 【分析】 【详解】
(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:
222a b c ab bc ca ++≥++,
由题设得

即2222221a b c ab bc ca +++++=, 所以3()1ab bc ca ++≤,即13
ab bc ca ++≤
. (Ⅱ)因为22a b a b +≥,22b c b c +≥,2
2c a c a +≥,
所以222
()2()a b c a b c a b c b c a
+++++≥++,
即222
a b c a b c b c a
++≥++, 所以2221a b c b c a
++≥.
本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”. 【考点定位】
本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.。

相关文档
最新文档