德兴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德兴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设0<a <b 且a+b=1,则下列四数中最大的是( )
A .a 2+b 2
B .2ab
C .a
D .
2. 设P 是椭圆
+
=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )
A .22
B .21
C .20
D .13
3. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )
A .5
B .7
C .9
D .11
4. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )
A .﹣7
B .﹣1
C .﹣1或﹣7
D .
5. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C . D .
6. 已知
11x
yi i
=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -
7. 设集合(){,|,,1A x y x y x y =
--是三角形的三边长},则A 所表示的平面区域是( )
A.B.C.D.
8.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()
A.B.C.D.
9.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D
10.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()
A.命题p∨q是假命题B.命题p∧(¬q)是真命题
C.命题p∧q是真命题 D.命题p∨(¬q)是假命题
11.有下列四个命题:
①“若a2+b2=0,则a,b全为0”的逆否命题;
②“全等三角形的面积相等”的否命题;
③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;
④“矩形的对角线相等”的逆命题.
其中真命题为()
A.①②B.①③C.②③D.③④
12.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底
数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()
A.h()B.h()C.h()D.h()
二、填空题
13.若等比数列{a n }的前n 项和为S n ,且
,则
= .
14.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .
15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1
e e x
x
f x =-,其中e 为自然对数的底数,则不等式()()
2
240f x f x -+-<的解集为________.
16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.
17.已知一个动圆与圆C :(x+4)2+y 2
=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .
18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
三、解答题
19.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F . (1)求弦AB 的中点M 的轨迹方程
(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.
20.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.
(1)若cos ∠ADC=,求AB 的值;
(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?
21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
22.设函数f (x )=x 2e x . (1)求f (x )的单调区间;
(2)若当x ∈[﹣2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.
23.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
24.(本小题满分12分)
在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.
(1)求cos C 的取值范围;
(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
德兴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:∵0<a<b且a+b=1
∴
∴2b>1
∴2ab﹣a=a(2b﹣1)>0,即2ab>a
又a2+b2﹣2ab=(a﹣b)2>0
∴a2+b2>2ab
∴最大的一个数为a2+b2
故选A
2.【答案】A
【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,
∴|PF2|=2×13﹣|PF1|=26﹣4=22.
故选:A.
【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.
3.【答案】C
【解析】解:若果树前n年的总产量S与n在图中对应P(S,n)点
则前n年的年平均产量即为直线OP的斜率
由图易得当n=9时,直线OP的斜率最大
即前9年的年平均产量最高,
故选C
4.【答案】A
【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.
所以,解得m=﹣7.
故选:A.
【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.
5. 【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
故答案为:B 6. 【答案】D
【解析】
1
()1,2,1,12
x x xi yi x y i =-=-∴==+故选D 7. 【答案】A 【解析】
考
点:二元一次不等式所表示的平面区域. 8. 【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为
,
故选C .
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
9. 【答案】B
【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B .
故选B .
10.【答案】 B
【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题; x <0时,
<x 无解,∴命题q 是假命题;
∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;
故选:B.
【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.
11.【答案】B
【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;
②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;
③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;
④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.
综上可得:真命题为:①③.
故选:B.
【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.
12.【答案】B
【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]
=x x(lnx+1),
令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,
∴h(x)在(0,)递减,在(,+∞)递增,
∴h()最小,
故选:B.
【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.
二、填空题
13.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:
.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S 2表示S 4和S 6是解决问题的关键,属中档题.
14.【答案】V
【解析】
【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:
故答案为:
15.【答案】()32-,
【解析】∵()1e ,e x x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x
x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,
,故答案为()32-,. 16.【答案】
1
e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
10
1|
a a e da e e ==-⎰,∴随机事件“ln a
b ≥”的概率为
1
e e
-.
17.【答案】
+
=1 .
【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,
∵圆C :(x+4)2+y 2
=100的圆心为C (﹣4,0),半径R=10,
∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|, ∵圆B 经过点A (4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,
∵|AC|=8<10,
∴点B的轨迹是以A、C为焦点的椭圆,
设方程为(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.
故答案为:+=1.
π
18.【答案】
4
【解析】
考点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用
180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒
角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出
现.
三、解答题
19.【答案】
【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,
两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,
∴=,
∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),
∴,
化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣
(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)
由已知OA⊥OB得:x1x2+y1y2=0,
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①
,
所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②
联立①②得:k2+1=0无解
所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
20.【答案】
【解析】(本小题满分12分)
解:(1)∵,
∴,
∴…2分(注:先算∴sin∠ADC给1分)
∵,…3分
∴,…5分
(2)∵∠BAD=θ,
∴, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
21.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
22.【答案】
【解析】解:(1)…
令
∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);
单减区间为(﹣2,0).…
(2)令
∴x=0和x=﹣2,…
∴
∴f(x)∈[0,2e2]…
∴m<0…
23.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.
24.【答案】
【解析】。